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13C metabolic flux analysis (13C-MFA) has emerged as a forceful tool for

quantifying in vivo metabolic pathway activity of different biological systems.

This technology plays an important role in understanding intracellular

metabolism and revealing patho-physiology mechanism. Recently, it has

evolved into a method family with great diversity in experiments, analytics,

and mathematics. In this review, we classify and characterize the various

branch of 13C-MFA from a unified perspective of mathematical modeling. By

linking different parts in the model to each step of its workflow, the specific

technologies of 13C-MFA are put into discussion, including the isotope labeling

model (ILM), isotope pattern measuring technique, optimization algorithm and

statistical method. Its application in physiological research in neural cell has

also been reviewed.

KEYWORDS

metabolic flux analysis, isotope labeling model, 13C fluxomics, isotope tracing, neural
cell

Introduction

Metabolic flux refers to the in vivo conversion rate of metabolites, including the
rate of the enzymatic reaction and the transport rate between different compartments
(Hui et al., 2020). Flux information deepens our understanding of cell growth and
maintenance in response to environmental changes (Becker and Wittmann, 2018;
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O’sullivan et al., 2019; Van Gastel and Carmeliet, 2021). It is
also crucial for revealing the sites and mechanisms of metabolic
regulation (Zamboni et al., 2015; Mei et al., 2021).

Accurately estimating flux within complex metabolic
networks requires 13C metabolic fluxomics (Niedenführ
et al., 2015; Varanasi et al., 2019; Lawson et al., 2021).
13C metabolic fluxomics has been applied to a number
of important studies in recent years, strongly pushing
forward the frontiers of metabolic research (Varanasi et al.,
2019; Van Gastel and Carmeliet, 2021). This technique
can identify changes in metabolic pathway activity and
discover novel metabolic pathways (Zhang et al., 2018;
Wang et al., 2020; Cobbold et al., 2021). Therefore, it
is widely used to reveal metabolic changes in various
pathogenic processes, such as colorectal adenocarcinomas
(Wang et al., 2018), diabetes (Neinast et al., 2019), retinal
degenerative disease (Yam et al., 2019) and immune cells
(Varanasi et al., 2019). The technique can characterize
the metabolic features of multiple plant organs, such
as maize embryos (Cocuron et al., 2019), Arabidopsis
leaves (Ma et al., 2014) and developing camelina seeds
(Carey et al., 2020). It has also been applied in metabolic
engineering to guide the optimization of the synthesis
of target products, such as acetaldehyde (Cheah et al.,
2020), isopropanol (Okahashi et al., 2017) and vitamin B2
(Schwechheimer et al., 2018).

In this review, metabolic fluxomics methods
were first classified from the perspective of data
modeling. Then, we introduced the components
of fluxomics, including the modeling framework,
experimental measuring technique, and optimization
techniques. Finally, the application of 13C
metabolic flux analysis (13C-MFA) in neural
cell was reviewed.

Classification of 13C metabolic
fluxomics

Recently, 13C-based metabolic fluxomics have evolved into a
large family of diverse methods as shown in Figure 1 andTable 1
(Niedenführ et al., 2015). The major categories are as follows:

Qualitative fluxomics (isotope tracing)

In qualitative fluxomics, an isotope-labeled tracer is
incorporated into the metabolic system, leading to variation
in the isotopic pattern of the metabolites (Faubert et al.,
2017; Jang et al., 2018). Qualitative pathway activity changes
can be deduced by comparing isotopic data (Ma et al.,
2017; Liang et al., 2021). For instance, feeding labeled
glucose results in M+3 triose phosphates. M+3 fructose

bisphosphate reflects the reversibility of aldolase, while M+3
glucose-6-phosphate reflects fructose bisphosphatase activity
(Hackett et al., 2016).

13C flux ratios

Based on the differences between the isotopic
compositions of the metabolic precursor and the product,
the relative fraction of metabolic fluxes converging to
a node can be directly calculated (Sauer et al., 1999;
Nanchen et al., 2007). A dozen such ratios can be
identified from the isotope labeling patterns of amino
acids or organic acids (Shen et al., 2013). This ratio
estimation method can be performed when isotope
labeling is dynamic (Hörl et al., 2013). Currently,
the ratios can be estimated from 13C measurements
by dedicated machine learning predictors (Kogadeeva
and Zamboni, 2016). The metabolic flux ratio (FR)
method has a unique advantage when the overall
network topology is unclear and metabolite outflow
rate measurements are difficult to detect and determine
(Rantanen et al., 2008).

13C kinetic flux profiling

The kinetic flux profiling (KFP) method assumes that the
labeled fraction of the metabolite pool changes exponentially
during the labeling process. As long as the pool size is
accurately measured, this method can estimate the absolute
flux through sequential linear reactions according to the
kinetic elution equation (Yuan et al., 2008). KFP is extended
for quantifying fluxes within subnetworks encompassing
convergent nodes and bounded by a unidirectional
linear reaction (Szecowka et al., 2013; Heise et al., 2014).
It was used to detect kinetic parameters such as the
incorporation rate of [6-13C] glucose into phospholipids
and the turnover rate of acylglycerol to determine the effect
of deleting the cg6718 gene in Drosophila melanogaster
(Schlame et al., 2020).

13C metabolic flux analysis

As a major component of metabolic fluxomics, 13C-MFA
can accurately determine the absolute value of the flux of
the global metabolic network (Antoniewicz, 2015), making it
a unique tool for metabolic research. In the carbon labeling
experiment, the isotopic distribution of these metabolites
depends on the isotopic distribution of the substrate and
metabolic flux values (Cheah and Young, 2018). Flux values
can be estimated after the isotopic labeling values of measured

Frontiers in Molecular Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnmol.2022.883466
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-15-883466 September 6, 2022 Time: 8:50 # 3

Tian et al. 10.3389/fnmol.2022.883466

FIGURE 1

The “phylogeny” of 13C fluxomics methods. A phylogenetic tree can describe the relationship and application of these methods. Co-MFA,
Co-culture Metabolic Flux Analysis; COMPLETE-MFA, Complementary parallel labeling experiments technique for Metabolic Flux Analysis;
D-METAFoR, Dynamic Metabolic Flux Ratio Analysis; Exo-MFA, by Exosome-mediated Metabolic Flux Analysis; INST-MFA, Isotopically
Non-stationary 13C Metabolic Flux Analysis; ISA, Isotopic Spectral Analysis; KFP, Kinetic Flux Profiling; METAFoR, Metabolic Flux Ratio Analysis;
MNST-MFA, Metabolically non-stationary 13C metabolic flux analysis; P-MFA, Parsimonious Metabolic Flux Analysis; rKFP, relative Kinetic Flux
Profiling; ScalaFlux, Scalable Metabolic Flux Analysis.

metabolites are optimally fitted. The flux estimation process can
be formalized as the following optimization problem:

arg min : (x− xM)6ε(x− xM)T

s.t. S · v = 0

M · v ≥ b

A1(v)X1 − B1Y1(yin1 ) =
dX1

dt

A2(v)X2 − B2Y2(yin2 ,X1) =
dX2

dt
...

An(v)Xn − BnYn(yinn ,Xn−1,...,X1) =
dXn

dt
(1)

v represents the vector of the metabolic flux, s represents the
stoichiometric matrix of the metabolic network, and M·v ≥ b
provides additional constraints from physiological parameters
or excretion metabolite measurement. yiin represents vectors of
the isotope labeled substrate. Xn is a matrix, and its rows are the
vectors of the isotope labeling model (ILM) of the corresponding
elementary metabolite unit (EMU) fragment with n carbon

atoms. Yn is a matrix similar to Xn, in which its rows are the
vectors of the ILM of the corresponding input substrate and/or
the calculated EMU fragment with 1 ∼ (n-1) carbon atoms.
In the objective function, x is the vector of the isotope-labeled
molecules in X1,..., Xn, and xM is the experimental counterpart
to x. An and Bn represent the system matrix determined by
the corresponding metabolic reaction topology and atomic
transfer relationship. 6e represents the covariance matrix of the
measured values.

We briefly described the workflow and principles of 13C-
MFA as depicted in Figure 2 and then discussed the technical
details used in the process. The 13C-MFA method first involves
a carbon labeling experiment (Hollinshead et al., 2019). Specific
13C-labeled substances are chosen as carbon sources for cell
culture experiments, depending on the cell type. For example,
early 13C-MFA approaches often used various mixtures of
[1-13C] glucose, [U-13C] glucose and unlabeled glucose as
substrates (Leighty and Antoniewicz, 2013). In carbon labeling
experiments, the isotope label material is gradually distributed
to various metabolites in the metabolic pathway. Since the
amount and location of 13C in metabolites are closely related
to metabolic flux, different metabolic flux distributions produce
different isotope labeling levels. Then, the labeling status of
the substrate is determined based on a specific mathematical
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TABLE 1 Comparison of different fluxomics method.

