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The unfolded protein response links tumor
aneuploidy to local immune dysregulation
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Abstract

Aneuploidy is a chromosomal abnormality associated with poor
prognosis in many cancer types. Here, we tested the hypothesis
that the unfolded protein response (UPR) mechanistically links
aneuploidy and local immune dysregulation. Using a single somatic
copy number alteration (SCNA) score inclusive of whole-
chromosome, chromosome arm, and focal alterations in a pan-
cancer analysis of 9,375 samples in The Cancer Genome Atlas
(TCGA) database, we found an inverse correlation with a cytotoxic-
ity (CYT) score across disease stages. Co-expression patterns of
UPR genes changed substantially between SCNAlow and SCNAhigh

groups. Pathway activity scores showed increased activity of multi-
ple branches of the UPR in response to aneuploidy. The PERK
branch showed the strongest association with a reduced CYT score.
The conditioned medium of aneuploid cells transmitted XBP1 splic-
ing and caused IL-6 and arginase 1 transcription in receiver bone
marrow-derived macrophages and markedly diminished the
production of IFN-γ and granzyme B in activated human T cells.
We propose the UPR as a mechanistic link between aneuploidy
and immune dysregulation in the tumor microenvironment.
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Introduction

Aneuploidy is the oldest form of chromosomal abnormality identi-

fied (Boveri, 2008) and can result from mis-segregation during

anaphase (e.g., spindle assembly, checkpoint defects) (Gordon et al,

2012), cell fusion (Migeon et al, 1974), or cell-in-cell formation (en-

tosis) (Krajcovic et al, 2011). In cancer, aneuploidy is part of a

broader category of genomic abnormalities called somatic copy

number alteration (SCNA; distinguished from germline copy number

variations), which are often divided into three categories: whole chro-

mosome, chromosome arm, and focal (Beroukhim et al, 2010).

Approximately 90% of solid tumors and 50% of blood cancers

present some features of aneuploidy (Beroukhim et al, 2010; Mitel-

man et al, 2016). Aneuploidy is associated with tumor progression

and poor prognosis (Owainati et al, 1987; Newburger et al, 2013;

Hieronymus et al, 2018; Stopsack et al, 2019), and chromosomally

unstable cancer cells exhibit increased multidrug resistance (Dues-

berg et al, 2000). While aneuploidy is usually detrimental to cell

viability in healthy tissues leading to negative selection of aneuploid

cells, it is paradoxically tolerated in cancer cells (Holland & Cleve-

land, 2009; Valind et al, 2013; Varetti et al, 2014) suggesting that it

provides selective growth advantage to cancer cells in the hostile

tumor microenvironment (Giam & Rancati, 2015).

From an evolutionary perspective, aneuploidy is a source of

genetic variation allowing for selection and fitness advantage (Tor-

res et al, 2007), but this may also have a functional impact on cells

through gene and protein dosage change as demonstrated in yeast

and in mammalian cells (Stranger et al, 2007; Pavelka et al, 2010;

Sheltzer et al, 2012). In tumors, whole genome duplication facili-

tates accelerated genome evolution and more aggressive disease

(Gao et al, 2007; Lopez et al, 2020). There is also substantive

evidence that overexpression of genes associated with aneuploidy

leads to dysregulated proteostasis (Gao et al, 2007; Tang & Amon,

2013) and cell stress (Santaguida & Amon, 2015; Zhu et al, 2018;

Chunduri & Storchova, 2019). This conclusion is supported by stud-

ies in yeast (Torres et al, 2007; Geiler-Samerotte et al, 2011; Beau-

pere et al, 2018; Tsai et al, 2019) and mammalian cells (Senovilla

et al, 2012; Donnelly et al, 2014; Ohashi et al, 2015). Importantly,

in yeast, quantitative changes in the proteome beyond the buffering

capability of the cell cause an unfolded protein response (UPR)

(Geiler-Samerotte et al, 2011) and hypo-osmotic stress (Tsai et al,

2019). Congruently, a proteotoxic response is predicted to be

a consequence of aneuploidy in cancer cells (Zhu et al, 2018; Chun-

duri & Storchova, 2019) potentially triggering a UPR.

Recent reports showed that tumor aneuploidy correlates with

markers of immune evasion (Davoli et al, 2017) and reduced
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number of tumor-infiltrating leukocytes (Taylor et al, 2018) suggest-

ing a connection between aneuploidy and immune surveillance.

However, neither study provided a mechanistic explanation for the

correlation. Paradoxically, two earlier reports (Senovilla et al, 2012;

Boileve et al, 2013) showed that tetraploid neoplastic cells ostensi-

bly lead to their selective elimination by T cells. Curiously, tissue

containing tetraploid cells was also enriched for phosphorylated

eIF2α leading to the suggestion that the UPR was involved in a bene-

ficial way. With the issue remaining largely unresolved, we decided

to test the hypothesis that an SCNA-triggered unfolded protein

response (UPR) could serve as the link between cancer cell aneu-

ploidy and immune cells (Zanetti, 2017).

The UPR is mediated by three initiator/sensor ER transmem-

brane molecules: PKR-like ER kinase (PERK), inositol-requiring

enzyme 1 (IRE1α), and activating transcription factor 6 (ATF6).

These are maintained inactive through association with the 78-kDa

glucose-regulated protein (GRP78) (Schroder & Kaufman, 2005).

During ER stress, GRP78 disassociates from each of the three

sensor molecules, activating downstream signaling cascades to

normalize protein folding and secretion. PERK phosphorylates the

translation initiation factor 2 (eIF2α), resulting in global inhibition

of translation to reduce ER client proteins (Walter & Ron, 2011).

IRE1α auto-phosphorylates to activate its endonuclease domain,

resulting in the cleavage of XBP1 that generates a spliced XBP1

isoform (XBP1s), which drives the production of various ER chap-

erones to restore ER homeostasis (Walter & Ron, 2011). XBP1s also

binds to the promoter of several pro-inflammatory cytokine genes

(Martinon et al, 2010). In addition, under ER stress or forced

autophosphorylation, IRE1α’s RNase domain can cause endonucle-

olytic decay of many ER-localized mRNAs through a phenomenon

termed regulated IRE1-dependent decay (RIDD) (Hollien & Weiss-

man, 2006). ATF6 induces XBP1 and translocates to the Golgi

where it is cleaved into its functional form, and acts in parallel

with XBP1s to restore ER homeostasis as a transcription factor

(Yoshida et al, 2001). If these compensatory mechanisms fail,

downstream signaling from PERK via transcription factor 4 (ATF4)

activates the transcription factor CCAAT–enhancer-binding protein

homologous protein (CHOP) encoded by DDIT3 to initiate apopto-

sis (Walter & Ron, 2011).

In cancer cells, the UPR serves as a cell-autonomous process to

restore proteostasis, enable survival, and signal cell growth (Clarke

et al, 2014; Lee, 2014). However, it can also function cell-

nonautonomously by promoting the release of soluble molecules

that target neighboring cells (Mahadevan et al, 2011; Rodvold et al,

2017). These can increase the fitness and survival of tumor cells

(Rodvold et al, 2017), impart immunosuppressive and pro-

tumorigenic functions to bone marrow-derived macrophages and

dendritic cells (Mahadevan et al, 2011, 2012; Cubillos-Ruiz et al,

2015), and indirectly impair the function of T cells (Mahadevan et

al, 2012; Song et al, 2018).

To test the hypothesis that the UPR may represent the link

between aneuploidy and immune dysregulation, we applied statisti-

cal methods to UPR gene expression and pathway structures in a

pan-cancer analysis of 9,375 TCGA samples across 32 tumor types

using an SCNA score (inclusive of whole-chromosome, arm, and

focal SCNA) and analyzed the effects of aneuploidy-generated in

vitro on bone marrow-derived macrophages and T cells. We show

that the UPR is a mechanism by which aneuploidy can disrupt local

immunity in cancer contributing to the loss of immune surveillance.

Our findings lead to the provisional conclusion that the aneuploidy-

generated UPR is a new variable in the interplay between cancer

and immunity.

Results

Pan-cancer distribution of SCNA

SCNA has been previously grouped into three categories: whole

chromosome, arm, and focal (Beroukhim et al, 2010; Davoli et al,

2017). Whole-chromosome copy number alteration refers to a dupli-

cation or loss of an entire chromosome (canonical aneuploidy), arm

copy number alteration refers to the duplication or loss of an entire

chromosome arm, and focal copy number alteration refers to the

duplication or loss of a discrete region of the chromosome not span-

ning the length of the entire chromosome arm (Fig 1A). Arm and

focal SCNA have been estimated at 25 and 10% of the genome,

respectively (Beroukhim et al, 2010; Gordon et al, 2012). Here, we

studied the three types of SCNA in tumors from The Cancer Genome

Atlas (TCGA), quantifying them from segmented SNP array intensity

data (see Materials and Methods). An example of a segmented SNP

profile of a single tumor harboring all three event categories is

shown (Fig 1B).

We first studied the distribution of SCNAs across thirty-two dif-

ferent tumor types (n = 9,375) from TCGA. Recurrent SCNAs

affecting specific chromosome arms have been reported, and it is

apparent that there is considerable variation in the chromosome

arms that are most affected across different tumor types (Fig 1C).

For example, 3p arm losses and 3q arm gains were evident in lung

squamous cell carcinoma (LUSC) (Fig 1C), consistent with a previ-

ous report (Zabarovsky et al, 2002). We further compared the

number of each SCNA category per tumor across the thirty-two

tumor types (Fig 1D). Some tumor types such as thyroid carcinoma

(THCA) and thymoma (THYM) show low SCNA frequency, while

others such as ovarian serous adenocarcinoma (OV) and kidney

chromophobe cancer (KICH) carry heavy SCNA burdens (Fig 1D).

▸Figure 1. Characterizing aneuploidy across 32 tumor types.

A An illustration on the definition of focal-, arm-, and chromosome-level somatic copy number alterations (SCNAs).
B Example of somatic copy number alterations detected in a single TCGA sample (TCGA-02-0003, GBM) with copy number gain in red and copy number loss in blue.

