
fpsyg-12-589506 June 15, 2021 Time: 17:43 # 1

ORIGINAL RESEARCH
published: 21 June 2021

doi: 10.3389/fpsyg.2021.589506

Edited by:
Karin Landerl,

University of Graz, Austria

Reviewed by:
Stephan E. Vogel,

University of Graz, Austria
Giannis N. Karagiannakis,

National and Kapodistrian University
of Athens, Greece

*Correspondence:
Christian Kißler

christian.kissler@tu-dortmund.de

Specialty section:
This article was submitted to

Educational Psychology,
a section of the journal
Frontiers in Psychology

Received: 10 August 2020
Accepted: 26 April 2021

Published: 21 June 2021

Citation:
Kißler C, Schwenk C and

Kuhn J-T (2021) Two Dyscalculia
Subtypes With Similar, Low

Comorbidity Profiles: A Mixture Model
Analysis. Front. Psychol. 12:589506.

doi: 10.3389/fpsyg.2021.589506

Two Dyscalculia Subtypes With
Similar, Low Comorbidity Profiles: A
Mixture Model Analysis
Christian Kißler, Christin Schwenk and Jörg-Tobias Kuhn

Methods of Educational Research, Faculty of Rehabilitation Sciences, TU Dortmund University, Dortmund, Germany

Several studies have aimed to identify subtypes of dyscalculia. In many of these studies,
either pre-defined groups (e.g., children with reading and mathematical difficulties vs.
children with isolated mathematical difficulties) were analyzed regarding their cognitive
profiles (top-down approach), or clusters of children with dyscalculia (CwD) were
identified based on a narrow range of cognitive and mathematical skills (data-driven or
bottom-up approach). However, it has remained difficult to establish robust subtypes of
dyscalculia across studies. Against this background, we conducted a mixture model
analysis in order to explore and identify subtypes of dyscalculia based on a broad
range of variables (intelligence, reading fluency, working memory, attention, and various
mathematical skills). The total sample comprised 174 elementary school CwD (IQ > 70;
mathematical abilities: percentile rank <10), which consisted of two subsamples. The
first subsample was based on a diagnostic test focusing on calculation (HRT 1–4;
n = 71; 46 girls, 25 boys; age: M = 9.28 years, SD = 0.94) whereas the second
subsample was based on a diagnostic test with a strong focus on basic numerical
capacities (ZAREKI-R; n = 103; 78 girls, 25 boys; age: M = 8.94 years, SD = 1.05).
Results provided convincing evidence for the existence of two subtypes in CwD: A
slightly impaired subtype and a strongly impaired subtype. Subtypes differed most
strongly regarding mathematical abilities, but the analyses suggest that differences in
attention could also be a key factor. Therefore, comorbid attention difficulties seem to
be a relevant factor that needs to be considered when establishing subtypes. Substantial
intelligence differences between dyscalculia subtypes could not be found. Differences in
working memory and reading fluency were negligible. Overall, the results seemed to be
robust regardless of the diagnostic test used for assessing dyscalculia. When planning
interventions for CwD, the existence of a subtype with substantial attention problems
should be kept in mind.

Keywords: subtypes, mathematical skills, mathematical abilities, mixture model analysis, comorbidity,
dyscalculia, developmental dyscalculia