Method type Applicable scene Computational
complexity

Limitation

Qualitative fluxomics (isotope tracing) Any system Easy Just local and qualitative
value

Metabolic flux ratios analysis Systems where flux, metabolites,
and their labeling are constant

Medium Just local and relative
quantitative value

Kinetic flux profiling Systems where flux, metabolites
are constant while the labeling is
variable

Medium Just local and relative
quantitative value

Metabolic flux
analysis

Stationary state13C
metabolic flux analysis

Systems where flux, metabolites
and their labeling are constant

Medium Not applicable to
dynamic system

Isotopically instationary
13C metabolic flux
analysis

Systems where flux, metabolites
are constant while the labeling is
variable

High Not applicable to
metabolically dynamic
system

Metabolically
instationary 13C
metabolic flux analysis

Systems where flux, metabolites
and labeling are variable

Very high Hard to perform

relationship between the metabolic flux distribution and the
isotopic labeling status of the metabolites in vivo (Wang
et al., 2020), which can be described by formula (1). Based
on this relationship, we can obtain the distribution of the
metabolic flux by accurately measuring the isotope labeling
levels of the metabolites. The accurate method used for
determining the status of the 13C isotope label includes mass
spectrometry (GC−MS and LC−MS) and nuclear magnetic
resonance (NMR) spectroscopy (Rahim et al., 2022). Then,
we can estimate the level of metabolic flux. Specifically, we
can first determine the random distribution of the metabolic
flux, and then, based on the value from formula (1), we can
calculate the corresponding theoretical isotope labeling status
of each metabolite. Then, the calculated labeling status is
compared with the measured labeling status. According to the
difference between the two, the given metabolic flux distribution
can be repeatedly adjusted until the difference between the
two is less than a specific threshold. The resulting metabolic
flux distribution is the true distribution of the estimates
(Weitzel et al., 2013).

Classification of 13C metabolic flux
analysis

According to formula (1), metabolic flux analysis can be
divided into three categories, stationary state13C metabolic
flux analysis (SS-MFA) (Weitzel et al., 2013), isotopically
instationary 13C metabolic flux analysis (INST-MFA) (Wahl
et al., 2008; Young et al., 2008) and metabolically instationary
13C metabolic flux analysis (MNST-MFA) in Figure 3 (Abate
et al., 2012; Van Heerden et al., 2014).

SS-MFA refers to the case when all dXi/dt of the constraint
conditions in formula (1) are equal to 0 and v is constant. The

method is suitable for systems in which metabolic flux and
isotope labeling state do not change with time (Wiechert and
Nöh, 2005). Such system is usually at end of a long-term labeling
process and is also called stable labeling. The flux distribution
can be deduced by measuring the isotopic labeling state of
metabolites in the steady state.

INST-MFA refers to the case when not all dXi/dt in
the constraint conditions in formula (1) are equal to 0 and
v is constant. It can be applied to systems in which the
metabolic flux and metabolite concentration do not change
with time while the isotopic labeling fraction changes with
time (Gopalakrishnan et al., 2018). In such a system, the
isotope labeling process is in an early dynamic stage and
does not reach a stationary state. Therefore, the labeling
state is a function of not only the substrate labeling
fraction and metabolic flux but also the labeling time. It
is necessary to carry out multiple dynamic measurements
and to solve the isotopic differential equations to deduce
the metabolic flux.

MNST-MFA refers to the case when not all dXi/dt in the
constraint conditions in formula (1) are equal to 0 and v is a
time-varying function. This method fits well with systems in
which the metabolite concentration, metabolic flux and isotope
labeling fraction all change with time (Abate et al., 2012). Its
output is not just a flux value but a flux profile over a period
of time (Quek et al., 2020).

Technology of 13C metabolic flux
analysis

The necessary technology of 13C-MFA includes isotope
labeling modeling, isotope labeling state measurement, flux
optimization and statistical analysis. The details are as follows:
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FIGURE 2

The flow chart of 13C Metabolic Flux Analysis (13C MFA).

FIGURE 3

Characterization of different 13C metabolic flux analysis methods, modified from (37). The essential distinguishing feature between these
methods are whether isotopically stationary state is reached and whether metabolic steady state is assumed. SS-MFA, Stationary State 13C
Metabolic Flux Analysis; INST-MFA, Isotopically Non-stationary 13C Metabolic Flux Analysis; MNST-MFA, Metabolically non-stationary 13C
metabolic flux analysis.
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Isotope labeling model

The quantitative interpretation of isotope-labeled data, that
is, the estimation of metabolic flux, requires an algorithm that
can describe the accurate relationship between metabolic flux
and isotope-labeled fractions (Zamboni, 2011). We call this
the ILM, that is, the content of X in formula (1). The same
13C labeling experiment can be simulated with different ILMs
(Weitzel et al., 2007). Different ILMs characterize the same
labeling system from different perspectives.

If there is any 13C incorporated into the molecule, the same
compound will be distinguished due to the number and position
of 13C.13C isotopomer is any isomer of an organic compound
differing only in the number and position of 13C (Table 2).
Isotopomers corresponds to basic isotopically labeled molecules
(Schmidt et al., 1997). The isotopomer I100 in Figure 3 represent
a labeled molecule where the first carbon is 13C and the second
and third carbons are 12C. Cumomers is another form of
Isotopomer, and its coded appearance is exactly the same as
that of Isotopomer. But the 0 in Isotopomer code means 12C,
and the 0 in Cummer means “12C or 13C,” which is a collection
where both 12C and 13C are allowed. Cumomers contain the
same information as isotopomers, and the number of model
particles is the same as that of isotopomers (Wiechert and De
Graaf, 1997). The complete set of cumomers and the complete
set of isotopomers are equivalent. The information of mass
isotopomers and isotopic positional enrichment is coarser than
that of isotopomers, and correspondingly, the number of model
particles is lower than that of isotopomers (Hellerstein and
Neese, 1992; Zupke and Stephanopoulos, 1994). Bondmer is an
ILM in the case of uniformly labeled substrates. Each individual
bondmer is a set of specific isotopomer whose fraction can
calculated by a binomial distribution as shown in Figure 3 (Van
Winden et al., 2002). The EMU framework is a framework
suitable for simplifying and accelerating the simulation of
various ILMs (Antoniewicz et al., 2007). It can accelerate various
ILMs and has been widely adopted. Figure 4 shows the concept
and corresponding relationship of various ILMs by taking a
compound containing 3 carbon atoms as an example.

TABLE 2 Comparison of different isotope model.

Isotope model Item number of n
carbon compound

Feature

Cumomer 2n Integrated in some
software

Isotopomer 2n Intuitive and direct
description of isotope
labeling

Bondmer 2n−1 Only applicable to
uniformly labeled
substrate

The cascade equation solution can reduce the computational
complexity and has been used until now (Wiechert et al.,
1997). Isotopic differential equations were developed as a basic
framework for isotopically instationary flux analysis (Wahl
et al., 2008; Young et al., 2008), which significantly expanded
the scope of flux analysis. The modeling of mass isotopomers
can be rearranged like that of cumomers and gradually
parallelized (Zhang et al., 2020). In addition, a framework
for metabolically instationary flux analysis was proposed and
applied to the temporal flux reconfiguration of the glucose
pathway of adipocytes in response to insulin (Abate et al., 2012;
Quek et al., 2020).

Isotope molecule measurement

The measurement of X in formula (1) determines the
objective function. The appearance of 13C at different positions
classifies a molecule as different isotopic molecules. Differences
in the physical and chemical properties of 13C and 12C are the
basis for discriminating these isotopic molecules. They have at
least two differences. One is that 13C has a half integer nuclear
spin, so it can be detected by NMR (Reardon et al., 2016). The
other is that 13C has a greater mass number than 12C, so their
difference can be detected by mass spectrometry.

1D NMR of 1H and 13C can provide information on
positional labeling enrichment as stated in ILM (Vinaixa et al.,
2017; Deja et al., 2020; see Figure 5). Correlation Spectroscopy
(COSY) is a 2D NMR technique that displays correlations
between J-coupled nuclear by stepping up the delay between two
90◦-proton pulses. Two-dimensional heteronuclear correlation
spectroscopy (2D-COSY) (Szyperski, 1995), three-dimensional
heteronuclear correlation spectroscopy (3D-COSY) (Boisseau
et al., 2013) and proton-detected 2D heteronuclear single-
quantum coherence (HSQC) (Lane et al., 2019) can detect
the fraction of a specific subset of isotopomers. The set is a
fragment of 3 continuous carbon atoms. Its middle carbon
is 13C, while the carbons on both sides are 12C or 13C. 2D
heteronuclear multiple quantum coherence-total correlation
spectroscopy (HMQC-TOCSY) (Carvalho et al., 1998) and
3D total correlation-heteronuclear single-quantum coherence
(TOCSY-HSQC) can detect another type subset of isotopomers
(Reardon et al., 2016). This set is a fragment of continuous
carbon atoms in the same spin system. One of its ends is 13C, and
the other may be 12C or 13C. A non-uniform sampling technique
can be used to improve the sensitivity and resolution of the fine
structure in NMR spectrometry (Lee et al., 2017).