The x-axis represents the chromosomal location, and the y-axis shows the log2 fold change in the intensity of the corresponding region relative to diploid.
C Heatmap showing the average fold change of copy number gain (red) and loss (blue) of chromosomal p and q arm events across 32 tumor types in TCGA.
D Visualization of the distribution of total SCNA events (loss and gain) by category across tumors grouped by 32 tumor types in TCGA. From top to bottom, plots depict

events of chromosomal-, arm-, and focal-level SCNA, respectively.
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Figure 1.
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Aggregating tumor aneuploidy into a single SCNA score

We first sought to determine whether the three SCNA types could be

used and expressed collectively as a single SCNA score. We used

pairwise correlation to evaluate the relationship between whole-

chromosome, arm, and focal SCNA categories (raw event count;

Spearman correlation, Appendix Fig S1A) and found a strong, posi-

tive inter-category correlation (Spearman r = 0.548–0.627). We then

derived aggregate scores for each category separately and compared

them to a single combined SCNA score (see also Materials and

Methods). The combined SCNA score showed consistently high

correlation with all three categories considered independently

(Spearman r = 0.735–0.866) with focal SCNA being the least corre-

lated (Spearman r = 0.735) (Appendix Fig S1B–D).
To further assess the combined score, we revisited major

genomic correlates of aneuploidy, including mutational burden and

TP53 mutation status. Early studies suggested an inverse correlation

between the number of non-synonymous mutations and copy

number alterations (Ciriello et al, 2013). This was later found to

result from a strong inverse correlation between mutation and SCNA

in a subset of microsatellite instability high (MSI-H) tumors (Taylor

et al, 2018). As reported, microsatellite stable (MSS) tumors showed

positive correlation between mutational burden and SCNA arm-

level events (Appendix Fig S2A). The combined SNCA score recapit-

ulates this finding (Appendix Fig S2B).

We also found a positive association between TP53 mutations

and combined SCNA score (Appendix Fig S3A), consistent with the

finding of Soto et al that TP53 plays a role in preventing propagation

of chromosome segregation errors (Soto et al, 2017). We computed

TP53 activity scores using ten TP53-repressed genes (Cancer

Genome Atlas Research Network. Electronic address and Cancer

Genome Atlas Research, 2017) and found a significant negative

correlation between TP53 activity and SCNA score in seventeen out

of thirty-two cancer types (Appendix Fig S3B). Among these, only

THYM showed a significant positive correlation. Across tumors,

TP53 activity was negatively correlated with each of the three SCNA

categories (Appendix Fig S3C). Our results support the view that

inactivation and mutations of TP53 associate with high SCNA scores

in most solid tumors (Zack et al, 2013).

SCNA score negatively correlates with immune-mediated
cytotoxicity

In a pan-cancer analysis of tumors with stage information

(n = 6,298, 25 tumor types), we found that as tumor stage

increased, the single combined SCNA score (aneuploidy score) also

increased (Fig 2A). We also measured perforin (PRF1) and gran-

zyme A (GZMA) gene expression as representations of cytolytic

activity (CYT) in tumors (Rooney et al, 2015) and found that CYT

was inversely correlated with tumor stages across all cancer types

(n = 6,458, 25 tumor types) (Fig 2B). To account for a potential bias

due to differences in stage and SCNA distribution across tumor

types (Appendix Fig S4A), we included tumor type as a covariate in

an Ordinary Least Squares (OLS) linear regression model. We

defined separate models to predict SCNA scores and CYT scores

from tumor stage, using Stage I as a baseline for comparison

(Table 1). SCNA scores were significantly higher in stages II-IV rela-

tive to stage I (P = 1.39e-09, P = 3.77e-10, P = 2.01e-11) (Table

EV1). For CYT, we observed a near significant negative coefficient

for Stage II (P = 0.075) and a significant negative coefficient for

Stage IV (P = 9.74e-5) (Table 1), but no significant reduction in

stage III relative to stage I. Nonetheless, we observed a significant

inverse correlation between CYT score and SCNA score in all stages

(Fig 2C; Table 1).

Further investigating the relationship between SCNA level and

CYT score in individual tumor types, we found significant negative

correlation between SCNA scores and CYT levels in 23 out of 32

tumor types (Spearman correlation test; Fig 2D). Although we noted

correlation between TP53 activity and SCNA score, the tumor type-

specific correlation between SCNA score and CYT was independent

of TP53 activity score by partial correlation analysis (Appendix Fig

S4B). Surprisingly, thymoma (THYM) and low-grade glioma (LGG)

showed a significant positive correlation (Fig 2C). We note that

THYM had lower SCNA scores than other tumor types, and when we

restricted analysis to THYM tumors with an SCNA score > 1, there

was a trend toward inverse correlation between SCNA score and CYT

(r = −0.325, P = 0.096). In low SCNA THYM tumors, other factors

appear to influence CYT levels, which may reflect the association of

THYM with autoimmunity (Shelly et al, 2011) and altered immune

surveillance and potentially promoting alternative mechanisms

immune evasion and increased cytotoxic T cells (Hoffacker et al,

2000; Bando et al, 2017). Trends in LGG and GBM may reflect dif-

ferences in the tumor microenvironment in the brain; LGG in particu-

lar is characterized by low levels of CD8 T-cell infiltration (Weenink

et al, 2019). Together, these observations suggest that as most tumors

progress, they accumulate SCNAs and evade immunity.

A previous report suggested that among SCNA categories, whole

chromosome- and arm-level event burden are predictive of immune

evasion whereas focal event burden is associated with cell cycle

(Davoli et al, 2017). We found that focal SCNAs also inversely

correlate with CYT levels, albeit more weakly than chromosome- or

arm-level SCNAs (Fig EV1A) in an OLS model using all three cate-

gories of SCNA to predict CYT score and including tumor type as a

covariate. This supported the use of the combined SCNA score to

analyze the impact of chromosomal abnormalities during tumor

progression on immune dysregulation (i.e., decrease cytolytic activ-

ity) leading to progressive immune incompetence and immune

evasion. In considering the effects of SCNA levels on UPR mainte-

nance of proteostasis, we also did not expect the three SCNA cate-

gories to substantially differ from one another. Indeed, they all

showed similar Spearman correlation to parental UPR gene expres-

sion across all 32 tumor types (Fig EV1B). In light of this, all subse-

quent analyses were performed using the single SCNA score as a

simplified measure of aneuploidy burden.

UPR gene expression correlates with SCNAs

The UPR is an adaptive survival mechanism used by mammalian

cells in response to environmental perturbations, cell-autonomous,

and cell-nonautonomous signaling to alleviate the burden of excess

client proteins in the ER (Walter & Ron, 2011). To investigate the

relation between SCNA and the UPR, we first examined the expres-

sion of a few representative genes from each major UPR pathway.

We compared gene expression levels for the master regulator of the

UPR, heat-shock protein family A member 5 (HSPA5) in tumors,

and matched normal tissues. Out of the twenty-three tumor types
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with available matched normal samples in TCGA, all except three

(THCA, KICH, and KIRP) showed greater HSPA5 expression in

tumors, and thirteen of these showed statistical significance (FDR <
0.05) (Fig 3A). Notably, small sample sizes for matched normal

tissues limited the statistical power in a few cancer types: skin cuta-

neous melanoma (SKCM, n = 1), thymoma (THYM, n = 2), brain

tumors (GBM, LGG, n = 0), and pheochromocytoma or paragan-

glioma (PCPG, n = 3). We next evaluated the Spearman correlation

between SCNA score and parent genes for the three branches of the

UPR (IRE1α, PERK, and ATF6) across all thirty-two tumor types in

TCGA (Fig 3B). Three genes from the PERK pathway (EIF2S1,

EIF2AK3, and DDIT3) showed a positive correlation with the SCNA

score across almost every tumor type. ATF6 also showed a mild

positive correlation with SCNA scores across the majority of tumor

types (Fig 3B). In contrast, ERN1 (the gene coding for IRE1α)
showed no consistent correlation, and XBP1 had a mild negative

correlation with SCNA score (Fig 3B). This analysis of transcrip-

tional regulation of sensor genes suggests that SCNA levels correlate

with activation of UPR branch pathways, mainly the PERK pathway.

A positive correlation with ATF6 is not entirely surprising given its

role in targeting stress response genes to cope with a greater client

protein burden resulting from SCNAs and facilitating tolerance to

chronic stress (Wu et al, 2007). On the other hand, the lack of a

positive correlation with ERN1 motivated further analysis given that

this pathway has been implicated in tumor survival (Logue et al,

2018; Xie et al, 2018), macrophage polarization (Batista et al, 2020),

and T-cell dysregulation (Song et al, 2018).

Some UPR activity, and IRE1α activity in particular, is regulated

by post-translational modifications which may not be reflected in

expression levels of UPR branch pathway parent genes. Based on

this reasoning, we performed an analysis of genes downstream of

each of the three main branches of the UPR, assuming that they

would collectively be more indicative of an association with SCNA

levels than the parent genes. We first collected gene sets for the

A C D

B

Figure 2. SCNA accumulates as tumor stage progresses and negatively correlates with immune cytolytic activity.

A Mean and 95% confidence interval is shown for SCNA scores among samples at each tumor stage across 6,298 TCGA samples with stage annotation and SCNA score
available.

B Mean and 95% confidence interval for CYT scores among samples at each tumor stage across 6,458 TCGA samples with stage annotation and CYT score available.
C Pan-cancer correlation between SCNA score and CYT score with tumors grouped by stage. Spearman rank correlation coefficient and statistical significance

(calculated using the student’s t distribution with degrees of freedom = n – 2) are shown at the top right of each panel.
D Spearman correlation coefficients linking SCNA and CYT scores across 32 tumor types. Black circles denote significant correlation (FDR < 0.05) after Benjamini–

Hochberg multiple testing correction.

Table 1. Significant accumulation of SCNA correlates with decreasing
of CYT with tumor stage progression. An OLS model coefficient
showing a significant accumulation of SCNA and decreasing of CYT
with increasing tumor stages (n = 6,495), including 25 tumor types as
a covariate (ACC, BLCA, BRCA, CESC, CHOL, COAD, ESCA, HNSC, KICH,
KIRC, KIRP, LIHC, LUAD, LUSC, MESO, OV, PAAD, READ, SKCM, STAD,
TGCT, THCA, UCEC, UCS, and UVM).