INTRODUCTION

Mathematical skills are important for a successful biography: For example, there is a strong
connection between mathematical skills in childhood and adult socioeconomic status (Ritchie
and Bates, 2013). Therefore, children with difficulties in mathematics face the risk of serious
consequences. Dyscalculia is defined as an impairment of basic arithmetic skills (addition,
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subtraction, multiplication, division), which cannot solely be
explained by a general intelligence deficit nor by inadequate
learning environment (ICD-10: Dilling et al., 1993). In the ICD-
11, (developmental) dyscalculia is described as a developmental
learning disorder that is characterized by a lack of “skills
related to mathematics or arithmetic, such as number sense,
memorization of number facts, accurate calculation, fluent
calculation, and accurate mathematic reasoning” (World Health
Organization, 2020). In any case, mathematical skills and
mastery of mathematical procedures, along with mathematical
fact retrieval, are strongly impaired in children with dyscalculia
(CwD) (Geary et al., 2012; Kuhn et al., 2013; Mazzocco et al.,
2013). Landerl et al. (2004, p. 99) “conclude that dyscalculia is the
result of specific disabilities in basic numerical processing rather
than the consequence of deficits in other cognitive abilities.”
Basic numerical processing (BNP) has also been referred to as
core number competencies and is assessed using simple tasks
such as dot enumeration and comparison of single digits (Reeve
et al., 2012). In addition, there are more complex mathematical
precursor skills (complex number processing, CNP): For example,
mental number line tasks, which require participants to locate
a given number on a number line, or the ability to convert
auditorily presented numbers into written Arabic symbols
(transcoding; Nuerk et al., 2006; Kuhn et al., 2013, 2017). Deficits
in the processing of numbers and/or magnitudes are discussed
as the main causes of dyscalculia (Butterworth, 2005; Noël and
Rousselle, 2011; Moll et al., 2015). Overall, different mathematical
skills can be impaired in CwD: Individual profiles and therefore
problem areas and needs can vary substantially across individuals
(Haberstroh and Schulte-Körne, 2019). Therefore, different
subtypes of CwD might exist which display different profiles
concerning BNP, CNP, and calculation skills.

In fact, arithmetic errors of CwD vary with their cognitive
profile (Rourke, 1993, p. 218). Because error patterns, at least
partially, reflect strategy use or selective deficits and thus can
be relevant starting points for interventions, several studies have
aimed to identify subtypes (or subgroups) of CwD (e.g., Geary,
1993; Von Aster, 2000; Bartelet et al., 2014; Skagerlund and
Träff, 2016). When trying to identify subgroups of CwD, a broad
range of cognitive abilities has to be taken into account because
mathematical skills rely on many different cognitive abilities.

Although some etiological views (e.g., Landerl et al., 2004)
focus on domain-specific causes of dyscalculia, mathematical
deficits in the heterogeneous population of CwD can be
based on additional, domain-general causes. For example, the
mathematical deficits of some CwD seem to be associated
with impairments in verbal short-term memory (Szücs, 2016).
Further, it is widely known that a large number of children
with mathematical deficits also display impairments in reading
or attention (Gross-Tsur et al., 1996; Willburger et al., 2008;
Haberstroh and Schulte-Körne, 2019). In addition, many CwD
display difficulties in working memory (e.g., Keeler and Swanson,
2001; Schuchardt et al., 2008; Mähler and Schuchardt, 2011).
According to Baddeley’s (1992) framework, on which the
majority of working memory assessments are based, working
memory is divided into three structural parts. One part (the
central executive) coordinates the storage and manipulation

of the information, whereas two other parts (slave systems)
are responsible for storing (1) auditory (phonological loop) or
(2) visuo-spatial information (visuo-spatial sketchpad; Baddeley,
1992; Cragg et al., 2017). Many studies report that CwD
display deficits in the visuo-spatial sketchpad (e.g., Schuchardt
et al., 2008). However, not all studies replicated that CwD
have significant difficulties in working memory (e.g., Landerl
et al., 2009; Kißler et al., 2021). Specifically, Landerl et al.
(2009) did not find significant deficits regarding block tapping
tasks (Corsi block tapping task: e.g., Berch et al., 1998) when
comparing CwD with a control group. However, children
with dyscalculia and comorbid reading difficulties performed
significantly lower than a control group. Hence, stronger or
more diverse working memory difficulties could be linked to
comorbidity, i.e., to different subtypes of CwD with or without
comorbid impairments. Correlative findings corroborate this
assumption (e.g., Peng et al., 2016). In sum, there is some
evidence for different subtypes of CwD that are characterized by
varying deficits in working memory.

As mentioned earlier, attention problems and reading
difficulties are often associated with dyscalculia, but not all
CwD seem to have these problems (e.g., Gross-Tsur et al.,
1996; Haberstroh and Schulte-Körne, 2019). Correspondingly,
attention deficits and dyslexia could also be factors that need
to be considered when discussing dyscalculia subtypes. In the
past, it was common to differentiate between children who
showed a discrepancy between general intelligence and individual
calculation or reading performance, and children who did
not show such an intelligence discrepancy (e.g., Dilling et al.,
1993). Even if the intelligence discrepancy criterion is no longer
recommended for diagnosing CwD because of methodological
and content-related reasons (e.g., Ehlert et al., 2012; Kuhn et al.,
2013), intelligence should still be taken into account as a further
factor in a holistic typification of CwD.