Gas chromatography-electron ionization (GC-EI)-
quadrupole can quantify the mass isotopomers of amino
acids (Dauner and Sauer, 2000), organic acids and
phosphate sugars (Jung and Oh, 2015; Evers et al., 2021).
With the development of tandem mass spectrometry,
gas chromatography-electron ionization-triple quadrupole
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FIGURE 4

Characterization of different 13C isotope labeling model with a 3 carbon atoms metabolite. Blue ball represents 12C and yellow ball represents
13C. The isotope molecule associated with black line segment is specific type of isotopomer, such as I100. The isotope molecules in red dashed
box belong to the same group of mass isotopomer, such as M1. The isotope molecules in green dashed box belong to the same group of
cumomer, such as C100. In brown dashed box, white open circle represents a carbon position, blue represents a carbon-carbon bond that has
never been broken by any reaction and blue dashed line represents a carbon-carbon bond that has been broken by a reaction and rejoined by
another reaction. The percentage below a isotopic molecule is its abundance fraction.

(GC-EI-tripleQ) (Okahashi et al., 2016), gas chromatography-
chemical ionization- quadrupole time of flight (GC-CI-QToF)
(Mairinger et al., 2015), liquid chromatography-electron spray
ionization-triple quadrupole (LC-ESI-tripleQ) (Jeffrey et al.,
2002; Rühl et al., 2012), and liquid chromatography-electron
spray ionization-quadrupole time of flight (LC-ESI-QToF)
(Kappelmann et al., 2017) have been used to measure position
enrichment and mass isotopomers. Hundreds of metabolites
can be detected, and more accurate results can be obtained.
To simplify the sample processing, capillary electrophoresis
QToF has also been added to the lineup (Toya et al., 2007). Gas
chromatography-combination isotope ratio mass spectrometry
(GC-C-IRMS) is suitable for the accurate determination of

very low isotopic enrichment abundance (Yuan et al., 2010;
Croyal et al., 2016). The data of mass spectrometry should be
corrected for naturally occurring heavy isotopes before used by
flux analysis (Jeong et al., 2021).

Optimization technique

Flux estimation solves the entire optimization problem
of formula (1). This process depends on local or global
optimization methods. As a heuristic method, an evolutionary
algorithm was employed early in the optimization of S-MFA
(Wiechert, 2001). Some of its derivatives, such as the convex
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FIGURE 5

The analytical techniques for measuring the isotope labeling pattern. Blue ball represents 12C and yellow ball represents 13C. The stripped ball
represents 12C or 13C. COSY, correlation spectroscopy; HSQC, heteronuclear single quantum coherence; HMQC, heteronuclear multiple
quantum coherence; TCOSY, total correlation spectroscopy.

TABLE 3 Outline of neural cell studies using fluxomics method.

Tracer Measurement target Fluxomics method References

[1-13C]glucose Organic Acids, sugar phosphate
and amino acids, such as malate,
glutamine et al.

INST-MFA Sá et al., 2017

[13C-U] monosaccharide
such as glucose, galactose

N-glycan, O-glycan, and
glycosphingolipids

Isotope-tracing Wong et al., 2020

[1,2-13C2]glucose Lactate FR and SS-MFA Gebril et al., 2016;
Jekabsons et al., 2017

[1,2-13C2]glucose and
Sodium [2-13C] acetate

Amino acids such as aspartate,
GABA, glutamine

FR and KFP Patel et al., 2021

[U-13C] glucose Substrates of central carbon
metabolic network, purine
phosphates, uridine phosphates,
glutathione, and et al.

Isotope-tracing Williams et al., 2020

evolutionary algorithm and adaptive evolutionary algorithm,
were introduced later (Chen et al., 2007; Yang et al., 2007).
Simulated annealing has also been successfully applied to S-MFA
(Fu et al., 2015).

A hybrid algorithm combining the trust-region method and
sequential quadratic programming (SQP) facilitates numerically
stable and accurate flux estimation of S-MFA (Yang et al., 2008).
The Levenberg Marquardt algorithm, one type of trust-region
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method, is widely used and can guarantee fast convergence for
INST-MFA (Young, 2014).

The sum-of-squares residual error (SSE) between the
measured and simulated data is the main form of the objective
function in formula (1)(Wiechert, 2001). Additionally, the
Akaike information criterion (AIC) can be used as an objective
function in seeking the simplest candidate models sufficient to
generate the observed data (Alger et al., 2021).

Flux uncertainty analysis

Since metabolic flux analysis is a parameter estimation
problem, there are uncertainties in the obtained parameters.
Flux uncertainty analysis should become part of routine
analyses. Local linear error propagation based on the chain
rule is an earlier method for determining the confidence
interval of flux values (Wiechert et al., 1997). In contrast, a
profile likelihood method would directly execute non-linear
mapping over error propagation, which is preferred due to
the corresponding high computational efficiency and accuracy
(Antoniewicz et al., 2006). In addition to the error propagation
method, another idea is to obtain the probability distribution
of metabolic flux. The Monte Carlo method can be used to
generate such a distribution based upon a Gaussian distribution
or chi-square distribution assumption for the measurement
error (Wittmann and Heinzle, 2002). In some experiments,
the shape of this distribution can be posteriorly calculated
using Markov chain Monte Carlo (MCMC) from isotopic data
(Kadirkamanathan et al., 2006; Theorell et al., 2017).

Derivative method

Different constraints can be introduced in formula (1) to
generate a new derivative of MFA, which can expand the scope
of metabolic flux analysis or make it more accurate in some
cases. Compartment-specific metabolic flux in mitochondria
and cytosol can be quantified by a spatial-flux analysis with
rapid subcellular fractionation and quenching of metabolism
(Lee et al., 2019). A flux analysis method for local subnetworks
was recently proposed and needs only the information of the
subnetwork of interest, requiring no additional knowledge of the
surrounding networks (Millard et al., 2020). 13C MFA has also
been extended to solve metabolic networks at the genome scale
by incorporating a large set of secondary metabolic reactions
(Blank et al., 2005; Martín et al., 2015; Gopalakrishnan et al.,
2018). In addition, flux analysis goes beyond the scope of
cells (Hui et al., 2020; Liu et al., 2020). The flux from source
cells to recipient cells through vesicles can be accessed by
exosome-mediated metabolic flux analysis (Exo-MFA) (Achreja
et al., 2017). Gebreselassie and Antoniewicz (2015) proposed a
framework determining the metabolic flux of multiple bacteria

coexisting in a mixed system. 13CO2 and 15NH4 labeling
strategies can be used to unravel the short-term flux of
plant-assimilated C and fungal-obtained N through an in situ
ectomycorrhiza system (Gorka et al., 2019).

Parsimonious MFA utilized a dual optimization minimizing
both the SSE and the sum of the flux values. This minimization
can be weighted by gene expression to integrate gene
expression data with 13C data (Foguet et al., 2019). In
COMPLETE-MFA, multiple substrates are used in parallel
to generate complementary labeling information to improve
the accuracy of the flux estimation. Generally, the accuracy
can be significantly improved by utilizing 2–3 parallel data
(Leighty and Antoniewicz, 2013). A truncated multi-model
MCMC method was adopted to infer the in vivo probability
of bidirectional reactions and to determine whether they are
unidirectional or bidirectional (Theorell and Nöh, 2020). This
can expand the range of 13C MFA from parameter inference to
structure inference.

The reaction thermodynamic information from
metabonomic and physiological data can restrict the solution
space of flux and avoid a priori hypotheses about the flux
direction (Saldida et al., 2020). With this tool, higher-precision
inference of the network structure and flux values can be
achieved, and some new flux patterns can be identified.
Conversely, the Gibbs free energy of the reaction can be
deduced from the metabolic flux values (Park et al., 2016).

Application in neural cell research

Neurons and glial cells are the major cells of the nervous
system. Neurons are a kind of specially differentiated cells with
the ability to sense stimulation and conduct excitation, and
is important to the functioning of the nervous system. Glial
cells are not able to conduct impulses but nourish, insulate and
protect neurons. Neurons provide electrical signaling to glial
cells to fuel oxidative metabolism in the brain, while glial cells
provide metabolic substrates to neurons. Metabolic activity in
the brain requires a lot of energy. Cognitive phenotypes are
related to neural metabolism, including neuronal mitochondrial
mutation and neuron-glia metabolic crosstalk (Watts et al.,
2018). Metabolic flux through both cell types is a factor
modulating higher order phenotypes. Hence, it is rather
interesting to discover how metabolic flux and neural cell
function are related.