SCNA
coeff SCNA P-value

CYT
coeff CYT P-value

Stage II 0.546 1.39e-09 −0.069 0.075

Stage III 0.566 3.77e-10 −0.032 0.407

Stage IV 0.791 2.01e-11 −0.197 9.74e-05
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IRE1α, XBP1S, PERK, and ATF6 pathways from REACTOME, a

curated database of biological pathways (Jassal et al, 2020) (Table

EV1). These gene sets include members of the branch pathways, but

also downstream effector genes that reflect branch pathway activi-

ties. We then compared the expression of these genes in each UPR

branch in tumor samples with SCNA score using partial correlation

analysis to account for contributions of amplifications or deletions

affecting each gene (Fig 3C). Of note, inadequate coverage of

samples and insufficient variation in SCNA levels posed limitations

in this analysis (Appendix Fig S5). For example, CHOL, DLBC, UCS,

KICH, ACC, and MESO all have particularly low numbers of samples

in each group (n < 85, with median sample size = 267), while

GBM, OV, CESC, and THCA all have little variation in SCNA levels

(variance < 5.48, with mean variance among all tumor types =
6.24). Despite this, we found that over half of the thirty-two tumor

types showed significant correlation between SCNA score and the

expression of the majority of downstream genes in all three UPR

branch pathways (Fig 3C). Collectively, this broad analysis shows

that SCNA is associated with altered gene expression of each of the

three branches of the UPR.

Changes in differential co-expression of UPR genes between
SCNAlow and SCNAhigh tumors

Next, we considered that UPR branch pathway activities themselves

could be directly or indirectly affected by SCNAs. Because signaling

requires the coordinated activity of multiple proteins, genes within

pathways are often more highly co-expressed (Wolfe et al, 2005;

Komili & Silver, 2008). Therefore, to assess the impact of SCNA

levels on UPR signaling, we evaluated the differential co-expression

of all UPR genes in low and high SCNA groups across tumor types.

We divided samples into SCNAlow and SCNAhigh groups using the

30th and 70th percentiles for each tumor type and assessed dif-

ferences in the pairwise correlation coefficients for all UPR genes

between these two groups. We found that almost universally the co-

expression patterns of UPR genes were visibly different between

SCNAlow and SCNAhigh groups (Fig EV2), with most tumor types

showing less co-expression in the SCNAhigh compared with the

SCNAlow group (Figs 4 and EV2) consistent with general perturba-

tion of the transcriptome by SCNAs. In general, the SCNAhigh condi-

tion showed loss of coordination of UPR genes relative to the

SCNAlow condition (Fig EV2). The strongest effects were observed

in PAAD, GBM, KICH, CHOL, UVM, and ESCA.

We speculated that in the SCNAhigh setting, the oncogenic

effects of UPR would be preserved or amplified while tumor-

suppressive aspects would be reduced. Therefore, we assessed

whether loss of coordination of gene expression under SCNAhigh

conditions appeared random by comparing to permuted data.

Interestingly, forty-five gene pairs showed a significant propensity

to co-expression change (permutation-based FDR <0.05) in at

least nine tumor types (Fig 4B). To aid interpretation, we

repeated this analysis for three oncogenic pathways (TP53, EGFR,

and MAPK) and three pathways selected for lack of association

with tumorigenesis (olfaction, cardiac conduction, and visual

phototransduction). We noted that the fraction of gene pairs

perturbed in association with higher SCNA levels was consistently

higher in oncogenic as compared with control pathways (Fig

EV3A). Perturbations were also observed more consistently

across multiple cancer types for oncogenic versus control path-

ways (Fig EV3B). We used the control pathways to estimate an

empirical false discovery rate of 0.0995 (~10%) for detection of

recurrently perturbed genes. This may be conservative as we

found literature evidence that the genes in the top perturbed gene

pair of the visual phototransduction control pathway, METAP2-

FNTA, play roles in oncogenic progression in rhabdomyosarcoma

(Nielsen et al, 2012) and pancreatic endocrine tumors (Larghi et

al, 2012), respectively.

Among consistently differentially co-expressed UPR gene pairs,

the co-expression changes were predominately negative (n = 37),

suggesting a pattern of loss of coordination (Fig 4C). Some genes

were included in multiple perturbed pairs. Among highly perturbed

gene pairs across multiple tumor types, we noted CXXC1, HSPA5,

GSK3A, SERP1, PDIA6, FKBP14, and SCH1, which showed multiple

co-expression changes. Most of these genes (HSPA5, CXXC1, SERP1,

SCH1, PDIA6) encode proteins that confer resistance to various

forms of stress. GSK3A additionally functions as an oncogene by

stabilizing β-catenin and promoting self-renewal. These genes have

been associated with unfavorable prognosis in a cancer type-related

manner (Appendix Fig S6) (Uhlen et al, 2017). On the other hand,

co-expression of some gene pairs was preserved across all tumor

types despite increased SCNA. We identified 34 gene pairs involving

35 genes that showed significant correlation in all tumor types (FDR

< 0.05; Table EV2). Gene ontology analysis of genes with reduced,

augmented, or preserved co-expression suggested that genes with

preserved or augmented co-expression, but not those with perturbed

co-expression, were associated with negative regulation of apoptosis

◀ Figure 3. The unfolded protein response is influenced by SCNA levels.

A A boxplot showing log2 TPM values of HSPA5 gene expression compared between tumors and matched normal samples across 23 tumor types from TCGA with
normal tissue data available. The boxplot indicates the median (central band) and the interquartile range (boxes) of the expression value, and whiskers indicate
values that outside of the middle 50% (interquartile). The barplot on the top shows the number of normal tissue samples for each corresponding tumor type.
Asterisks indicate significant differences by Student’s t-test after Benjamini–Hochberg multiple testing correction (FDR < 0.05).

B A heat map showing the Spearman correlation coefficient between the log2 TPM expression of three UPR branch pathway parental genes (rows) and SCNA scores
across 32 tumor types (columns). Red indicates positive correlation coefficients (r > 0), and blue indicates negative correlation coefficients (r < 0). Size indicates
significance level of correlation. Gene names colored in blue belong to the PERK pathway, orange to the ATF6 pathway, and green to the IRE1 pathway.

C A heatmap showing the partial correlation between the expression of UPR branch pathway genes with SCNA levels controlling for the effect of the gene copy number
change using data from GISTIC2.0. Rows depict genes from the UPR branch pathways from REACTOME, and columns depict the 32 tumor types. Cells are colored in
red or blue if the gene showed significant correlation with SCNA level in that tumor type (partial correlation test setting copy numbers for genes as control, after
Benjamini–Hochberg multiple hypothesis correction, FDR < 0.05). Color intensity corresponds to the partial correlation coefficient between gene expression and SCNA
level. The left side bar indicates pathway membership of the genes. The bottom panel shows the variances of SCNA scores for each tumor type and the number of
normal tissue samples available for partial correlation analysis.
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(Appendix Fig S7, Table EV3, GO:1902236, GO:2001243, GO:2001234,

GO:0043066).

We summarized perturbed, augmented, and preserved gene co-

expression relationships with a network (Fig 4D). This highlights

more preserved relationships among genes involved in core

activities of the ER such as cellular metabolism and co-translational

translocation to the ER (IGFBP1-SRPRB, IGFBP1-SRR1) and pairs

with at least one member involved in protein trafficking (PREB-

WIPI1, KDELR3-CUL7, GOSR2-IGFBP1, SYVN1-FKBP14, YIF1A-

PLA2G4B). We note that the relationship between ATF4 and DDIT3,

A
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while not consistently perturbed—ATF4 and DDIT3 co-expression was

only significantly perturbed in 5 tumor types (Fig EV4A–E; UCEC,

THYM, THCA, BRCA, and HNSC, respectively)—was also not

preserved. Interestingly DDIT3 co-expression with GOSR2 (protein

transport) and ASNS (asparagine synthetase) remained coordinated,

suggesting that some less known aspects of DDIT3 activity may benefit

tumor cells. DDIT3 is frequently thought of as the major executioner of

apoptosis downstream of irrecoverable ER stress, but it may be required

for other functions, for example, the induction of the pro-

inflammatory/tumorigenic cytokine IL-23 (Goodall et al, 2010). While a

deeper analysis of the coordinated activities of UPR proteins is merited,

overall, this pattern is consistent with promoting positive aspects of

UPR signaling. These may include regulation of metabolism, transport,

and bioenergetics, favoring cell survival while diminishing effects disad-

vantageous to the cell such apoptosis. Preservation of the UPR in

SCNAhigh tumors argues therefore for an active stress response to

proteostasis. Since UPR signaling is known to affect immune cells, we

next interrogated the UPR as the link between SCNA and reduced CYT.

UPR activity links SCNA and CYT

Given that overall the UPR is activated in tumors relative to normal

tissues (Fig 3A and C), but increasing SCNA levels make expression-

based assessment of pathway activity from individual genes ambigu-

ous, we developed a strategy to measure pathway activation from the

combined effects of multiple genes. To establish a gene expression-

based method to assess UPR branch pathway activity in tumors, we

adapted the pathway measurement method of Schubert et al (2018)

applying a regression model to assign coefficients for genes within

pathways and then deriving aggregate pathway activation scores by

matrix multiplication. We used a Lasso regression model to remove

redundant genes from each pathway, to avoid overfitting and capture

dominant differences (Appendix Fig S8, Table EV4). We applied this

method using gene sets from REACTOME (58 genes) (Jassal et al,

2020) as previously described, further distinguishing IRE1α into its

known functions, XBP1 splicing and RIDD, as these are non-

overlapping activities. Our final scores represent differential activity in

each UPR branch based on contrasting expression of genes in tumors

and matched normal tissues (n = 23). Due to the limitation imposed

by lack of matched normal tissues, we were only able to acquire path-

way scores for twenty-three tumor types (see Materials and Methods).

Among UPR branch pathways, we found that the PERK pathway

had a strong inverse correlation with CYT (Fig 5A, n = 19 tumor

types with non-zero pathway score). We then interrogated the

IRE1α pathway by looking at XBP1, the canonical target of IRE1α
endonuclease activity. The pathway score for spliced XBP1 (XBP1s)

trended toward a mild negative correlation with CYT score and a

positive correlation with SCNA (Fig 5B, n = 18 tumor types with

non-zero pathway score).

The IRE1α pathway has a second downstream activity besides

XBP1 splicing: the regulated IRE1α-dependent decay of mRNA or

RIDD (Hollien et al, 2009). Because of this functional duality, we

decided to fully explore the signal from IRE1α by extracting

thirty-three RIDD target genes (Maurel et al, 2014). The RIDD

pathway score was both significantly positively correlated with

SCNA and negatively correlated with CYT in five tumor types

(BRCA, BLCA, STAD, LUSC, and PRAD) (Fig 5C). We observed

largely positive correlation between ATF6 and SCNA level but

little correlation with CYT score (Fig 5D). Collectively, our analy-

sis suggests that both PERK and IRE1α (through RIDD) are associ-

ated with mechanisms of immune evasion in the tumor

microenvironment.

