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Introduction: Major histocompatibility complex class II molecules

and the microbiota

The major histocompatibility complex (MHC) is a hyper-polymorphic gene-dense region

found on Chromosome 6 in humans (the human MHC is termed the HLA for “human

leukocyte antigen”). The "hyper"-polymorphic nature of this region stems from the extreme

allelic diversity found within classical Class I and class II MHC (MHCII) genes [1] (Fig 1A).

MHCII genes encode cell-surface glycoproteins that bind extracellularly derived peptide anti-

gens and present them on the surface of antigen presenting cells (APCs; conventionally, den-

dritic cells [DCs], macrophages, and B cells). MHCII:peptide complexes engage T cell

receptors (TCRs) and CD4 co-receptors which facilitates cognate interactions between CD4+

T cells and APCs.

In humans, MHCII deficiency (also known as “bare lymphocyte syndrome type II”) is

caused by loss-of-function mutations in genes that drive MHCII surface expression on APCs

[2]. The primary immunological features of MHCII deficiency include severe deficits in

peripheral CD4+ T cells and circulating antibody titers. Severe recurrent infection, especially

of the gastrointestinal tract, is the major complication associated with MHCII deficiency in

humans. These individuals have an extremely poor prognosis and often succumb to infectious

disease in their childhood [3, 4]. Therefore, MHCII-mediated immune responses directed

against gastrointestinal microbes is a crucial component of health.

In addition to promoting resistance to pathogenic microbes, MHCII is also emerging as an

important pathway regulating interactions between vertebrate hosts and the bacterial commu-

nity that persistently colonizes the gastrointestinal tract (collectively termed the microbiota).

Recent work in MHCII conditional knockout mice has revealed conventional and unconven-

tional roles of MHCII-mediated antigen presentation in promoting benign host-microbiota

interactions, and emerging data support that polymorphism at MHCII loci drives variability in

microbiota-dependent disease phenotypes.

How MHCII promotes benign host-microbiota symbiosis

Immunoglobulin A (IgA) is the most abundantly secreted antibody in the gut. T cell depen-

dent (TD) and T cell independent (TiD) B cell maturation contributes to the pool of IgA-

secreting plasma cells in the gut. The balance between TiD and TD IgA responses is different

between inbred mouse strains suggesting that immunogenetic variation may play an impor-

tant role in this balance [5]. Using a CD3ε−/− adoptive transfer mouse model, Kawamoto and

colleagues were the first to explicitly demonstrate that TD IgA responses may have a significant
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Fig 1. How MHCII can promote benign host-microbiota symbiosis. (A) Classical MHCII genes are “hyper-polymorphic.” The number of identified

alleles per each human MHCII gene (termed HLA for “human leukocyte antigen”). Adapted from the work by Robinson and colleagues [1]. (B)

MHCII can regulate the spatial segregation between the microbiota and gut epithelium by promoting TD IgA responses in the gut or by regulating

IL22 production by TH17 cells. Whether DC-intrinsic MHCII expression promotes IL22 secretion by TH17 (or other) cell types is currently unknown

but anticipated. (C) ILC3-intrinsic MHCII expression can promote colonization resistance against pathobionts by limiting TD IgA responses. (D)

ILC3-intrinsic MHCII expression can promote peripheral CD4+ T cell tolerance against commensal microbes. (B–D) DC- and ILC3-intrinsic MHCII

expression have been shown to limit inflammatory gastrointestinal disease in mice. DC, dendritic cell; IFNγ, interferon gamma; IgA,

Immunoglobulin A; IL22, interleukin 22; ILC3, innate lymphoid cell group 3; MHCII, major histocompatibility complex class II; TD, T cell

dependent; TH17, CD4 T helper IL17-producing cell; TFH, CD4+ T follicular helper cell; TNFa, tumor necrosis factor alpha

https://doi.org/10.1371/journal.ppat.1008558.g001
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influence on host-microbiota interactions [6]. Specifically, adoptive transfer of FoxP3+ regula-

tory CD4+ T (Treg) cells was shown to enhance T follicular helper (TFH) cell IL21 secretion in

a BCL6-dependent manner. This was associated with increased abundance of IgA+ plasma

cells in the gut and altered specificity of anti-commensal IgA antibodies, which resulted in sig-

nificant shifts in microbiota composition. The physiologic impact of this observed effect on

microbiota composition was not rigorously addressed in this study, but abnormal shifts in

microbiota composition (i.e., dysbiosis) due to IgA deficiency has been associated with

enhanced susceptibility to inflammatory gastrointestinal disease in mice and humans [7–9].

MHCII antigen presentation is required for CD4+ T cell activation, and recent work in

MHCII-conditional knockout mouse models has been instrumental in elucidating the differ-

ent mechanisms by which MHCII antigen presentation can promote benign host-microbiota

interactions by limiting microbiota-dependent inflammatory responses.

Spatial segregation between host tissues and gut microbes is one way that secretory IgA can

limit inflammatory responses against intestinal microbes [10, 11]. Conditional deletion of

MHCII expression in DCs has been shown to prohibit TFH cell development and abolish anti-

commensal TD IgA responses in the gut [12]. Reduced TD IgA responses in this mouse model

was shown to result in decreased spatial segregation between the colonic gut epithelium and

the microbiota and was associated with the development of a spontaneous microbiota-depen-

dent intestinal inflammatory disease. DC-specific MHCII deletion has also been shown to

restrict the development of commensal-specific CD4+ TH17 cells [13]. TH17 cells are impor-

tant producers of interleukin 22 (IL22), a cytokine that induces antimicrobial peptide secretion

by intestinal epithelial cells (IECs), which also promotes spatial segregation between the gut

epithelium and the microbiota [14, 15]. IL22 also upregulates the expression of the polymeric

Ig receptor (PIgR) [16], which facilitates basolateral transport of IgA to the apical surface of

IECs (Fig 1B).