As outlined in Table 3, different types of 13C metabolic
fluxomics have been successfully applied to study the metabolic
reprogramming and its regulatory mechanism of neural cell
(Lanz et al., 2013). INST-MFA was utilized to assess the
metabolism shift upon differentiation of Neural Stem Cells
(NSCs) into astrocytes, discovering an extensive decrease of
central carbon metabolism and conversion of flux through
TCA cycle to lac pathway during astrocytic differentiation
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(Sá et al., 2017). Isotope-tracing has been used to quantify
the fraction of labeled monosaccharides in the glycans and
glycosphingolipids of both pluripotent and neural NTERA-2
cells. It revealed that exogenous monosaccharide utilization
would vary noticeably according to the cell differentiation state
and different glycan structures (Wong et al., 2020). FR analysis
and steady-state flux analysis was combined to find that more of
glucose flux was channeled by glycolysis than that by pentose
cycle of adherent cerebellar granule neurons. Meanwhile,
it determined that 16% of glucose used by mitochondria
comparing to 46% by lactate dehydrogenase (Gebril et al., 2016).
By revising bi-directional reaction of the non-oxidative PPP
pathway and TCA cycle, this method became more broadly
applicable to different cell types (Jekabsons et al., 2017). Patel
et al. (2021) investigated TCA cycle and neurotransmitter cycle
fluxes ratio by FR method from a steady-state [2-13C] acetate
experiment and the 13C turnover rates of neurotransmitter by
a KFP-like fitting on labeling kinetics of amino acids in 13C
glucose infusion experiment. The mitochondrial TCA flux of
glutamatergic neurons and glutamate-glutamine cycle flux was
declined in the cerebral cortex of aged mice. Isotope-tracing
allows investigation of astrocyte-specific metabolic networks
affected by Apolipoprotein (APOE) and observes an increase in
flux through the pentose phosphate pathway, with subsequent
increases in gluconeogenesis and lipid biosynthesis pathway in
Apolipoprotein E4 astrocytes (Williams et al., 2020).

Conclusion

Stable isotope metabolic flux analysis has been successfully
used in applications from homogeneous cell systems to
heterogeneous cell systems, even at the level of animal and plant
organs. It has now become the gold standard for measuring
metabolic flux values. Several technologies that it includes are
also developing rapidly, so the metabolic fluxomics method
is evolving into a family with different members that have
higher accuracy, wider coverage, more application scenarios,
and shorter time consumption.

At present, the development of stable isotope metabolic
flux analysis should focus on improving the temporal and

spatial resolution. This requires the continuous introduction of
updated detection technology.

Author contributions

BT, MC, and LL drafted the manuscript. TS and ZZ
conceived of the study. TS, ZD, and BR helped to draft the
manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by the Guizhou Provincial Science
and Technology Projects (grant no. QI ANKEHEJICHU-
ZK[2021] Key 038), the National Science Foundation of China
NSFC (grant no. 31760254), the Joint Fund of the Natural
Science Foundation of China and the Karst Science Research
Center of Guizhou Province (Grant No. U1812401), and the
Provincial Program on Platform and Talent Development of
the Department of Science and Technology of Guizhou China
(grant no. [2019]5617, [2019]5655).

Conflict of interest

BR was employed by company Eurofins Lancaster
Laboratories Professional Scientific Services.

The remaining authors declare that the research was
conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

References

Abate, A., Hillen, R. C., and Wahl, S. A. (2012). Piecewise affine approximations
of fluxes and enzyme kinetics from in vivo 13C labeling experiments. Int. J. Robust
Nonlinear. Control 22, 1120–1139.

Achreja, A., Zhao, H., Yang, L., Yun, T. H., Marini, J., and Nagrath,
D. (2017). Exo-MFA - A 13C metabolic flux analysis framework to dissect
tumor microenvironment-secreted exosome contributions towards cancer cell
metabolism. Metab. Eng. 43, 156–172. doi: 10.1016/j.ymben.2017.01.001

Alger, J. R., Minhajuddin, A., Dean Sherry, , A., and Malloy, C. R.
(2021). Analysis of steady-state carbon tracer experiments using akaike
information criteria. Metabolomics 17:61. doi: 10.1007/s11306-021-
01807-1

Antoniewicz, M. R. (2015). Methods and advances in metabolic flux analysis: A
mini-review. J. Ind. Microbiol. Biotechnol. 42, 317–325. doi: 10.1007/s10295-015-
1585-x

Frontiers in Molecular Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnmol.2022.883466
https://doi.org/10.1016/j.ymben.2017.01.001
https://doi.org/10.1007/s11306-021-01807-1
https://doi.org/10.1007/s11306-021-01807-1
https://doi.org/10.1007/s10295-015-1585-x
https://doi.org/10.1007/s10295-015-1585-x
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-15-883466 September 6, 2022 Time: 8:50 # 11

Tian et al. 10.3389/fnmol.2022.883466

Antoniewicz, M. R., Kelleher, J. K., and Stephanopoulos, G.
(2006). Determination of confidence intervals of metabolic fluxes
estimated from stable isotope measurements. Metab. Eng. 8,
324–337.

Antoniewicz, M. R., Kelleher, J. K., and Stephanopoulos, G. (2007). Elementary
metabolite units (EMU): A novel framework for modeling isotopic distributions.
Metab. Eng. 9, 68–86. doi: 10.1016/j.ymben.2006.09.001

Becker, J., and Wittmann, C. (2018). From systems biology to metabolically
engineered cells-an omics perspective on the development of industrial
microbes. Curr. Opin. Microbiol. 45, 180–188. doi: 10.1016/j.mib.2018.0
6.001

Blank, L. M., Kuepfer, L., and Sauer, U. (2005). Large-scale 13C-flux analysis
reveals mechanistic principles of metabolic network robustness to null mutations
in yeast. Genome Biol. 6:R49. doi: 10.1186/gb-2005-6-6-r49

Boisseau, R., Charrier, B., Massou, S., Portais, J. C., Akoka, S., and Giraudeau, P.
(2013). Fast spatially encoded 3D NMR strategies for (13)C-based metabolic flux
analysis. Anal. Chem. 85, 9751–9757. doi: 10.1021/ac402155w

Carey, L. M., Clark, T. J., Deshpande, R. R., Cocuron, J. C., Rustad, E. K., and
Shachar-Hill, Y. (2020). High Flux Through the Oxidative Pentose Phosphate
Pathway Lowers Efficiency in Developing Camelina Seeds. Plant Physiol. 182,
493–506. doi: 10.1104/pp.19.00740

Carvalho, R. A., Jeffrey, F. M., Sherry, A. D., and Malloy, C. R. (1998). C
isotopomer analysis of glutamate by heteronuclear multiple quantum coherence-
total correlation spectroscopy (HMQC-TOCSY). FEBS Lett. 440, 382–386. doi:
10.1016/s0014-5793(98)01491-4

Cheah, Y. E., Xu, Y., Sacco, S. A., Babele, P. K., Zheng, A. O., Johnson, C. H.,
et al. (2020). Systematic identification and elimination of flux bottlenecks in the
aldehyde production pathway of Synechococcus elongatus PCC 7942. Metab. Eng.
60, 56–65. doi: 10.1016/j.ymben.2020.03.007

Cheah, Y. E., and Young, J. D. (2018). Isotopically nonstationary metabolic flux
analysis (INST-MFA): Putting theory into practice. Curr. Opin. Biotechnol. 54,
80–87. doi: 10.1016/j.copbio.2018.02.013

Chen, J., Zheng, H., Liu, H., Niu, J., Liu, J., Shen, T., et al. (2007).
Improving metabolic flux estimation via evolutionary optimization for convex
solution space. Bioinformatics 23, 1115–1123. doi: 10.1093/bioinformatics/bt
m050

Cobbold, S. A., Frasse, P., Mchugh, E., Karnthaler, M., Creek, D. J., Odom
John, A., et al. (2021). Non-canonical metabolic pathways in the malaria parasite
detected by isotope-tracing metabolomics. Mol. Syst. Biol. 17:e10023. doi: 10.
15252/msb.202010023

Cocuron, J. C., Koubaa, M., Kimmelfield, R., Ross, Z., and Alonso, A. P. (2019).
A Combined Metabolomics and Fluxomics Analysis Identifies Steps Limiting Oil
Synthesis in Maize Embryos. Plant Physiol. 181, 961–975. doi: 10.1104/pp.19.
00920