We next evaluated the three UPR pathways relative to the effect

of SCNA on the CYT score controlling for tumor type and purity in a

single model. Tumor purity was included as a possible confounding

factor since SCNA scores could be underestimated for lower purity

tumors, and higher levels of immune infiltrate could inflate CYT

scores. We obtained IHC-based estimates of tumor purity for TCGA

from (Aran et al, 2015). We then applied an OLS linear model to

evaluate the relative contributions of SCNA together with all UPR

branches and IHC score in predicting CYT, including tumor type as

a covariate, and limiting analysis to samples from the sixteen tumor

types for which IHC scores were available. We found that SCNA had

a highly significant negative coefficient (coefficient = −0.302,
P < 1.16e-118) in predicting CYT (Table 2). Similar to SCNA, both

RIDD and PERK had negative coefficients (RIDD coefficient =
−0.038, P > 0.434; PERK coefficient = −0.278 P < 2.11e-10),

though only PERK was significant, suggesting that these UPR

branches are associated with reduced immune activity. In contrast,

ATF6 had a positive effect on CYT levels (coefficient = 0.252,

P < 8.14e-6) and XBP1s were not associated with CYT scores (coef-

ficient = 0.058, P > 0.194). In a model without IHC, RIDD reached

statistical significance (coefficient = −0.146, P < 7.70e-3, Table 3),

pointing to infiltrating immune cells as the likely source of CYT

suppressive RIDD signaling. XBP1 activity remained unassociated

(coefficient = 0.083, P > 0.093).

◀ Figure 4. Co-expression analysis of UPR genes comparing low and high SCNA tumors.

A A strip plot summarizing differences in co-expression (x-axis) of pairwise combinations of 58 UPR genes (n = 3,364) between low and high SCNA groups across 32
tumor types (y-axis) as quantified by the change in Spearman correlation coefficient. The side bar indicates the number of gene pairs with significant co-expression
change relative to a null distribution obtained from 1,000 permutations of SCNA status (see Materials and Methods for detail).

B A histogram showing the percentage of gene pairs (y-axis; n = 3,364) that have significant co-expression change according to the number of types (x-axis) in which
each gene pair was significant. Colored bars indicate the 2.68% of gene pairs (n = 45) that were significant in at least nine tumor types and that were selected for
more in-depth analysis.

C Change in Spearman correlation coefficient between SCNA high and low conditions for 45 gene pairs with significant co-expression changes across more than nine
tumor types (n = 45). Each point indicates the difference in correlation for one tumor type where the gene pair was significant.

D Network plot showing top UPR gene pairs with reduced, preserved or augmented co-expression. Each node represents a UPR gene, and each edge represents a co-
expression relationship between a gene pair. Red double line edges depict increased co-expression in SCNAhigh tumors compared with SCNAlow. Solid lines depict
preserved co-expression between gene pairs, and blue dotted lines depict reduced co-expression between gene pairs. Node colors represent the UPR branch pathway
membership of genes, with green representing the IRE1α pathway, blue representing the PERK pathway, orange representing the ATF6 pathway, and purple
representing membership in more than one branch pathway.
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Lack of correlation with XBP1 in tumor cells is not surprising

given the demonstration that XBP1 in immune cells (dendritic cells

and T cells) plays a tumor-promoting role (Cubillos-Ruiz et al,

2017), hence highlighting the relevance of cell types and lineages in

defining the role of UPR branches in the tumor microenvironment.

Remarkably, RIDD gene expression was more suppressed in

infiltrating macrophages than in tumor cells in single-cell RNA

expression data from (Tirosh et al, 2016) (Fig EV5A and B), in

agreement with recent findings in murine macrophages (Batista et

al, 2020). Collectively, the fact that RIDD and PERK have a similar

relationship to CYT is not surprising since RIDD activity was shown

to be PERK dependent (Moore & Hollien, 2015). To assess this

A B
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dependent relationship, we evaluated the Spearman correlation

between the PERK pathway and RIDD across the same sixteen

tumor types. We found significant positive correlation in eight out

of twelve tumor types (Fig EV5C) where both RIDD and PERK path-

way scores were available, consistent with the possibility of func-

tional interdependence (Moore & Hollien, 2015). Thus, we conclude

that among the UPR branch pathways, PERK and RIDD likely exert

a negative effect on immune cells in the tumor microenvironment.

Experimental aneuploidy induces the UPR

A mechanistic link between aneuploidy and the UPR in cancer cells

was sought using reversine (Rv), a small molecule known to induce

aneuploidy through inhibition of the mitotic spindle (Santaguida

et al, 2015, 2017). To maximize the effect of Rv, we used two

human cancer cell lines reported to be “quasi-diploid”: DLD1 (colon

cancer; 2n = 46) and SKOV3 (ovarian cancer; 2n = 46) (Buick et al,

1985a; Knutsen et al, 2010). Digital karyotyping was performed as

previously described (D’Antonio et al, 2017). In untreated DLD1

cells that present trisomy on 11p, Rv treatment promoted additional

abnormalities (trisomy of 11q and of chromosome 20) (Appendix

Fig S9). We treated semi-confluent cells with varying concentrations

of Rv for up to 72 h and measured XBP1 mRNA splicing by PCR as

an indicator of an ER stress response (Fig 6A). After treatment, both

cell lines showed demonstrable ER stress with varying kinetics. A

quantification of XBP1 splicing revealed that maximal effect in

DLD1 occurs at 12 h while in SKOV3 the effect is maximal at 72 h

(Fig 6B). This shows that both cell lines respond to short-term Rv

treatment activating the UPR, albeit with slightly different kinetics.

To determine whether the effect of Rv on XBP1 splicing was

sustained, we performed a second experiment with “long-term” Rv

exposure (14 days) followed by a wash-out period (no Rv) for up to

3 weeks (Appendix Fig S10A). We found that both DLD1 and

SKOV3 cells had a sustained ER stress response for up to 16 days

after Rv removal; by day 21 XBP1 splicing was no longer detected

(Appendix Fig S10B). Thus, prolonged treatment with Rv induces a

UPR lasting several weeks after Rv removal linking aneuploidy and

UPR both in acute and chronic conditions.

We sought independent validation by testing a panel of eight

clonal cell lines derived through cell–cell fusion between B16 mela-

noma cells and mouse embryonic fibroblasts (MEF) (Searles et al,

2018) (Fig 6C). The chromosome numbers in these fused cell lines

range from 72 to 131 (Searles et al, 2018). We tested Xbp1 splicing

in each of the fused clones at baseline and compared it to the

parental B16 cell line to see whether fusion-driven aneuploidy

induces the UPR. All (8/8) fused cell lines had higher amounts of

Xbp1 spliced isoform compared with unfused B16 cells (Fig 6D).

Thus, two independent models of experimental aneuploidy—Rv

treatment and cell–cell fusion—both point to a mechanistic link

between aneuploidy and UPR induction.

We performed an analysis of the three branches of the UPR by

PCR and Western blotting in DLD1 and SKOV3 cells treated with Rv

to determine whether aneuploidy triggers a global UPR. We noted

an upregulation of GRP78, the master regulator of the UPR, and

CHOP (DDIT3). Overall, both the IRE1α and the PERK branches

were activated (Fig 6E and F), with phosphorylation of eIF2α down-

stream of PERK being clearly discernable. We did not detect tran-

scription or translation of ATF6.

Because phosphorylation of eIF2α at Ser51 is a convergent regula-

tory hub of both the UPR and the integrated stress response (ISR),

we asked the question as to whether aneuploidy also activates the

ISR. The four members of the ISR family include PERK, the double-

stranded RNA-dependent protein kinase (PKR), the general control

non-repressible 2 (GCN2), and the heme-regulated eIF2α kinase (HRI)

(Reis et al, 2012). Although all four eIF2α kinases share extensive

◀ Figure 5. RIDD and PERK pathway activity scores show an inverse correlation with CYT score.

A Spearman correlation coefficients (x-axis) linking PERK pathway score with SCNA score (left), and CYT score (right) across 19 tumor types for which PERK pathway
scores could be calculated.

B Spearman correlation coefficients (x-axis) linking XBP1S pathway score with SCNA scores (left), and CYT score (right) across 18 tumor types for which XBP1S pathway
scores could be calculated.

C Spearman correlation coefficients (x-axis) linking RIDD activity score with SCNA score(left), and CYT score (right) across 13 tumor types for which RIDD activity scores
could be calculated.

D Spearman correlation coefficients (x-axis) linking ATF6 pathway score with SCNA score (left), and CYT score (right) across 15 tumor types for which ATF6 pathway
scores could be calculated.

Table 2. Coefficient of an OLS regression model using UPR pathway
scores and SCNA scores. Coefficient of an OLS regression model using 4
UPR pathway scores and SCNA scores, including 16 tumor types (ACC,
BLCA, BRCA, CESC, COAD, GBM, HNSC, KICH, KIRC, KIRP, LGG, LIHC,
LUAD, LUSC, OV, PRAD, READ, SKCM, THCA, UCEC, and UCS) with IHC
data available as covariate to predict CYT, n = 7,802.

Coeff P-value 95% CI

SCNA −0.302 1.16e-118 −0.327, −0.277

XBP1S 0.058 0.194 −0.029, 0.145

PERK −0.278 2.11e-10 −0.363, −0.192

ATF6 0.252 8.14e-06 0.141, 0.362

RIDD −0.038 0.434 −0.134, 0.057

IHC −0.092 2.09e-16 −0.114, −0.070

Table 3. Regression model coefficients, P-values, and 95% confidence
intervals for a pan-cancer OLS model linking SCNA and four UPR
pathway activity scores to CYT levels, including tumor type as a
covariate, but excluding IHC level.

Coeff P-value 95% CI

SCNA −0.300 8.92e-120 −0.324, −0.275

XBP1S 0.083 0.093 −0.014, 0.180

PERK −0.382 3.72e-13 −0.485, −0.279

ATF6 0.259 8.67e-05 0.130, 0.389

RIDD −0.146 7.70e-03 −0.253, −0.039
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homology in their kinase catalytic domains, each responds to distinct

environmental and physiological stresses to reflect their unique regu-

latory mechanisms (Reis et al, 2012). Specifically, PKR responds to

dsRNA during viral infections and GCN2 responds to amino acid

deprivation and glucose deprivation. As shown in Fig 6G, neither

kinase was phosphorylated in Rv-treated DLD1 cells and only a faint

p-PKR band was observed in SKOV3 cells. Treatment with Calyculin-

A, protein phosphatase inhibitor, served as a positive control. Collec-

tively, these results suggest that aneuploidy induced by short-term Rv

treatment mainly drives eIF2α phosphorylation via canonical UPR.