After describing cognitive features (attention, intelligence,
reading skills, working memory, and different arithmetic abilities
and skills as BNP, CNP, and calculation) that are often associated
with dyscalculia and that may vary across subtypes of CwD, the
next part of this introduction focuses on different methodological
approaches and conclusions of studies conducted in this field.
In order to identify subtypes of dyscalculia, two different
approaches have been pursued: Some studies analyzed predefined
subtypes based on specific theoretical expectations, whereas
others used a data-driven approach and therefore tended to be
more exploratory.

Some of the first studies analyzing predefined subtypes were
conducted by Rourke and his research team (e.g., Ozols and
Rourke, 1988; Rourke, 1993). These authors divided CwD into
three groups: (1) children with problems in arithmetic, reading
and spelling, (2) children with deficient reading and spelling
abilities who displayed higher (albeit still deficient) arithmetic
skills, and (3) children with average or above reading and spelling
performance, but with mathematical problems. Arithmetic errors
of these groups varied in a qualitative way: For example, while
children in group 2 mostly made mistakes that could be related
to their reading problems, children in group 3 showed a broad
range of mechanical arithmetic errors (Rourke, 1993). Children
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in group 3 had problems to calculate correctly because of
their poor handwriting; they misread the mathematical signs,
they performed arithmetic operations incorrectly and they had
problems to access the needed calculation rules from long-
term memory (Rourke, 1993). Thus, this line of research
provided evidence that subtypes of children with problems in
arithmetic differ depending on their reading skills. This finding
underscores the importance of reading skills when describing
subtypes of dyscalculia.

In an early review, Geary (1993) also described three
different subtypes of CwD. In contrast to Rourke (1993),
Geary (1993) did not focus on the comorbidity of dyscalculia
and reading/spelling disorder: One of these subtypes displayed
“difficulties in arithmetic fact retrieval and problems in the
memorization of arithmetic tables even with extensive drilling”
(Geary, 1993, p. 357). Furthermore, he described a second
subtype with “difficulties in the use of arithmetical procedures”
(p. 357). The third subtype described by Geary (1993) had
visuospatial difficulties and consequently, this subtype had
problems with the processing of numerical information. The
subtypes suggested by Geary (1993) relate to difficulties in
memory, visuospatial skills, and procedural calculation, thus
focusing more strongly on general cognitive abilities when
identifying subtypes of dyscalculia.

In a more recent study, Skagerlund and Träff (2016) divided
CwD into two subgroups (based on theoretical assumptions)
and analyzed them by focusing on different mathematical
abilities. These authors described a subtype (general dyscalculia
subtype) with problems in the innate approximate number
system (ANS). In addition, they postulated and found a second
subtype with arithmetic fact dyscalculia. The latter subtype
showed no difficulties in non-symbolic number processing but
had difficulties in symbolic number processing. Skagerlund and
Träff (2016) concluded that this second subtype is characterized
by suffering from a deficit in accessing information from symbols
which has been referred to as access deficit in the literature
(Rousselle and Noël, 2007). In summary, the results of Geary
(1993) and Skagerlund and Träff (2016) suggest the existence of
subtypes in CwD that differ in their profiles of numerical and
arithmetic skills.

Next, studies that used data-driven methods to identify
subtypes of dyscalculia are presented. In contrast to the studies
analyzing predefined subtypes of dyscalculia, Von Aster (2000)
used a data-driven approach (cluster analysis) for subtyping 93
children with poor achievement in school mathematics. In line
with the results reported by Rourke (1993), Von Aster (2000)
characterized a verbal subtype with language-based problems.
Von Aster (2000) differentiated this subtype from two other
subtypes specific to his study: An Arabic subtype with difficulties
in understanding and using the Arabic notation system as well as
a pervasive subtype with strong problems in most mathematical
subareas (e.g., a lack of basic numerosity and number concepts).