Croyal, M., Bourgeois, R., Ouguerram, K., Billon-Crossouard, S., Aguesse, A.,
Nguyen, P., et al. (2016). Comparison of gas chromatography-mass spectrometry
and gas chromatography-combustion-isotope ratio mass spectrometry analysis for
in vivo estimates of metabolic fluxes. Anal. Biochem. 500, 63–65. doi: 10.1016/j.ab.
2016.02.005

Dauner, M., and Sauer, U. (2000). GC-MS analysis of amino acids rapidly
provides rich information for isotopomer balancing. Biotechnol. Prog. 16, 642–649.
doi: 10.1021/bp000058h

Deja, S., Fu, X., Fletcher, J. A., Kucejova, B., Browning, J. D., Young, J. D.,
et al. (2020). Simultaneous tracers and a unified model of positional and mass
isotopomers for quantification of metabolic flux in liver. Metab. Eng. 59, 1–14.
doi: 10.1016/j.ymben.2019.12.005

Evers, B., Gerding, A., Boer, T., Heiner-Fokkema, M. R., Jalving, M., Wahl,
S. A., et al. (2021). Simultaneous Quantification of the Concentration and Carbon
Isotopologue Distribution of Polar Metabolites in a Single Analysis by Gas
Chromatography and Mass Spectrometry. Anal. Chem. 93, 8248–8256. doi: 10.
1021/acs.analchem.1c01040

Faubert, B., Li, K. Y., Cai, L., Hensley, C. T., Kim, J., Zacharias, L. G., et al. (2017).
Lactate Metabolism in Human Lung Tumors. Cell 171:358-371.e9.

Foguet, C., Jayaraman, A., Marin, S., Selivanov, V. A., Moreno, P., Messeguer, R.,
et al. (2019). p13CMFA: Parsimonious 13C metabolic flux analysis. PLoS Comput.
Biol. 15:e1007310. doi: 10.1371/journal.pcbi.1007310

Fu, Y., Yoon, J. M., Jarboe, L., and Shanks, J. V. (2015). Metabolic flux analysis
of Escherichia coli MG1655 under octanoic acid (C8) stress. Appl. Microbiol.
Biotechnol. 99, 4397–4408. doi: 10.1007/s00253-015-6387-6

Gebreselassie, N. A., and Antoniewicz, M. R. (2015). (13)C-metabolic flux
analysis of co-cultures: A novel approach. Metab. Eng. 31, 132–139. doi: 10.1016/j.
ymben.2015.07.005

Gebril, H. M., Avula, B., Wang, Y. H., Khan, I. A., and Jekabsons, M. B. (2016).
(13)C metabolic flux analysis in neurons utilizing a model that accounts for hexose
phosphate recycling within the pentose phosphate pathway. Neurochem. Int. 93,
26–39. doi: 10.1016/j.neuint.2015.12.008

Gopalakrishnan, S., Pakrasi, H. B., and Maranas, C. D. (2018). Elucidation of
photoautotrophic carbon flux topology in Synechocystis PCC 6803 using genome-
scale carbon mapping models. Metab. Eng. 47, 190–199. doi: 10.1016/j.ymben.
2018.03.008

Gorka, S., Dietrich, M., Mayerhofer, W., Gabriel, R., Wiesenbauer, J., Martin,
V., et al. (2019). Rapid Transfer of Plant Photosynthates to Soil Bacteria via
Ectomycorrhizal Hyphae and Its Interaction With Nitrogen Availability. Front.
Microbiol. 10:168. doi: 10.3389/fmicb.2019.00168

Hackett, S. R., Zanotelli, V. R. T., Xu, W., Goya, J., Park, J. O., Perlman, D. H.,
et al. (2016). Systems-level analysis of mechanisms regulating yeast metabolic flux.
Science 354, aaf2786.

Heise, R., Arrivault, S., Szecowka, M., Tohge, T., Nunes-Nesi, A., Stitt, M., et al.
(2014). Flux profiling of photosynthetic carbon metabolism in intact plants. Nat.
Protoc. 9, 1803–1824.

Hellerstein, M. K., and Neese, R. A. (1992). Mass isotopomer distribution
analysis: A technique for measuring biosynthesis and turnover of polymers. Am. J.
Physiol. 263:E988–E1001.

Hollinshead, W. D., He, L., and Tang, Y. J. (2019). 13C-Fingerprinting and
Metabolic Flux Analysis of Bacterial Metabolisms. Methods Mol. Biol. 1927,
215–230. doi: 10.1007/978-1-4939-9142-6_15

Hörl, M., Schnidder, J., Sauer, U., and Zamboni, N. (2013). Non-stationary
(13)C-metabolic flux ratio analysis. Biotechnol Bioeng 110, 3164–3176. doi: 10.
1002/bit.25004

Hui, S., Cowan, A. J., Zeng, X., Yang, L., Teslaa, T., Li, X., et al. (2020).
Quantitative Fluxomics of Circulating Metabolites. Cell Metab. 32:676–688.e4.

Jang, C., Chen, L., and Rabinowitz, J. D. (2018). Metabolomics and Isotope
Tracing. Cell 173, 822–837.

Jeffrey, F. M., Roach, J. S., Storey, C. J., Sherry, A. D., and Malloy, C. R.
(2002). 13C isotopomer analysis of glutamate by tandem mass spectrometry. Anal.
Biochem. 300, 192–205.

Jekabsons, M. B., Gebril, H., Wang, Y.-H., Avula, B., and Khan, I. A. (2017).
Updates to a 13C metabolic flux analysis model for evaluating energy metabolism
in cultured cerebellar granule neurons from neonatal rats. Neurochem. Int. 109,
54–67. doi: 10.1016/j.neuint.2017.03.020

Jeong, H., Yu, Y., Johansson, H. J., Schroeder, F. C., Lehtiö, J., and Vacanti,
N. M. (2021). Correcting for Naturally Occurring Mass Isotopologue Abundances
in Stable-Isotope Tracing Experiments with PolyMID. Metabolites 11:310. doi:
10.3390/metabo11050310

Jung, J. Y., and Oh, M. K. (2015). Isotope labeling pattern study of central carbon
metabolites using GC/MS. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 974,
101–108.

Kadirkamanathan, V., Yang, J., Billings, S. A., and Wright, P. C. (2006).
Markov Chain Monte Carlo Algorithm based metabolic flux distribution analysis
on Corynebacterium glutamicum. Bioinformatics 22, 2681–2687. doi: 10.1093/
bioinformatics/btl445

Kappelmann, J., Klein, B., Geilenkirchen, P., and Noack, S. (2017).
Comprehensive and accurate tracking of carbon origin of LC-tandem mass
spectrometry collisional fragments for (13)C-MFA. Anal. Bioanal. Chem. 409,
2309–2326. doi: 10.1007/s00216-016-0174-9

Kogadeeva, M., and Zamboni, N. (2016). SUMOFLUX: A Generalized Method
for Targeted 13C Metabolic Flux Ratio Analysis. PLoS Comput. Biol. 12:e1005109.
doi: 10.1371/journal.pcbi.1005109

Lane, D., Skinner, T. E., Gershenzon, N. I., Bermel, W., Soong, R., Dutta
Majumdar, , R., et al. (2019). Assessing the potential of quantitative 2D HSQC
NMR in (13)C enriched living organisms. J. Biomol. NMR 73, 31–42. doi: 10.1007/
s10858-018-0221-2

Lanz, B., Gruetter, R., and Duarte, J. M. (2013). Metabolic Flux and
Compartmentation Analysis in the Brain In vivo. Front. Endocrinol. 4:156. doi:
10.3389/fendo.2013.00156

Lawson, C. E., Nuijten, G. H. L., De Graaf, R. M., Jacobson, T. B., Pabst,
M., Stevenson, D. M., et al. (2021). Autotrophic and mixotrophic metabolism of
an anammox bacterium revealed by in vivo (13)C and (2)H metabolic network
mapping. Isme. J. 15, 673–687. doi: 10.1038/s41396-020-00805-w

Lee, S., Wen, H., An, Y. J., Cha, J. W., Ko, Y. J., Hyberts, S. G., et al. (2017).
Carbon Isotopomer Analysis with Non-Unifom Sampling HSQC NMR for Cell
Extract and Live Cell Metabolomics Studies. Anal. Chem. 89, 1078–1085. doi:
10.1021/acs.analchem.6b02107