Aneuploid cells polarize bone marrow-derived macrophages and
negatively affect T-cell activation

Previously, we demonstrated that the conditioned medium (CM) of

ER-stressed cancer cells polarizes macrophages and dendritic cells

to a pro-inflammatory/immune-suppressive phenotype, impairing

antigen-specific activation of T cells (Mahadevan et al, 2011, 2012).

Subsequently, we demonstrated that these effects are operational in

vivo and contribute to tumor development in a IRE1α-dependent
manner (Batista et al, 2020). The present TCGA analysis showed an

inverse correlation between single SCNA score and CYT across

disease stages, suggesting that tumor cells with experimentally

induced aneuploidy could also dysregulate immune cells through a

cell-nonautonomous mechanism. To this end, the CM of aneuploid

cells collected at the time of maximal XBP1 splicing was added to

cultures of murine bone marrow-derived macrophages (BMDM) for

24 h. We then isolated their total RNA and analyzed the expression

of the canonical pro-inflammatory cytokine (Il6) and the immune-

suppressive enzyme Arginase 1 (Arg1) (Rodriguez et al, 2005). A

schematic representation of the workflow for the experiment is

shown in Appendix Fig S11. Definitive Xbp1 splicing was observed

in BMDM treated with the CM of fused B16 cells but only slightly in

BMDM treated with the CM Rv-treated cells suggesting that estab-

lished aneuploid cells are more efficient at inducing a UPR in BMDM

transcellularly (Fig 7A). Next, we looked at Il6 gene expression, a

pro-inflammatory/tumorigenic cytokine (Grivennikov et al, 2009).

The CM of Rv-treated SKOV3 and fused B16 cells yielded high Il6

induction relative to respective CM controls (6-fold and 10-fold,

respectively) (Fig 7B). The CM of Rv-treated SKOV3 also yielded

high Arg1 expression levels compared with control cultures (23-fold

and 3-fold, respectively) (Fig 7C). Fused B16 cell CM was ineffective

at inducing Arg1. To exclude a bias due to Rv, BMDM were cultured

in DMEM spiked with Rv (0.5 µM) (Fig 7D). Although Rv was found

to upregulate Il6 compared with untreated BMDM, the increase was

minimal compared with that induced by the CM from Rv-treated

SKOV3 cells (Fig 7B). Paradoxically, Rv decreased Arg1 transcrip-

tion over control (Fig 7C and D) ruling out the possibility that the

effect of CM from Rv-treated SKOV3 was due to Rv carryover.

Previously, we reported that cross-priming of CD8 T cells by

dendritic cells treated with the CM of ER-stressed tumor cells leads to

defective T-cell activation and clonal expansion (Mahadevan et al,

2012). Here, we interrogated the possibility of cell-nonautonomous

effects of aneuploid cells on two key functional parameters (IFN-γ and

granzyme B) of human T cells isolated from normal blood and acti-

vated using anti-CD3 plus anti-CD28 Dynabeads in undiluted CM. Acti-

vation in the presence of CM from Rv-treated (0.5 µM) SKOV3 cells

showed marked reduction of both IFN-γ and granzyme B (80% and

60%, respectively) relative to control CM (untreated SKOV3 cells)

(Fig 7E). The effect could not be attributed to Rv carryover since treat-

ment of T cells with complete medium spiked with Rv (0.5 µM) had

only modest effects on both targets (Fig 7F). A similar reduction of

IFN-γ and granzyme B (55% and 30%, respectively) was observed with

fused B16 cells compared to their parental nonfused cells (Fig 7G).

Taken together, these data suggest a functional link between aneu-

ploidy, UPR, and a dysregulation of both macrophages and T cells

similar to those characteristics of these cells in the tumor microenvi-

ronment. In macrophages, which represent the major population

infiltrating most solid tumors in humans (Gentles et al, 2015) and

often display a mixed pro-inflammatory/immune-suppressive pheno-

type (Mahadevan & Zanetti, 2011), we found that the CM of aneu-

ploid cells also imparted IRE1α-dependent transcription of Il6 and

Arg1. This is consistent with previous reports demonstrating the

induction of this phenotype in BMDM transcellularly (Mahadevan et

al, 2011) which appears to be IRE1α regulated (Batista et al, 2020). In

T cells, we demonstrated that the CM of RV-treated or fused B16 cells

markedly reduced the production of IFN-γ and granzyme B in T cells

activated through the T-cell receptor mimicking the dysregulation

state of tumor-infiltrating T cells in humans.

Discussion

This study was set to test the hypothesis that cellular stress resulting

from aneuploidy would trigger the UPR and negatively affect key

components of local cellular immunity in human cancers,

◀ Figure 6. Experimental aneuploidy triggers activation of the UPR pathways in cancer cells.

A Schematic representation of PCR-based analysis of Xbp1 splicing. During conditions of ER stress, a 26 base pair fragment is spliced from Xbp1 mRNA. Forward and
reverse PCR primers (shown in blue) were designed to span the splice site. PCR amplification distinguishes between unspliced (Xbp1-u, upper band) and spliced
(Xbp1-s, lower band) Xbp1 mRNA. To quantify ER stress, a ratio of spliced: unspliced Xbp1 was calculated.

B Analysis and quantification of Xbp1 splicing in DLD1 and SKOV3 cells treated with varying concentrations of reversine (Rv) for 12, 24, 48, and 72 h. Thapsigargin (Tg) is
shown as positive control.

C Schematic representation depicting cell–cell fusion between a B16 melanoma cell and mouse embryonic fibroblasts (MEF).
D Xbp1 splicing in B16 melanoma cells and eight B16:MEF fused clonal cell lines.
E Detection of mRNA expression (by RT–PCR) of UPR-associated genes (ERN1, AF4, DDIT3 and ATF6) in tumor cells treated with reversine (Rv) at 4 µM (DLD1 cells) or

0.5 µM (SKOV3 cells) for 6 h. Data points refer to triplicate samples collected at the same time point, run in duplicate, and expressed as means � SD.
F Western blot analysis of the activation of IRE1, PERK, and ATF branches of the UPR in DLD1 and SKOV3 cells treated or not with Rv at 4 µM for 24H (DLD1 cells) or

0.5 µM for 3 days (SKOV3 cells). Thapsigargin (Tg) was used as positive control.
G Western blot analysis of phosphorylation of GCN2 and PKR defining the integrated stress response (ISR) in DLD1 and SKOV3 cells treated or not with Rv as in F). Cells

starved for 24 h then treated for 30 min with Calyculin-A (Cal-A) were used as positive control.
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macrophages, and T cells (Zanetti, 2017). Using a single SCNA score

inclusive of whole chromosome, arm, and focal SCNA (aneuploidy

burden) across 9,375 TCGA samples across 32 tumor types, we con-

firm a previous report (Davoli et al, 2017) and provide clear

evidence for an inverse correlation between SCNA and intratumor

cytolytic activity (CYT), a proxy of local immune competence, in

progressive stages of disease. In the same set of tumor samples, we

found that activation of the UPR correlated with both SCNA levels

and local immune dysregulation, implicating it as the likely causal

link.

At the pan-cancer level, we showed that UPR gene expression

correlates positively with aneuploidy, with genes of the PERK path-

way showing strong positive correlation with SCNA across almost

every tumor type. An analysis of DLD1 and SKOV3 cells treated with

Rv by PCR and Western blotting showed that Rv-induced aneu-

ploidy triggers a global UPR with upregulation of GRP78, the master

regulator of the UPR, and activation of both the IRE1α and PERK

branches (Fig 6E and F). We detected clear phosphorylation of

eIF2α downstream of PERK but did not detect transcription or trans-

lation of ATF6. This may indicate that ATF6 activation is delayed

relative to IRE1α and PERK (Durose et al, 2006), or simply insuffi-

cient, providing for a pro-survival dynamics since ATF6 is an impor-

tant regulator of the pro-apoptotic factor CHOP downstream of

ATF4 (Yang et al, 2020) and a negative regulator of stemness

(Spaan et al, 2019). This scenario is consistent with previous work

from this laboratory showing that the UPR induced through transcel-

lular transmission results in reduced activation of ATF4 (Rodvold et

al, 2017) to favor cell survival and self-renewal.

PERK’s homeostatic role in response to stress is the phosphoryla-

tion of eIF2α (eIF2α-P) to inhibit global translation and attenuate the

impact of client proteins inside the ER. Therefore, a positive correla-

tion between SCNA and PERK is not surprising. Furthermore, since

the UPR is an adaptive response, it follows that tolerance of aneu-

ploidy predisposes to an adaptive UPR, which heightens cellular fit-

ness and dysregulates local immune cells. PERK engagement in

tumor promotion can be a response to cell-autonomous (Bi et al,

2005; Hart et al, 2012) as well as cell-nonautonomous (Rodvold et

al, 2017) stress signals enabling cancer cell survival. We previously

showed that cell-nonautonomous signaling among cancer cells

drives, paradoxically, a reduction of ATF4 and CHOP activation

downstream of eIF2α (Rodvold et al, 2017), hence avoiding apopto-

sis under condition of acute stress.

Our analysis also shows that PKR and GCN2 are not phosphory-

lated in Rv-treated cells. This is not surprising in that these two

kinases phosphorylate eIF2α in response to dsRNA and nutrient star-

vation (Donnelly et al, 2013), i.e., exogenous stressors, whereas

aneuploidy is an endogenous stressor. Furthermore, the modest acti-

vation of ATF4 in Rv-treated cancer cells is consistent with lack of

detectable activation of PKR and GCN2 since ATF4 is an important

effector of the ISR (Pakos-Zebrucka et al, 2016). Although the UPR

and the ISR share the common hub eIF2α, our data suggest that aneu-

ploidy phosphorylates eIF2α via the UPR as the main homeostatic

regulatory mechanism. Arguably, the GCN2-eIF2α-ATF4 pathway,

which is critical for maintaining metabolic homeostasis in tumor cells

(Ye et al, 2010), is apparently not a characteristic of aneuploid cells.