Similar to Von Aster (2000), Bartelet et al. (2014) also
used a data-driven approach. Bartelet et al. (2014) focused
on various variables that represent specific cognitive abilities
and skills: Spatial short-term working memory, verbal short-
term working memory, intelligence, Arabic numeral knowledge,

number line estimation, approximate numerical knowledge (e.g.,
dot comparison task), and counting. Bartelet et al. (2014)
identified and described six subtypes of dyscalculia with different
cognitive profiles: (1) the weak mental number line subtype
with a low performance in number line tasks but a high
performance in approximate numerical knowledge and Arabic
numeral knowledge, (2) the weak ANS subtype with problems
in approximate numerical knowledge and number line tasks, but
with a strong performance in spatial short-term working memory
and with a higher IQ in comparison to other subtypes—the
characteristics of this subtype resemble the general dyscalculia
subtype described by Skagerlund and Träff (2016), (3) the spatial
difficulties subtype with particular difficulties in spatial short-
term working memory and in approximate numerical knowledge,
but also difficulties in verbal short-term working memory and
number line tasks, (4) the access deficit subtype with problems in
counting and Arabic numerical knowledge, (5) the no numerical
cognitive deficit subtype with no deficits in any area and very
high verbal short-term working memory, and (6) the garden
variety subtype with many smaller deficits in different areas, a
high performance in number line tasks and a lower IQ. These
results suggest a large (and almost confusing) variety of subtypes.
It is also noticeable that the characteristics of some subtypes
overlap, and that IQ seems to be an important domain-general
factor which helps to characterize different subtypes.

In another data-driven subtyping study, Chan and Wong
(2020) used a cluster analysis for subtyping CwD over the first
2 years of elementary school to compare the cognitive profiles
of the identified subgroups. These authors assessed a broader
range of variables compared to many prior studies (working
memory and mathematical abilities): Backward digit span,
backward block span, the acuity of the ANS, number comparison,
number line estimation, number fact retrieval, accuracy in
calculation, strategic counting, arithmetic word problems, and
a general learning achievement test in mathematics (based on
the curriculum of Hong Kong). Moreover, dot enumeration
tasks were used to assess both the ability to subitize (1–3
dots) and to enumerate (4–9 dots). Chan and Wong (2020)
described five different subtypes of CwD: (1) the numerosity
coding deficit subtype, (2) the symbolic deficit subtype, (3) the
working memory deficit subtype, (4) the number sense deficit
subtype, and (5) the mild difficulty subtype with almost no
deficits in the cognitive areas examined but with some problems
in mathematics. The subtypes presented by Chan and Wong
(2020) seem to differ from the subtypes described by Bartelet
et al. (2014), with some overlaps. The mild difficulty group
shares some features with the garden variety subtype identified
by Bartelet et al. (2014), for example—but they are far from
being identical. Both studies have in common that they present
at least one subtype that is characterized by substantial deficits
in working memory.

A recent data-driven study of Huijsmans et al. (2020) aimed
to identify different cognitive profiles of 281 fourth graders by
examining basic arithmetic and advanced mathematic skills. In
contrast to Bartelet et al. (2014) and Chan and Wong (2020),
this study did not exclusively focus on CwD. Huijsmans et al.
(2020) found four different profiles. Three of those profiles did
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not seem to have significant mathematical difficulties (a high-
achieving profile, an average profile, and a divergent profile).
Another profile seemed to have mathematical difficulties in some
way (a low-achieving profile), but none of the detected profiles met
the criteria for dyscalculia. No subgroups of CwD were found.
Huijsmans et al. (2020) concluded that the group of CwD could
be “too heterogeneous to distinguish subgroups” (p. 9).

The assumption that there are many and very heterogeneous
cognitive profiles in CwD (Huijsmans et al., 2020) is in line
with the fact that other studies (Bartelet et al., 2014; Chan
and Wong, 2020) found a relatively large number of subtypes
in CwD. In summary, Bartelet et al. (2014) and Chan and
Wong (2020) assessed children’s mathematical performance and
their working memory capacity, but only Bartelet et al. (2014)
took intelligence into account. In contrast to Rourke (1993),
data-driven approaches often neglected reading deficits when
subtyping CwD. Therefore, important information for subtyping
CwD may have been overlooked. However, as mentioned before,
CwD have difficulties in many cognitive areas. The studies
by Bartelet et al. (2014) and Chan and Wong (2020) present
different typologies, and these differences could be due to the
fact that the cognitive profiles of CwD were not considered
exhaustively. To systematically overcome heterogeneous, and
therefore inconclusive, evidence, it is necessary to consider a
broader range of variables and cognitive areas when following
data-driven approaches to subtype CwD. Therefore, the present
study includes attention, reading fluency, and intelligence beyond
working memory and mathematical skills.