Group 3 innate lymphoid cells (ILCs) are a subset of unconventional CD4+CD3− lympho-

cytes that are enriched in mucosal sites, and a recent study has shown that ILC3s utilize

MHCII-mediated antigen presentation to suppress anti-commensal IgA responses in the gut

[17]. In this study, it was shown that ILC3s dampen anti-commensal TD IgA responses (by

specifically suppressing CD4+ TFH cell development) in an MHCII-dependent manner.

Absence of ILC3-intrinsic MHCII expression significantly enhanced anti-commensal IgA

responses in this study. Surprisingly, increased IgA-coating of gut bacteria enhanced suscepti-

bility to Citrobacter rodentium-induced colitis, putatively by enhancing IgA-coating and

mucus-colonization by this pathobiont (Fig 1C).

ILC3s have also been shown to promote peripheral tolerance to microbiota-derived

antigens in an MHCII-dependent manner. Hepworth and colleagues demonstrated that

deletion of MHCII on ILC3s resulted in low-grade systemic inflammation that was associated

with CD4+ T cell activation [18]. These animals were also shown to develop a spontaneous

inflammatory bowel disease (IBD) associated with increased abundance of CD4+ T cells

expressing the pro-inflammatory cytokines IL17, interferon gamma (IFNγ), and tumor

necrosis factor alpha (TNFα) in the colonic lamina propria (Fig 1D). Adoptive transfer of

CD4+ T cells from mice whose ILC3s did not express MHCII (but not CD4+ T cells from

wild type (WT) mice with intact ILC3-intrinsic MHCII expression) were able to drive the

development of gastrointestinal disease in RAG1−/− mice but not germfree RAG1−/− mice,

indicating that aberrant CD4+ T cell activation due to MHCII-deficiency in ILC3s was a

microbiota-dependent phenomenon. In humans, specific MHCII alleles are known genetic

risk factors for the development of IBDs [19], and aberrant T cell activation is a major driver

of IBDs [20].
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Microbiota-dependent phenotypes driven by MHCII polymorphism

Multiple studies in fish, mice, rats, cows, birds, and humans have associated MHCII polymor-

phisms with shifts in gut microbiota composition [21–30]. MHCII polymorphisms can puta-

tively influence microbiota composition by differentially regulating any of the mechanisms

described above. Three independent studies using MHC congenic or coisogenic mouse strains

support that MHCII polymorphisms influences host-microbiota interactions by influencing the

magnitude, quality, and specificity of anti-commensal IgA responses [21, 22, 30]. Importantly,

two of these mouse studies have linked observed MHCII-mediated shifts in microbiota compo-

sition to variability in disease susceptibility. For example, Kubinak and colleagues demonstrated

that MHCII-mediated differences in microbiota composition could explain patterns of coloni-

zation resistance against the enteric pathogen Salmonella e. typhimurium [21]. In a subsequent

study, Silverman and colleagues were able to demonstrate that transfer of microbiota from a

mouse strain expressing a diabetes-resistant MHCII allele was able to limit disease progression

in a diabetes-prone coisogenic strain [22]. These two studies provide support for the idea that

allelic diversity at MHCII loci drives variability in microbiota-dependent disease phenotypes.

Concluding remarks

Mucosal IgA deficiency may promote the development of gastrointestinal inflammatory disease in

humans [8, 31], and specific MHCII alleles have been identified as candidate genetic risk factors

for the development of this form of immunodeficiency [32–34]. Collectively, the available evidence

to date supports the conclusion that the primary mechanism by which MHCII regulates host-

microbiota interactions is by regulating TD anti-commensal IgA responses. We have focused this

review on the role of hyper-polymorphic MHCII molecules in the regulation of host-microbiota

interactions because variation in the ability to manage this interaction is emerging as a major con-

tributing factor in the pathogenesis of multiple diseases. MHCII molecules play a central role in

CD4+ T cell activation and the ensuing adaptive immune response against extracellular microbes.

Thus, variability in the immune response caused by genetic variation at MHCII loci may be one of

the most important underlying genetic factors controlling microbiota-dependent disease pheno-

types. This is an important observation for two reasons. First, it suggests that MHCII alleles may

be useful as predictive biomarkers of such diseases. Second, it gives us a new perspective on MHC-

mediated disease pathogenesis by suggesting that MHC-disease associations can arise as a conse-

quence of how host MHC genotype influences the physiological outcomes of host-microbiota

interactions. This perspective may lead to the development of novel therapies or strategies for the

treatment of disease. Polymorphism is found within both the promoter regions and exons encod-

ing the peptide-binding grooves of MHCII molecules. Theoretically, both the relative expression

of MHCII molecules on APCs and the unique suite of peptide antigens bound by different MHCII

molecules can contribute to variability in anti-commensal IgA responses. Currently, the role of

MHCII promoter polymorphisms have not been studied in the context of host-microbiota interac-

tions. Finally, it is important to acknowledge that nonpolymorphic MHC molecules (e.g., H2M3

and MR1, respectively) are also emerging as important factors regulating host-microbiota symbio-

sis [35, 36] but are beyond the scope of this review. Given the tremendous interest in MHC biology

by ecologists, evolutionary biologists, and immunologists alike, we look forward to the many excit-

ing discoveries to be made in these important pathways of symbiosis in the years to come.
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