Therefore, a logical conclusion is that aneuploid cells are effectively

avoiding apoptosis through full activation of ATF4 (Han et al, 2013;

Hiramatsu et al, 2020) to their survival advantage.

eIF2α-P also regulates the translation of molecules relevant to

immune dysregulation and tumorigenicity. For instance, eIF2α-P
post-translationally regulates PD-L1 expression in MYC transgenic/

KRAS mutant murine tumor (Xu et al, 2019). Furthermore, eIF2α-P
redirects the translation of 5’-untranslated regions (5’-UTRs) (Sen-

doel et al, 2017). The data on co-expression presented here point to

increased negative regulation of the apoptotic program together with

an enhancement of metabolic/bioenergetic fitness of the cell. Thus,

it is tempting to speculate that through the induction of the UPR,

aneuploidy regulates the translational machinery of the cancer cell

in a more complex way than just through a gene dose effect. Studies

in preneoplastic cells show that eIF2α-P can direct the translational

machinery toward eIF2A-dependent uORF translation increasing

ribosome occupancy of 5’-UTRs and augmenting protein synthesis

(Sendoel et al, 2017). The extent to which this phenomenon is

exploited by SCNA in cancer cells will need future exploration.

A weak negative correlation between SCNA and IRE1α expres-

sion does not preclude an involvement of IRE1α in response to

aneuploidy. In fact, we found that the IRE1α-dependent RIDD activ-

ity correlates positively with SCNA and negatively with CYT in

several tumor types. RIDD activity degrades selected target mRNAs

halting their translation (Hollien & Weissman, 2006), a function

◀ Figure 7. Cell-nonautonomous effects of aneuploid cancer cells on bone marrow-derived macrophages and T cells.

A Xbp1 splicing analysis (left panel) and quantification (right panel) of bone marrow-derived macrophages (BMDM) cultured in conditioned medium (CM) of Rv-
treated DLD1 and SKOV3 cells or respective control medium (culture medium of cancer cells not treated with Rv), and CM of fused B16 melanoma cells or their
nonfused parental cells.

B, C mRNA expression (RT–PCR) of Il6 (B) and Arg1 (C) in BMDM cultured in the CM of Rv-treated SKOV3 cells (0.5 µM for 3 days) or control cells, and CM of fused B16
cells or their nonfused parental cells. Data points refer to triplicate experiments expressed as means � SD.

D mRNA expression of Il6 (upper panel) and Arg1 (lower panel) in BMDM cultured in complete medium spiked with Rv (0.5 µM). Untreated BMDM were used as
control. Data representative triplicate samples run in duplicate at the same time point repeated at least twice and expressed as means � SD.

E Flow cytometry analysis of IFN-γ and granzyme B production by human T cells activated by anti-CD3/anti-CD28 Dynabeads in the presence of CM from Rv-treated
SKOV3 cells or control SKOV3 cells (cultured without Rv). Column graphs represent the percentage expression of IFN-γ (upper panel) and granzyme B (lower panel).
Percentages in parenthesis refer to change from control. Data representative triplicate samples at the same time point repeated at least twice. Data are expressed
as means � SD.

F Flow cytometry analysis of IFN-γ and granzyme B production by human T cells activated by anti-CD3/anti-CD28 Dynabeads in complete medium spiked with Rv
(0.5 µM). Column graphs represent the percentage expression of IFN-γ (upper panel) and granzyme B (lower panel). Data representative triplicate samples at the
same time point repeated at least twice. Data are expressed as means � SD.

G IFN-γ (left) and granzyme B (right) production by human T cells activated by anti-CD3/anti-CD28 Dynabeads cultured in CM from fused B16 melanoma cells or
their parental nonfused cells. Percentages in parenthesis refer to change from parental nonfused cells. Data representative triplicate samples at the same time
point repeated at least twice. Data are expressed as means � SD.
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somehow complementary to eIF2α-P in that both RIDD and eIF2α-P
regulate proteostasis to diminish the workload of client proteins in

the endoplasmic reticulum during times of stress (Maurel et al,

2014). Of interest RIDD also degrades miRNAs (Upton et al, 2012;

Wang et al, 2018) including miR-34a which negatively regulates PD-

L1 expression (Wang et al, 2015), induces cellular senescence by

modulating telomerase activity (Xu et al, 2015), and inhibits adren-

ergic transdifferentiation of tumor-associated sensory nerves in a

p53-dependent manner (Amit et al, 2020). Our PCR analysis of

BLOC1S1, a conserved RIDD target (Bright et al, 2015), in Rv-

treated SKOV3 and DLD1 cells shows mRNA degradation in SKOV3

only at the 72-h time point, a finding reflecting cell type variability

in RIDD activation and/or low IRE1α activation in aneuploid cells.

In fact, it has been shown that BLOC1S1 is specifically cleaved by

IRE1α only under conditions of IRE1α hyperactivation (Bright et al,

2015).

The apparent discrepancy between pan-cancer analysis and PCR

data in Rv-treated tumor cells can be explained considering that the

pan-cancer analysis most likely reflects RIDD activation in infiltrat-

ing myeloid cells rather than the tumor cells per se, with macro-

phages representing the major population infiltrating most solid

tumors in humans (Gentles et al, 2015). In agreement with this

interpretation, we observed reduced expression of RIDD target genes

in tumor-infiltrating macrophages versus tumor cells (Fig EV5).

Furthermore, we recently reported that RIDD activity is readily

induced in wild type but not in Ern1-conditional knock-out bone

marrow-derived macrophages treated with the CM of ER-stressed

tumor cells, and IRE1α but not PERK predicts CD274 (PD-L1), a gene

under regulation miR-34a itself a RIDD target (Upton et al, 2012), in

macrophages isolated from human endometrial or breast cancers

(Batista et al, 2020). Collectively, these considerations suggest that

aneuploidy directly effects the UPR in tumor cells, mainly targeting

the PERK pathway and transcellularly tumor-infiltrating macro-

phages via IRE1α and RIDD in tumor. This dichotomy is obviously

relevant to novel therapies targeting the UPR in cancer patients.

In macrophages and dendritic cells, an unintended consequence

of transcellular UPR signaling is the acquisition of a pro-

inflammatory/immune-suppressive phenotype that has been shown

in both tumor-bearing mice and cancer patients (Chittezhath et al,

2014; Sousa et al, 2015). Here, we show that aneuploidy is a sole

trigger of the UPR in cancer cells (Fig 6) and modulates the pheno-

type of macrophages transcellularly leading to the transcriptional

activation of Il6, the gene coding for a pro-inflammatory/tumorigenic

cytokine, and Arg1, the gene coding for a T-cell-suppressive

enzyme. A small molecule inhibitor of IRE1α RNAse activity mark-

edly diminished Il6 and Arg1 transcription, suggesting that tran-

scellular regulation of myeloid immune cells by aneuploid cancer

cells is also IRE1α-XBP1 dependent (Cubillos-Ruiz et al, 2015;

Batista et al, 2020).

Our data show that IFN-γ and granzyme B are both down-

regulated in T cells activated in the presence of CM from aneuploid

cells. This effect is new and consistent with our pan-cancer analysis

showing a significant inverse correlation between the CYT score and

the SCNA score in all cancer stages (Fig 2 and Table 1). It is also

consistent with reports showing that IFN-γ and granzyme B are

down-regulated in exhausted intratumoral T cells compared with

non-exhausted T cells or with peripheral blood T cells (Chauvin

et al, 2015; Iga et al, 2019; Wu et al, 2014). Although the mechanism

underlying this dysregulation of T cells is presently unknown, the

phenomenon is relevant since it provides a new and additional expla-

nation for the hypofunctionality of tumor-infiltrating T cells (Thom-

men & Schumacher, 2018). Congruently, previous reports showed

that CD8 T cells cross-primed by dendritic cells pretreated with the

CM of ER-stressed tumor cells are severely impaired in antigen-driven

clonal expansion by Mahadevan et al (2012) and T cells treated with

ascitic fluid of ovarian cancers have reduced IFN-γ production (Song

et al, 2018).

Collectively, the data add a new layer of complexity to our

understanding of the origin of immune dysregulation in the tumor

microenvironment. If in fact signals emanating from aneuploid cells

impart a pro-tumorigenic phenotype to macrophages, and by exten-

sion to dendritic cells, focus should be placed on blocking commu-

nity effects rather than cognate cell–cell interactions. For instance,

establishing the role of IRE1α in macrophages and dendritic cells

isolated from human cancers should be prioritized as this could lead

to a new therapeutic angle to subvert local immune dysregulation.

Cell-nonautonomous signaling through the UPR has been docu-

mented in C. elegans, increasing longevity and establishing

neuroimmune axis communication (Taylor & Dillin, 2013; van

Oosten-Hawle et al, 2013; O’Brien et al, 2018; Frakes et al, 2020). A

UPR-based transcellular communication has also been documented

between cancer cells and bone marrow-derived myeloid cells

(macrophages and dendritic cells) (Mahadevan et al, 2011, 2012;

Cubillos-Ruiz et al, 2015; Rodvold et al, 2017). Both in C. elegans

(Taylor & Dillin, 2013; van Oosten-Hawle et al, 2013; O’Brien et al,

2018; Frakes et al, 2020) and in myeloid cells (Cubillos-Ruiz et al,

2015; Batista et al, 2020), the cell-nonautonomous effects appear to

depend on the IRE1α -XBP1 axis in receiver cells. Although the

nature of the transmitting factor(s) has remained elusive in most

reports, a UPR-driven transcellular communication is of clear rele-

vance to the immunobiology of tumor-infiltrating myeloid cells

(macrophages and dendritic cells) and T cells.

An unanswered question raised by the present study is when

aneuploidy exerts its effects on the UPR relative to tumor history. It

is known that aneuploidy increases during tumor evolution (New-

burger et al, 2013; Ben-David & Amon, 2020) and correlates with

poor prognosis (Owainati et al, 1987; Stopsack et al, 2019). Here,

we show that aneuploidy increases as the tumor progresses from

stage I through stage IV (Fig 2A). As shown, SCNAhigh tumors differ

drastically in gene co-expression patterns relative to SCNAlow

tumors, suggesting that SCNA also drives loss of connectivity

among genes (Fig 4C). Compared to other genomic alterations timed

to early cancer evolution such as driver mutations (Vogelstein et al,

2013) and chromothripsis (Consortium ITP-CAoWG, 2020), the

impact of aneuploidy on the UPR may be stochastic as suggested by

a loss of connectivity among UPR genes in the SCNAhigh group

across tumor types. Paradoxically, ovarian cancer, a tumor with the

highest aneuploidy burden, shows only a weak correlation with the

UPR. However, all ovarian tumors have high levels of aneuploidy,

making it difficult to measure variation.