It is important to bear in mind that different tests and
assessments are used to assess dyscalculia. This may affect
results because different groups of children are identified as
dyscalculic, depending on the structure of the test used. There is
no “gold standard” test for dyscalculia; instead, instruments and
diagnostic thresholds depend on (dynamic) consent. Hence, in
order to provide more robust results, two different assessments
of dyscalculia were used in this study, with an emphasis on
different aspects of mathematical difficulties. The first assessment,
ZAREKI-R (von Aster et al., 2006), mainly focuses on basic
numerical processing (such as the comparison of quantities) and
complex number processing (such as number line estimation, or
transcoding). In contrast, HRT 1–4 (Haffner et al., 2005) mainly
focuses on calculation and arithmetic (e.g., basic arithmetic
operations), i.e., on a higher level of mathematical skills. Both
tests include addition and subtraction tasks, but only the
HRT 1–4 includes tasks where children have to divide and
multiply. While ZAREKI-R tests mathematical precursor abilities
such as number line estimation, HRT 1–4 includes tasks on
visual/geometrical skills such as lengths estimation. In this study,
therefore, two different dyscalculia assessments in two different
samples of CwD were used to assess the robustness of dyscalculia
subtypes across measurement instruments.

To summarize, several studies have assessed subtypes of
dyscalculia. However, results vary across studies, possibly due
to the narrow range of skills assessed and different diagnostic
tests used. The present study pursues the following questions: (1)
Which subtypes in CwD can be identified by taking a broad range
of mathematical skills (BNP, CNP, and calculation) and more

general cognitive skills (attention, intelligence, reading skills,
working memory) into account? (2) Is the identified pattern of
dyscalculia subtypes robust? (3) Are there different subtypes in
CwD that are related to specific comorbidity profiles?

In this study, the research questions outlined above were
not analyzed assuming predefined (comorbid) groups. Rather,
this study analyzed CwD (percentile rank <10 in standardized
math assessments) and used a data-driven approach to identify
subtypes. In summary, an exploratory approach was used to
check whether subtypes of CwD which are characterized by
comorbid cognitive profiles could be identified. To take the high
comorbidity of dyscalculia and reading disorder into account, we
also checked whether children with a comorbid reading disorder
could be assigned to a specific subtype of CwD.

MATERIALS AND METHODS

Sample
The total sample consisted of 174 CwD (mathematical abilities:
percentile rank (PR) < 10; IQ > 70; level of education: grade 2,
3, and 4). The sample was part of a large-scale investigation of
mathematical skills comprising 1,211 elementary school children.
Data were collected in two separate contexts with partly different
tests: 103 children (age: M = 8.94 years, SD = 1.05; 78 girls,
25 boys; grade 2: 34 students, grade 3: 48 students, grade 4:
21 students) were identified with a math test focusing on basic
numerical abilities (ZAREKI-R; von Aster et al., 2006; in the
following: ZAREKI-R sample). This subsample was recruited
based on newspaper articles addressing families with (suspected)
CwD. Between fall 2012 and fall 2013, these participants were
invited to university, where testing took place in individual
settings on two different days. A second sample of 71 children
(age: M = 9.28 years, SD = 0.94; 46 girls, 25 boys; grade 2: 17
students, grade 3: 35 students, grade 4: 19 students) were classified
with a math test mainly focusing on arithmetic skills (HRT 1–4;
Haffner et al., 2005; in the following: HRT sample), which was
administered in group settings taking 3 school hours in spring to
fall 2013. The study was approved by the local ethics committee.
To identify children with reading disorder (PR < 10), reading
fluency was measured using the Salzburger Lese-Screening (SLS
1–4; Mayringer and Wimmer, 2003). The ZAREKI-R sample
included 26 CwD with comorbid reading disorder, the HRT
sample included 41 CwD with comorbid reading disorder.