Frontiers in Molecular Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnmol.2022.883466
https://doi.org/10.1016/j.ymben.2006.09.001
https://doi.org/10.1016/j.mib.2018.06.001
https://doi.org/10.1016/j.mib.2018.06.001
https://doi.org/10.1186/gb-2005-6-6-r49
https://doi.org/10.1021/ac402155w
https://doi.org/10.1104/pp.19.00740
https://doi.org/10.1016/s0014-5793(98)01491-4
https://doi.org/10.1016/s0014-5793(98)01491-4
https://doi.org/10.1016/j.ymben.2020.03.007
https://doi.org/10.1016/j.copbio.2018.02.013
https://doi.org/10.1093/bioinformatics/btm050
https://doi.org/10.1093/bioinformatics/btm050
https://doi.org/10.15252/msb.202010023
https://doi.org/10.15252/msb.202010023
https://doi.org/10.1104/pp.19.00920
https://doi.org/10.1104/pp.19.00920
https://doi.org/10.1016/j.ab.2016.02.005
https://doi.org/10.1016/j.ab.2016.02.005
https://doi.org/10.1021/bp000058h
https://doi.org/10.1016/j.ymben.2019.12.005
https://doi.org/10.1021/acs.analchem.1c01040
https://doi.org/10.1021/acs.analchem.1c01040
https://doi.org/10.1371/journal.pcbi.1007310
https://doi.org/10.1007/s00253-015-6387-6
https://doi.org/10.1016/j.ymben.2015.07.005
https://doi.org/10.1016/j.ymben.2015.07.005
https://doi.org/10.1016/j.neuint.2015.12.008
https://doi.org/10.1016/j.ymben.2018.03.008
https://doi.org/10.1016/j.ymben.2018.03.008
https://doi.org/10.3389/fmicb.2019.00168
https://doi.org/10.1007/978-1-4939-9142-6_15
https://doi.org/10.1002/bit.25004
https://doi.org/10.1002/bit.25004
https://doi.org/10.1016/j.neuint.2017.03.020
https://doi.org/10.3390/metabo11050310
https://doi.org/10.3390/metabo11050310
https://doi.org/10.1093/bioinformatics/btl445
https://doi.org/10.1093/bioinformatics/btl445
https://doi.org/10.1007/s00216-016-0174-9
https://doi.org/10.1371/journal.pcbi.1005109
https://doi.org/10.1007/s10858-018-0221-2
https://doi.org/10.1007/s10858-018-0221-2
https://doi.org/10.3389/fendo.2013.00156
https://doi.org/10.3389/fendo.2013.00156
https://doi.org/10.1038/s41396-020-00805-w
https://doi.org/10.1021/acs.analchem.6b02107
https://doi.org/10.1021/acs.analchem.6b02107
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-15-883466 September 6, 2022 Time: 8:50 # 12

Tian et al. 10.3389/fnmol.2022.883466

Lee, W. D., Mukha, D., Aizenshtein, E., and Shlomi, T. (2019). Spatial-
fluxomics provides a subcellular-compartmentalized view of reductive glutamine
metabolism in cancer cells. Nat. Commun. 10:1351. doi: 10.1038/s41467-019-
09352-1

Leighty, R. W., and Antoniewicz, M. R. (2013). COMPLETE-MFA:
Complementary parallel labeling experiments technique for metabolic flux
analysis. Metab. Eng. 20, 49–55.

Liang, L., Sun, F., Wang, H., and Hu, Z. (2021). Metabolomics, metabolic flux
analysis and cancer pharmacology. Pharmacol. Ther. 224:107827.

Liu, S., Dai, Z., Cooper, D. E., Kirsch, D. G., and Locasale, J. W. (2020).
Quantitative Analysis of the Physiological Contributions of Glucose to the TCA
Cycle. Cell Metab. 32:619–628.e21. doi: 10.1016/j.cmet.2020.09.005

Ma, F., Jazmin, L. J., Young, J. D., and Allen, D. K. (2014). Isotopically
nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism
due to high light acclimation. Proc. Natl. Acad. Sci. U.S.A.111, 16967–16972.
doi: 10.1073/pnas.1319485111

Ma, X., Wang, L., Huang, D., Li, Y., Yang, D., Li, T., et al. (2017). Polo-like kinase
1 coordinates biosynthesis during cell cycle progression by directly activating
pentose phosphate pathway. Nat. Commun. 8:1506. doi: 10.1038/s41467-017-
01647-5

Mairinger, T., Steiger, M., Nocon, J., Mattanovich, D., Koellensperger,
G., and Hann, S. (2015). Gas Chromatography-Quadrupole Time-of-Flight
Mass Spectrometry-Based Determination of Isotopologue and Tandem Mass
Isotopomer Fractions of Primary Metabolites for (13)C-Metabolic Flux Analysis.
Anal. Chem. 87, 11792–11802. doi: 10.1021/acs.analchem.5b03173

Martín, H. G., Kumar, V. S., Weaver, D., Ghosh, A., Chubukov, V.,
Mukhopadhyay, A., et al. (2015). A Method to Constrain Genome-Scale Models
with 13C Labeling Data. PLoS Comput. Biol. 11:e1004363. doi: 10.1371/journal.
pcbi.1004363

Mei, X., Guo, Y., Xie, Z., Zhong, Y., Wu, X., Xu, D., et al. (2021). RIPK1 regulates
starvation resistance by modulating aspartate catabolism. Nat. Commun. 12:6144.
doi: 10.1038/s41467-021-26423-4

Millard, P., Schmitt, U., Kiefer, P., Vorholt, J. A., Heux, S., and Portais,
J. C. (2020). ScalaFlux: A scalable approach to quantify fluxes in metabolic
subnetworks. PLoS Comput. Biol. 16:e1007799. doi: 10.1371/journal.pcbi.1007799

Nanchen, A., Fuhrer, T., and Sauer, U. (2007). Determination of metabolic flux
ratios from 13C-experiments and gas chromatography-mass spectrometry data:
Protocol and principles. Methods Mol. Biol. 358, 177–197. doi: 10.1007/978-1-
59745-244-1_11

Neinast, M. D., Jang, C., Hui, S., Murashige, D. S., Chu, Q., Morscher, R. J., et al.
(2019). Quantitative Analysis of the Whole-Body Metabolic Fate of Branched-
Chain Amino Acids. Cell Metab. 29:417–429.e4. doi: 10.1016/j.cmet.2018.10.013

Niedenführ, S., Wiechert, W., and Nöh, K. (2015). How to measure metabolic
fluxes: A taxonomic guide for (13)C fluxomics. Curr. Opin. Biotechnol. 34, 82–90.
doi: 10.1016/j.copbio.2014.12.003

Okahashi, N., Kawana, S., Iida, J., Shimizu, H., and Matsuda, F. (2016).
GC-MS/MS survey of collision-induced dissociation of tert-butyldimethylsilyl-
derivatized amino acids and its application to (13)C-metabolic flux analysis of
Escherichia coli central metabolism. Anal. Bioanal. Chem. 408, 6133–6140. doi:
10.1007/s00216-016-9724-4

Okahashi, N., Matsuda, F., Yoshikawa, K., Shirai, T., Matsumoto, Y., Wada, M.,
et al. (2017). Metabolic engineering of isopropyl alcohol-producing Escherichia
coli strains with (13) C-metabolic flux analysis. Biotechnol. Bioeng 114, 2782–2793.
doi: 10.1002/bit.26390

O’sullivan, D., Sanin, D. E., Pearce, E. J., and Pearce, E. L. (2019). Metabolic
interventions in the immune response to cancer. Nat. Rev. Immunol. 19, 324–335.

Park, J. O., Rubin, S. A., Xu, Y. F., Amador-Noguez, D., Fan, J., Shlomi, T., et al.
(2016). Metabolite concentrations, fluxes and free energies imply efficient enzyme
usage. Nat. Chem. Biol. 12, 482–489. doi: 10.1038/nchembio.2077

Patel, A., Veeraiah, P., Shameem, M., Kumar, J., and Saba, K. (2021). Impaired
GABAergic and glutamatergic neurometabolic activity in aged mice brain as
measured by 1 H-[13 C]-NMR spectroscopy. FASEB J 35:e21321. doi: 10.1096/
fj.202001704RR

Quek, L.-E., Krycer, J. R., Ohno, S., Yugi, K., Fazakerley, D. J., Scalzo, R.,
et al. (2020). Dynamic 13C flux analysis captures the reorganization of adipocyte
glucose metabolism in response to insulin. Iscience 23:100855.