Aneuploidy is an early event that determines genomic instability

(Duesberg et al, 1998). Our data suggest that a single SCNA score

(aneuploidy burden) encompassing whole-chromosome, arm, and

focal aneuploidy is sufficient to establish a positive correlation with

the UPR and an inverse correlation with intratumor T-cell immunity.

Current predictors of the response to immune checkpoint blockade
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include tumor mutational burden and DNA hypomethylation, which

itself correlates with aneuploidy (Jung et al, 2019; Tripathi et al,

2019). Therefore, standardized methods to assess aneuploidy

burden on an individual basis (Douville et al, 2018) could help

better stratify patients likely to respond to immune checkpoint

blockade therapies. Remarkably, aneuploidy-driven UPR propagates

its effects transcellularly suggesting that an unappreciated

consequence of aneuploidy in cancer cells is to polarize macro-

phages to a pro-tumorigenic phenotype, hence remodeling the

tumor immune microenvironment to evade immune surveillance. In

conclusion, we suggest that aneuploidy exacts a two-pronged toll on

tumor evolution: one by providing fitness advantage to cancer cells

(Pavelka et al, 2010) and the other in initiating/amplifying local

immune cell dysregulation promoting immune evasion.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source Identifier or Cat. No.

Chemicals & Cytokines

Reversine Abcam ab120921

Thapsigargin Tocris 1138

Calyculin-A Cell signaling 9902S

M-CSF R&D Systems 416-ML

4µ8C inhibitor Sigma SML0949

Cell lines

DLD1 ATCC CCL-221

SKOV3 ATCC HTB-77

Polyploid B16 (Searles et al, 2018)

Antibodies

PercP-Cy5.5 anti-human CD3 BioLegend 300328

PE anti-human IFN-γ BioLegend 502509

Alexa Fluor 647 anti-human granzyme B BioLegend 515406

Fixable Viability Dye eFluor 780 Thermo Fisher Scientific 65-0865-14

ATF4 (C-20) antibody Santa Cruz sc-200

ATF6 (D4Z8V) antibody Cell Signaling 65880

IRE1a (14C10) antibody Cell Signaling 3294

GAPDH (A-14) Santa Cruz sc-20358

GCN2 (phospho T899) antibody Abcam ab75836

GRP78/BIP antibody BD Bioscience 610978

PERK (C33E10) antibody Cell Signaling 3192

phospho-eiF2a (D9G8) antibody Cell Signaling 3398

PKR (phosphor T446) antibody Abcam ab32036

Rabbit IgG-HRP antibody Cell Signaling 7074

Mouse-IgGκ BP-HRP antibody Santa Cruz sc-516102

Donkey anti-goat IgG-HRP antibody Santa Cruz sc-2020

Oligonucleotides

XBP1 forward
50-AGGGGAATGAAGTGAGGCCA-30

Integrated DNA Technologies

XBP1 reverse
50-TGTGGTCAAAACGAATTAGT-3’

Integrated DNA Technologies

ERN1 forward
proprietary

Thermo Fisher Scientific Cat no. 4331182
assay Hs00980097_m1

ERN1 reverse
proprietary

Thermo Fisher Scientific Cat no. 4331182
assay Hs00980097_m1
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Reagents and Tools table (continued)

Reagent/Resource Reference or source Identifier or Cat. No.

ATF4 forward
proprietary

Thermo Fisher Scientific Cat no. 4331182
assay Hs00909569_g1

ATF4 reverse
proprietary

Thermo Fisher Scientific Cat no. 4331182
assay Hs00909569_g1

ATF6 forward
proprietary

Thermo Fisher Scientific Cat no. 4331182
assay Hs00232586_m1

ATF6 reverse
proprietary

Thermo Fisher Scientific Cat no. 4331182
assay Hs00232586_m1

DDIT3 forward
proprietary

Thermo Fisher Scientific Cat no. 4331182
assay Hs01090850_m1

DDIT3 reverse
proprietary

Thermo Fisher Scientific Cat no. 4331182
assay Hs01090850_m1

IL-6 forward
proprietary

Thermo Fisher Scientific Cat no. 4331182
assay Mm00446190_m1

IL-6 reverse
proprietary

Thermo Fisher Scientific Cat no. 4331182
assay Mm00446190_m1

Arg1 reverse
proprietary

Thermo Fisher Scientific Cat no. 4331182
assay Mm00475988_m1

Arg1 reverse
proprietary

Thermo Fisher Scientific Cat no. 4331182
assay Mm00475988_m1

Methods and Protocols

Data
The TCGA files were downloaded from the gdc portal on 12/27/2017,

using gdc-client v1.3.0. TCGA RNA-seq alignment files were repro-

cessed using sailfish software version 0.7.4 and the GRCh38 reference

genome with default parameters, and including all read sequence

duplicates. Associated metadata were downloaded using TCGA REST

API interface https://api.gdc.cancer.gov/files/. The MSI data were

downloaded from (Kautto et al, 2017) supplementary data. We used

a threshold of 0.4 as the cutoff for distinguishing MSI-H and MSS as

suggested in this paper. Annotated somatic mutation calls from TCGA

Pan-Cancer were downloaded from the GDC on 12/17/2016. TCGA

Segmented SNP6 array data were downloaded from Broad Firehose

(release stddata_2016_01_28, file extension: segmented_scna_hg19).

Somatic copy number alteration quantification
We considered three categories of SCNA as described previously

(Davoli et al, 2017): whole chromosome, chromosome arm, and

focal copy number alterations. SCNAs were detected by comparing

Affymetrix SNP data between tumor and paired normal samples.

Based on the SNP intensity at the corresponding genomic position,

we define a region as a contiguous set of SNPs with a shared log2
fold change in intensity. A region was designated an event if the

log2 fold change exceeded certain thresholds. A log2 fold change

greater than 0.1 or less than −0.1 was defined as a single event, and

a log2 fold change greater than 1 or less than −1 as two events

(equation 1) (Beroukhim et al, 2010). Thus,

Eventsi ¼
1, if ð0:1< log2FCÞ or ðlog2FC< � 0:1Þ
2, if ð1< log2FCÞ or ðlog2FC< � 1Þ
0, else

8><
>: , (1)

where i indexes regions of contiguous SNPs with the same inten-

sity. Most regions are small, thus to score whole-chromosome arms

using equation (1), we used the fractional length weighted sum of

log2 fold changes across the regions within a chromosome arm j

(equation 2).

ArmIntensity j ¼ ∑
i∈ j

log2FCi � length ið Þ
length jð Þ (2)

An event was designated whole chromosome if both chromosome

arms met the Equation 1 criteria such that both arms were affected in

the same direction, chromosome arm if one arm met the Equation 1

criteria or the arms were affected in different directions, and focal

otherwise. Chromosomal and arm events were only counted once, in

the largest category that applied. As focal events can happen subse-

quent to loss or gain of a chromosome or arm, we did not constrain

counting of focal events based on the larger categories.

Events of each category were then summed for each sample.

Whole chromosome and focal events were summed across 23 chro-

mosomes, and chromosome arm-level events were summed across

46 possible chromosome arms. As the resulting scores have very dif-

ferent ranges, (0–46 for chromosomal events, 0–92 for arm-level

events, and much larger values for focal events), we scaled each of

these values before combining them into a single SCNA score (Equa-

tion 3) using sklearn.preprocessing. MinMaxScaler, with a feature

range from 0 ~ 1.

SCNA ¼ scaled FocalSCNAð Þ þ scaled ArmSCNAð Þ
þscaled ChromosomalSCNAð Þ (3)

Since the FocalSCNA, ArmSCNA, and ChromosomalSCNA were

all transformed to the same scale before aggregating, we interpret
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this SCNA score as a general reflection of genome abnormality,

considering the 3 categories as contributing equally.

Cytolytic activity
The cytolytic activity (CYT) score was calculated as the geometric

mean of log2 TPM expression values of granzyme A (GZMA) and

perforin (PRF1) as described in Rooney et al (2015).

SCNA correlation with non-silent mutation
We partitioned the TCGA samples into MSS (n = 8,536) and MSI-H

(n = 373) using the MSI data downloaded from Kautto et al (2017).

We then removed silent mutations and computed the total number

of mutations per sample. The relationship between the aggregated

SCNA score and total number of non-silent somatic mutations was

evaluated by Spearman correlation coefficient in MSS and MSI-H

samples separately.

Tp53 mutations and P53 activity analysis
TCGA samples were partitioned into TP53 wild-type and TP53-

mutated groups. Twenty-five tumor types included at least one

sample with TP53 mutation (Fig S2A). The Wilcoxon rank-sum

test was applied to test the aggregated SCNA score differences

between TP53 wild-type and TP53-mutated groups within each

tumor type (Fig S2A). P53 activity was calculated as the sum of

z-scored log2 TPM expression values of 10 P53 downstream

repressed genes, including CCNB1, PLK1, EED, CDK1, EZH2,

CCNB2, E2F3, MYBL2, FOXM1, and E2F2 (Cancer Genome Atlas

Research Network. Electronic address and Cancer Genome Atlas

Research, 2017). Since P53 repression of these genes indicates P53

activity, the inverse of this value was used as the score represent-

ing P53 activity. This was done using sklearn.preprocess-

ing.MinMaxScaler. The relationship between the P53 activity

score and SCNAs score was assessed by Spearman correlation

coefficient.

OLS models fitting SCNA and CYT with tumor stages
An ordinary least square (OLS) linear model (equation 4) was used

to relate SCNA and CYT scores to tumor stage, including tumor type

as a covariate to predict the independent variable using 6495

samples with stage information from 25 tumor types (ACC, BLCA,

BRCA, CESC, CHOL, COAD, ESCA, HNSC, KICH, KIRC, KIRP, LIHC,

LUAD, LUSC, MESO, OV, PAAD, READ, SKCM, STAD, TGCT,

THCA, UCEC, UCS, and UVM).

y ∼ TumorTypeþ TumorStage (4)

In equation (4), y represents SCNA score or CYT score. Tumor

stages and tumor types were encoded as categorical variables.

Effects of SCNA score on UPR gene expression
TCGA samples were divided into three groups, SCNAhigh, SCNAlow

and neither using the 30th and 70th percentiles of SCNA level within

each tumor type. UPR gene expression levels were compared

between SCNAlow and SCNAhigh groups using the Wilcoxon rank-

sum test to determine whether there was a significant shift in

expression between groups. Multiple hypothesis testing correction

was performed using the Benjamini–Hochberg method with alpha =
0.05.

Differential co-expression analysis of UPR pathway genes
Differential co-expression analysis was applied to test for pairwise co-

expression changes between SCNAhigh and SCNAlow samples (as

defined above), using the method from Tesson et al (2010). First, the

adjacency matrix for each phenotype was constructed by the follow-

ing formula (equation 5), where cphenotypeij represents the Spearman

correlation coefficient between gene i and j in a specified phenotype.

cphenotypeij ¼ cor genei, gene j

� �
(5)

Then, the adjacency matrix difference is computed as follows

(equation 6), with the β parameter set to 4.

Dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
sign clowij

� �
∗ clowij

� �2
� sign c

high
ij

� �
∗ c

high
ij

� �2����
����

s !β

(6)

We then permuted SCNA group membership 1,000 times within

each tumor type to generate a null distribution for evaluating the

significance of the pairwise correlation. This analysis included all 58

UPR genes, resulting in 3,364 gene pairs. We identified gene pairs

that showed less correlation than expected across more than nine

tumor types as recurrently perturbed, and pairs that showed more

correlation than expected across all tumor types as preserved.

Conserved gene pairs were further assessed by Spearman correlation

pan-cancer, and only pairs that showed significant Spearman correla-

tion (FDR < 0.05, multiple correction after Benjamini–Hochberg)
were retained. The median co-expression change was calculated for

each tumor type by summing the spearman correlation coefficient dif-

ferences between SCNAlow and SCNAhigh groups (clowij � c
high
ij ) for

each gene pair and taking the median (Fig 4A). The number of gene

pairs significant after permutation testing is shown in the side bar of

Fig 4A. The differences in correlation coefficient for selected gene

pairs between SCNAlow and SCNAhigh are shown in Fig S6.

GO Enrichment Analysis for selected gene pairs
We performed GO biological process analysis separately for 41 genes

with recurrently perturbed co-expression patterns, 11 genes with

augmented co-expression, and 35 genes with conserved co-

expression patterns identified from differential co-expression analysis

(above). GO Enrichment Analysis was performed using the online

server http://geneontology.org/, using the “biological process

complete” annotation data set with Homo sapiens reference list. The

test result is calculated using Fisher’s exact, with FDR cutoff < 0.05.

UPR branch pathway score quantification
Gene sets representing PERK (Reactome id R-HSA-381042.1), XBP1s

(Reactome id R-HSA-381038.2), and ATF6 (Reactome id R-HSA-

381183.2) branch pathway downstream activity were extracted from

the Reactome pathway database (Fabregat et al, 2018). The RIDD

pathway downstream gene set was obtained from Maurel et al

(2014). We implemented the pathway score quantification method

from Schubert et al, 2018; however instead of applying non-

regularized linear regression as in their work, we used Lasso regres-

sion to avoid overfitting and reduce redundant features. We built

Lasso regression models using 10-fold cross-validation to select the

lambda parameter. In order to fit models that would represent the

extent of induction of UPR branch pathways, we modeled the
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dependent variable using paired tissue-matched samples in TCGA

such that y = 0 for tissue-matched normal samples and y = 1 for

tumor samples. For each pathway, log2 TPM expression values of

genes downstream of the branch pathway served as the independent

variables. Models were fit in each tumor type separately. Matrix

multiplication between the UPR branch gene expression matrix and

the model coefficient matrix was applied to quantify pathway scores

of individual pathways (XBP1s, PERK, ATF6, and RIDD) for each

sample. Because the coefficient matrix represents the vector of

corresponding genes in the plain of expression space, the pathway

score is a meaningful representation of the distance from the origin

(Schubert et al, 2018). Using this method, we obtained pathway

scores for 7998 samples, across 23 tumor types that had normal

tissue RNA-seq data available. Pathway scores were compared to

SCNA and CYT scores by Spearman correlation.

OLS model fitting UPR pathways, tumor types, and SCNA to
predict CYT
We fit an OLS model with XBP1s, PERK, ATF6, RIDD branch path-

way scores, tumor type, tumor purity, and SCNA scores as indepen-

dent variables x to predict the dependent variable CYT score, y

(equation 7). Tumor purity was approximated by immunohisto-

chemistry (IHC) measures obtained from Tirosh et al (2016). These

data were available for 16 tumor types (n = 7,802; 16 tumor types:

BLCA, BRCA, CESC, COAD, HNSC, KICH, KIRC, KIRP, LIHC, LUAD,

LUSC, PRAD, READ, SKCM, THCA, and UCEC).

CYT ∼ XBP1sþ PERK þ ATF6þ RIDDþ SCNA

þ IHC þ TumorType (7)

A second model was fit excluding IHC (n = 8,488; 23 tumor

types: BLCA, BRCA, CESC, CHOL, COAD, ESCA, HNSC, KICH, KIRC,

KIRP, LIHC, LUAD, LUSC, PAAD, PCPG, PRAD, READ, SARC,

SKCM, STAD, THCA, THYM, and UCEC) using the formula.

CYT ∼ XBP1sþ PERK þ ATF6þ RIDDþ SCNAþ TumorType

(8)

Single-cell analysis or RIDD pathway genes
We retrieved the single-cell data from Tirosh et al (2016) GSE72056.

This dataset included measurements for 33 RIDD target genes. We

performed hierarchical clustering of single cells using the 33 RIDD

target genes with the Ward variance minimization algorithm using

python package Scipy. We focused the analysis on tumor cells and

macrophages as macrophages are the most abundant immune cell-

infiltrating tumors (Cassetta et al, 2019) and are involved in mediating

cell-nonautonomous effects that dysregulate the tumor microenviron-

ment (Mahadevan et al, 2011) including RIDD activity (Batista et al,

2020). We excluded ITGB2 and TAPBP, since ITGB2 and TAPBP from

further analysis, as they did not behave in the same way as other

RIDD target genes (Batista et al, 2020). Mean expression of RIDD

target genes was further compared using the Wilcoxon rank-sum test.

Software version, packages, and code availability
Computational analysis was performed using Python version 2.7.15.

The OLS regression models used statsmodels.formula.api, version

0.9.0. Wilcoxon rank-sum tests, Spearman correlation analysis, hier-

archical clustering, and z-score calculations used scipy version

1.1.0. The LASSO regression model with cross-validation was

applied using sklearn.linear_model.LassoCV, version 0.20.3. All

rescaling was done using sklearn.preprocessing.MinMaxScaler,

version 0.20.3. Plots were generated using matplotlib version 2.2.3

and seaborn version 0.9.0. Data representation used pandas version

0.24.2. Code and data to reproduce the analysis are available at

https://github.com/cartercompbio/SCNA_score_analysis.

Digital Karyotyping
Digital Karyotyping analysis was performed using Illumina Infinium

Core-24 Beadarrays, which allow interrogation of >500,000 SNPs at

single-nucleotide resolution. These arrays produce data from inten-

sity signals corresponding to the presence of allele A and allele B at

a given SNP. Using GenomeStudio (Illumina), we calculated the

mean log-R ratio, a measure of copy number as a ratio of observed

to expected intensities, and the B-allele frequency, the proportion of

allele calls at each genotype with respect to allele B (1.0 for B/B, 0.5

for A/B, and 0.0 for A/A). We created plots using these metrics to

visually inspect each chromosome for abnormalities. For each kit,

we used 200 ng of DNA, which was processed according to manu-

facturer instructions. Following hybridization, BeadChips were

scanned using the Illumina iScan System.

Cell lines and culture conditions
The quasi-diploid cell lines DLD1 (colorectal adenocarcinoma) (Knut-

sen et al, 2010) and SKOV3 (ovarian carcinoma) (Buick et al, 1985b)

were grown in complete DMEM (Corning) supplemented with 10%

FBS (HyClone). Polyploid B16 × MEF fused clonal lines (Searles et al,

2018) and were kindly provided by Dr. Jack Bui (Department of

Pathology, UCSD), and grown in complete RPMI media (Corning). All

cells were maintained at 37°C with 5% CO2 and were mycoplasma

free as determined a PCR assay (Southern Biotech).

BMDM generation in culture
Bone marrow-derived macrophages (BMDM) were generated by

isolating the femur and tibia of C57Bl/6 mice (8–12 weeks old) and

flushing out the bone marrow using cold, unsupplemented RPMI

growth medium (Corning) using a 27-gauge needle and syringe. Red

cells were lysed using ACK Lysis buffer (Bio Whittaker). Macrophage

differentiation from bone marrow cells was obtained by culture in

standard growth medium supplemented with m-CSF (R&D Systems)

at 30 ng/ml for 7 days. Bone marrow donor mice were housed in the

UCSD vivarium. Femurs were removed per UCSD IACUC-approved

protocol in compliance with animal welfare standards.

RNA isolation and cDNA synthesis
RNA was harvested from cells using Nucleospin II Kit (Macherey-

Nagel). Concentration and purity of RNA were quantified the Nano-

Drop (ND-1000) spectrophotometer (Thermo Scientific) and

analyzed with NanoDrop Software v3.8.0. RNA was normalized

between conditions and cDNA generated using the High Capacity

cDNA Synthesis Kit (Life Technologies).

XBP1 splicing assay
cDNA was subjected to the Xbp1 splicing assay as a surrogate

outcome measure for ER stress. Primers were developed flanking
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the region of Xbp1 excised following UPR activation: Forward—50-
AGGGGAATGAAGTGAGGCCA-30, Reverse—50-TGTGGTCAAAACG
AATTAGT-3’. PCR was run on a Thermocycler (Thermo Scientific)

using under the following conditions: 30 s at 94°C, 40 s at 55°C,
30 s at 72°C for 35 cycles and 5 min at 72°C. PCR products were run

overnight on a 3% agarose gel at 30V for separation. Unspliced Xbp1

appears as the “upper band” at 358 bp, while the spliced isoform

appears as the “lower band” at 332 bp. Data analysis and quan-

tification of Xbp1 splicing was performed using ImageJ software.

RT–qPCR
cDNA was subjected to RT–qPCR using an ABI 7300 Real-Time PCR

system and TaqMan reagents for 50 cycles under universal cycling

conditions. Cycling conditions followed manufacturer’s specifi-

cations (KAPA Biosystems). Target gene expression was normalized

to β-actin and relative expression determined by using the -ΔΔCt
relative quantification method. Primers for RT–qPCR were

purchased from Life Technologies: Arg1 (Mm00475988_m1) and

IL-6 (Mm99999064_m1).

Data availability

Bioinformatic data have been deposited in https://github.com/

cartercompbio/SCNA_score_analysis.

Expanded View for this article is available online.
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