Rahim, M., Ragavan, M., Deja, S., Merritt, M. E., Burgess, S. C., and Young,
J. D. (2022). INCA 2.0: A tool for integrated, dynamic modeling of NMR- and MS-
based isotopomer measurements and rigorous metabolic flux analysis. Metab. Eng.
69, 275–285. doi: 10.1016/j.ymben.2021.12.009

Rantanen, A., Rousu, J., Jouhten, P., Zamboni, N., Maaheimo, H., and Ukkonen,
E. (2008). An analytic and systematic framework for estimating metabolic flux

ratios from 13C tracer experiments. BMC Bioinformatics 9:266. doi: 10.1186/1471-
2105-9-266

Reardon, P. N., Marean-Reardon, C. L., Bukovec, M. A., Coggins, B. E., and
Isern, N. G. (2016). 3D TOCSY-HSQC NMR for Metabolic Flux Analysis Using
Non-Uniform Sampling. Anal. Chem. 88, 2825–2831. doi: 10.1021/acs.analchem.
5b04535

Rühl, M., Rupp, B., Nöh, K., Wiechert, W., Sauer, U., and Zamboni, N. (2012).
Collisional fragmentation of central carbon metabolites in LC-MS/MS increases
precision of 13C metabolic flux analysis. Biotechnol. Bioeng 109, 763–771. doi:
10.1002/bit.24344

Sá, J. V., Kleiderman, S., Brito, C., Sonnewald, U., Leist, M., Teixeira, A. P., et al.
(2017). Quantification of Metabolic Rearrangements During Neural Stem Cells
Differentiation into Astrocytes by Metabolic Flux Analysis. Neurochem. Res. 42,
244–253. doi: 10.1007/s11064-016-1907-z

Saldida, J., Muntoni, A. P., De Martino, D., Hubmann, G., Niebel, B., Schmidt,
A. M., et al. (2020). Unbiased metabolic flux inference through combined
thermodynamic and 13C flux analysis. bioRxiv. [preprint]. doi: 10.1101/2020.06.
29.177063

Sauer, U., Lasko, D. R., Fiaux, J., Hochuli, M., Glaser, R., Szyperski, T., et al.
(1999). Metabolic flux ratio analysis of genetic and environmental modulations
of Escherichia coli central carbon metabolism. J. Bacteriol. 181, 6679–6688. doi:
10.1128/JB.181.21.6679-6688.1999

Schlame, M., Xu, Y., Erdjument-Bromage, H., Neubert, T. A., and Ren, M.
(2020). Lipidome-wide (13)C flux analysis: A novel tool to estimate the turnover
of lipids in organisms and cultures. J. Lipid. Res. 61, 95–104. doi: 10.1194/jlr.
D119000318

Schmidt, K., Carlsen, M., Nielsen, J., and Villadsen, J. (1997). Modeling
isotopomer distributions in biochemical networks using isotopomer mapping
matrices. Biotechnol. Bioeng. 55, 831–840.

Schwechheimer, S. K., Becker, J., Peyriga, L., Portais, J. C., and Wittmann,
C. (2018). Metabolic flux analysis in Ashbya gossypii using (13)C-labeled yeast
extract: Industrial riboflavin production under complex nutrient conditions.
Microb. Cell Fact. 17:162. doi: 10.1186/s12934-018-1003-y

Shen, T., Rui, B., Zhou, H., Zhang, X., Yi, Y., Wen, H., et al. (2013).
Metabolic flux ratio analysis and multi-objective optimization revealed a
globally conserved and coordinated metabolic response of E. coli to paraquat-
induced oxidative stress. Mol. Biosyst. 9, 121–132. doi: 10.1039/c2mb25
285f

Szecowka, M., Heise, R., Tohge, T., Nunes-Nesi, A., Vosloh, D., Huege, J.,
et al. (2013). Metabolic fluxes in an illuminated Arabidopsis rosette. Plant Cell 25,
694–714. doi: 10.1105/tpc.112.106989

Szyperski, T. (1995). Biosynthetically directed fractional 13C-labeling of
proteinogenic amino acids. An efficient analytical tool to investigate intermediary
metabolism. Eur. J. Biochem. 232, 433–448. doi: 10.1111/j.1432-1033.1995.
tb20829.x

Theorell, A., Leweke, S., Wiechert, W., and Nöh, K. (2017). To be certain about
the uncertainty: Bayesian statistics for (13) C metabolic flux analysis. Biotechnol.
Bioeng. 114, 2668–2684. doi: 10.1002/bit.26379

Theorell, A., and Nöh, K. (2020). Reversible jump MCMC for multi-model
inference in Metabolic Flux Analysis. Bioinformatics 36, 232–240. doi: 10.1093/
bioinformatics/btz500

Toya, Y., Ishii, N., Hirasawa, T., Naba, M., Hirai, K., Sugawara, K., et al.
(2007). Direct measurement of isotopomer of intracellular metabolites using
capillary electrophoresis time-of-flight mass spectrometry for efficient metabolic
flux analysis. J. Chromatogr. A. 1159, 134–141. doi: 10.1016/j.chroma.2007.0
4.011

Van Gastel, N., and Carmeliet, G. (2021). Metabolic regulation of skeletal cell
fate and function in physiology and disease. Nat. Metab. 3, 11–20.

Van Heerden, J. H., Wortel, M. T., Bruggeman, F. J., Heijnen, J. J., Bollen,
Y. J., Planqué, R., et al. (2014). Lost in transition: Start-up of glycolysis yields
subpopulations of nongrowing cells. Science 343:1245114. doi: 10.1126/science.
1245114

Van Winden, W. A., Heijnen, J. J., and Verheijen, P. J. (2002). Cumulative
bondomers: A new concept in flux analysis from 2D [13C,1H] COSY NMR data.
Biotechnol. Bioeng 80, 731–745. doi: 10.1002/bit.10429

Varanasi, S. K., Ma, S., and Kaech, S. M. (2019). T Cell Metabolism in a State of
Flux. Immunity 51, 783–785. doi: 10.1016/j.immuni.2019.10.012

Vinaixa, M., Rodríguez, M. A., Aivio, S., Capellades, J., Gómez, J., Canyellas,
N., et al. (2017). Positional Enrichment by Proton Analysis (PEPA): A One-
Dimensional (1) H-NMR Approach for (13) C Stable Isotope Tracer Studies in
Metabolomics. Angew. Chem. Int. Ed. Engl. 56, 3531–3535. doi: 10.1002/anie.
201611347

Frontiers in Molecular Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnmol.2022.883466
https://doi.org/10.1038/s41467-019-09352-1
https://doi.org/10.1038/s41467-019-09352-1
https://doi.org/10.1016/j.cmet.2020.09.005
https://doi.org/10.1073/pnas.1319485111
https://doi.org/10.1038/s41467-017-01647-5
https://doi.org/10.1038/s41467-017-01647-5
https://doi.org/10.1021/acs.analchem.5b03173
https://doi.org/10.1371/journal.pcbi.1004363
https://doi.org/10.1371/journal.pcbi.1004363
https://doi.org/10.1038/s41467-021-26423-4
https://doi.org/10.1371/journal.pcbi.1007799
https://doi.org/10.1007/978-1-59745-244-1_11
https://doi.org/10.1007/978-1-59745-244-1_11
https://doi.org/10.1016/j.cmet.2018.10.013
https://doi.org/10.1016/j.copbio.2014.12.003
https://doi.org/10.1007/s00216-016-9724-4
https://doi.org/10.1007/s00216-016-9724-4
https://doi.org/10.1002/bit.26390
https://doi.org/10.1038/nchembio.2077
https://doi.org/10.1096/fj.202001704RR
https://doi.org/10.1096/fj.202001704RR
https://doi.org/10.1016/j.ymben.2021.12.009
https://doi.org/10.1186/1471-2105-9-266
https://doi.org/10.1186/1471-2105-9-266
https://doi.org/10.1021/acs.analchem.5b04535
https://doi.org/10.1021/acs.analchem.5b04535
https://doi.org/10.1002/bit.24344
https://doi.org/10.1002/bit.24344
https://doi.org/10.1007/s11064-016-1907-z
https://doi.org/10.1101/2020.06.29.177063
https://doi.org/10.1101/2020.06.29.177063
https://doi.org/10.1128/JB.181.21.6679-6688.1999
https://doi.org/10.1128/JB.181.21.6679-6688.1999
https://doi.org/10.1194/jlr.D119000318
https://doi.org/10.1194/jlr.D119000318
https://doi.org/10.1186/s12934-018-1003-y
https://doi.org/10.1039/c2mb25285f
https://doi.org/10.1039/c2mb25285f
https://doi.org/10.1105/tpc.112.106989
https://doi.org/10.1111/j.1432-1033.1995.tb20829.x
https://doi.org/10.1111/j.1432-1033.1995.tb20829.x
https://doi.org/10.1002/bit.26379
https://doi.org/10.1093/bioinformatics/btz500
https://doi.org/10.1093/bioinformatics/btz500
https://doi.org/10.1016/j.chroma.2007.04.011
https://doi.org/10.1016/j.chroma.2007.04.011
https://doi.org/10.1126/science.1245114
https://doi.org/10.1126/science.1245114
https://doi.org/10.1002/bit.10429
https://doi.org/10.1016/j.immuni.2019.10.012
https://doi.org/10.1002/anie.201611347
https://doi.org/10.1002/anie.201611347
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-15-883466 September 6, 2022 Time: 8:50 # 13

Tian et al. 10.3389/fnmol.2022.883466

Wahl, S. A., Nöh, K., and Wiechert, W. (2008). 13C labeling experiments at
metabolic nonstationary conditions: An exploratory study. BMC Bioinformatics
9:152. doi: 10.1186/1471-2105-9-152

Wang, Y., Nasiri, A. R., Damsky, W. E., Perry, C. J., Zhang, X. M., Rabin-
Court, A., et al. (2018). Uncoupling Hepatic Oxidative Phosphorylation Reduces
Tumor Growth in Two Murine Models of Colon Cancer. Cell Rep. 24, 47–55.
doi: 10.1016/j.celrep.2018.06.008

Wang, Y., Wondisford, F., Song, C., Zhang, T., and Su, X. (2020). Metabolic
Flux Analysis-Linking Isotope Labeling and Metabolic Fluxes. Metabolites 10:447.
doi: 10.3390/metabo10110447

Watts, M. E., Pocock, R., and Claudianos, C. (2018). Brain Energy and
Oxygen Metabolism: Emerging Role in Normal Function and Disease. Front. Mol.
Neurosci. 11:216. doi: 10.3389/fnmol.2018.00216

Weitzel, M., Nöh, K., Dalman, T., Niedenführ, S., Stute, B., and Wiechert,
W. (2013). 13CFLUX2—high-performance software suite for 13C-metabolic flux
analysis. Bioinformatics 29, 143–145. doi: 10.1093/bioinformatics/bts646

Weitzel, M., Wiechert, W., and Nöh, K. (2007). The topology of metabolic
isotope labeling networks. BMC Bioinformatics 8:315. doi: 10.1186/1471-2105-8-
315

Wiechert, W. (2001). 13C metabolic flux analysis. Metab. Eng. 3, 195–206.

Wiechert, W., and De Graaf, A. A. (1997). Bidirectional reaction steps in
metabolic networks: I. Modeling and simulation of carbon isotope labeling
experiments. Biotechnol. Bioeng. 55, 101–117.

Wiechert, W., and Nöh, K. (2005). From stationary to instationary metabolic
flux analysis. Adv. Biochem. Eng. Biotechnol. 92, 145–172.

Wiechert, W., Siefke, C., De Graaf, A. A., and Marx, A. (1997). Bidirectional
reaction steps in metabolic networks: II. Flux estimation and statistical analysis.
Biotechnol. Bioeng. 55, 118–135. doi: 10.1002/(SICI)1097-0290(19970705)55:1&lt;
118::AID-BIT13&gt;3.0.CO;2-I

Williams, H. C., Farmer, B. C., Piron, M. A., Walsh, A. E., Bruntz, R. C., Gentry,
M. S., et al. (2020). APOE alters glucose flux through central carbon pathways in
astrocytes. Neurobiol. Dis. 136:104742. doi: 10.1016/j.nbd.2020.104742

Wittmann, C., and Heinzle, E. (2002). Genealogy profiling through strain
improvement by using metabolic network analysis: Metabolic flux genealogy of
several generations of lysine-producing corynebacteria. Appl. Environ. Microbiol.
68, 5843–5859. doi: 10.1128/AEM.68.12.5843-5859.2002

Wong, M., Xu, G., Barboza, M., Maezawa, I., Jin, L. W., Zivkovic, A., et al.
(2020). Metabolic flux analysis of the neural cell glycocalyx reveals differential

utilization of monosaccharides. Glycobiology 30, 859–871. doi: 10.1093/glycob/
cwaa038

Yam, M., Engel, A. L., Wang, Y., Zhu, S., Hauer, A., Zhang, R., et al. (2019).
Proline mediates metabolic communication between retinal pigment epithelial
cells and the retina. J. Biol. Chem. 294, 10278–10289. doi: 10.1074/jbc.RA119.
007983

Yang, J., Wongsa, S., Kadirkamanathan, V., Billings, S. A., and Wright, P. C.
(2007). Metabolic flux estimation–a self-adaptive evolutionary algorithm with
singular value decomposition. IEEE/ACM Trans. Comput. Biol. Bioinform. 4,
126–138. doi: 10.1109/TCBB.2007.1032

Yang, T. H., Frick, O., and Heinzle, E. (2008). Hybrid optimization for 13C
metabolic flux analysis using systems parametrized by compactification. BMC Syst.
Biol. 2:29. doi: 10.1186/1752-0509-2-29

Young, J. D. (2014). INCA: A computational platform for isotopically non-
stationary metabolic flux analysis. Bioinformatics 30, 1333–1335. doi: 10.1093/
bioinformatics/btu015

Young, J. D., Walther, J. L., Antoniewicz, M. R., Yoo, H., and Stephanopoulos,
G. (2008). An elementary metabolite unit (EMU) based method of isotopically
nonstationary flux analysis. Biotechnol. Bioeng. 99, 686–699. doi: 10.1002/bit.
21632

Yuan, J., Bennett, B. D., and Rabinowitz, J. D. (2008). Kinetic flux profiling for
quantitation of cellular metabolic fluxes. Nat. Protoc. 3, 1328–1340.

Yuan, Y., Yang, T. H., and Heinzle, E. (2010). 13C metabolic flux analysis for
larger scale cultivation using gas chromatography-combustion-isotope ratio mass
spectrometry. Metab. Eng. 12, 392–400. doi: 10.1016/j.ymben.2010.02.001

Zamboni, N. (2011). 13C metabolic flux analysis in complex systems. Curr.
Opin. Biotechnol. 22, 103–108.

Zamboni, N., Saghatelian, A., and Patti, G. J. (2015). Defining the metabolome:
Size, flux, and regulation. Mol. Cell 58, 699–706.

Zhang, H., Liu, Y., Nie, X., Liu, L., Hua, Q., Zhao, G. P., et al. (2018). The
cyanobacterial ornithine-ammonia cycle involves an arginine dihydrolase. Nat.
Chem. Biol. 14, 575–581. doi: 10.1038/s41589-018-0038-z

Zhang, Z., Liu, Z., Meng, Y., Chen, Z., Han, J., Wei, Y., et al. (2020). Parallel
isotope differential modeling for instationary 13C fluxomics at the genome scale.
Biotechnol. Biofuels 13, 103. doi: 10.1186/s13068-020-01737-5

Zupke, C., and Stephanopoulos, G. (1994). Modeling of Isotope Distributions
and Intracellular Fluxes in Metabolic Networks Using Atom Mapping Matrices.
Biotechnol. Prog. 10, 489–498.

Frontiers in Molecular Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnmol.2022.883466
https://doi.org/10.1186/1471-2105-9-152
https://doi.org/10.1016/j.celrep.2018.06.008
https://doi.org/10.3390/metabo10110447
https://doi.org/10.3389/fnmol.2018.00216
https://doi.org/10.1093/bioinformatics/bts646
https://doi.org/10.1186/1471-2105-8-315
https://doi.org/10.1186/1471-2105-8-315
https://doi.org/10.1002/(SICI)1097-0290(19970705)55:1&lt;118::AID-BIT13&gt;3.0.CO;2-I
https://doi.org/10.1002/(SICI)1097-0290(19970705)55:1&lt;118::AID-BIT13&gt;3.0.CO;2-I
https://doi.org/10.1016/j.nbd.2020.104742
https://doi.org/10.1128/AEM.68.12.5843-5859.2002
https://doi.org/10.1093/glycob/cwaa038
https://doi.org/10.1093/glycob/cwaa038
https://doi.org/10.1074/jbc.RA119.007983
https://doi.org/10.1074/jbc.RA119.007983
https://doi.org/10.1109/TCBB.2007.1032
https://doi.org/10.1186/1752-0509-2-29
https://doi.org/10.1093/bioinformatics/btu015
https://doi.org/10.1093/bioinformatics/btu015
https://doi.org/10.1002/bit.21632
https://doi.org/10.1002/bit.21632
https://doi.org/10.1016/j.ymben.2010.02.001
https://doi.org/10.1038/s41589-018-0038-z
https://doi.org/10.1186/s13068-020-01737-5
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/

	13C metabolic flux analysis: Classification and characterization from the perspective of mathematical modeling and application in physiological research of neural cell
	Introduction
	Classification of 13C metabolic fluxomics
	Qualitative fluxomics (isotope tracing)
	13C flux ratios
	13C kinetic flux profiling
	13C metabolic flux analysis
	Classification of 13C metabolic flux analysis

	Technology of 13C metabolic flux analysis
	Isotope labeling model
	Isotope molecule measurement
	Optimization technique
	Flux uncertainty analysis
	Derivative method

	Application in neural cell research
	Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