Tests
Diagnostic Tests: HRT 1–4 and ZAREKI-R
ZAREKI-R
The Neuropsychological Test Battery for Number Processing
and Calculation in Children (Neuropsychologische Testbatterie
für Zahlenverarbeitung, und Rechnen bei Kindern, ZAREKI-
R; internal consistency between α = 0.93 and α = 0.97; von
Aster et al., 2006) is a neuropsychological test battery that
taps basic mathematical abilities ranging from counting,
transcoding, magnitude and number line estimation to simple
arithmetic and word problems. Theoretically, it is based
on the Triple Code Model (Dehaene, 1992) and is often
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used for dyscalculia assessment in practice. Administration
takes approximately 40 minutes. Compared to HRT 1–
4, response modes are more versatile: Depending on the
subtest, children either have to write down an answer,
show something on a stimulus display or respond orally.
In this study, the test was administered in a one-to-
one setting in the facilities of Department of Psychology,
University of Münster.

Heidelberg Calculation Test (HRT 1–4)
The Heidelberg calculation test (Heidelberger Rechentest; retest
reliability: 0.93; Haffner et al., 2005) is a paper-pencil speed
test of basic mathematical knowledge. HRT 1–4 consists of the
two scales that are combined to a total score: (1) “arithmetic
operations” (6 subtests: addition, subtraction, multiplication,
division, fill-the-gap tasks, greater/less comparisons; retest
reliability: 0.93) and (2) “numerical-logical and visual-spatial
skills” (5 subtests: numerical series, lengths estimation, counting
cubes, counting magnitudes, connecting numbers; retest
reliability: 0.87; Haffner et al., 2005). T-score norms (i.e., a
standardization resulting in a mean of 50 and standard deviation
of 10) are available for every quarter of the school year. In this
study, the test was administered in group setting, either in the
facilities of Department of Psychology, University of Münster,
or in classroom.

Intelligence
Different tests were used to assess intelligence. In the ZAREKI-R
sample, the perceptual reasoning index (retest-reliability: 0.93) of
the WISC-IV (Wechsler, 2011) was used to assess intelligence. In
the HRT sample, intelligence was measured using the language-
free group test CFT 1-R with a retest-reliability of 0.95 (Weiß and
Osterland, 2013). Both tests focus on fluid intelligence and do not
require any language skills.

Reading Fluency
To measure reading fluency, the Salzburger Lese-Screening (SLS
1–4) with a parallel test reliability of at least 0.90 was used
(Mayringer and Wimmer, 2003): Children had to read as many
simple and unambiguous sentences (e.g., Bananas are blue) as
possible within 3 minutes; By ticking a box at the end of each
sentence, children had to specify if the sentences were correct or
incorrect, and the more correct answers a child gave, the higher
the reading fluency (Mayringer and Wimmer, 2003).

Working Memory
The task matrix span included in the CODY-M 2–4 battery with
a retest reliability of 0.61 (Kuhn et al., 2017) was used in both
samples to test the visual-spatial working memory. During this
test, children had to memorize a pattern of dots and they had
to solve a distracting task; afterward, they had to reproduce
the dot pattern (Raddatz et al., 2017). In addition, the verbal
span test (reported reliability: α = 0.78) of the working memory
scales by Vock and Holling (2008) was used in the ZAREKI-
R sample: First, participants had to remember a list of words;
next, a distracting classification task was presented, after which
the initially learned word had to be retrieved. Raw scores of
the verbal span task were transformed to standardized T-scores

based on the total sample. In the ZAREKI-R sample, mean
working memory performance was calculated based on both
working memory tasks.

Mathematical Abilities
Mathematical abilities were assessed using the CODY-M 2–
4 battery (Kuhn et al., 2017). According to the CODY-M
2–4 manual, subscale scores for (1) BNP (retest reliability:
0.72), (2) CNP (retest reliability: 0.76), and (3) Calculation
skills (retest reliability: 0.85) were computed to measure
different components of mathematical skills (Kuhn et al.,
2017). All following descriptions of the mathematical tests are
based on Raddatz et al. (2017).

Basic Numerical Processing (BNP)
Efficiency in counting was tested by dot enumeration: 1–9 black
dots had to be counted as quickly and correctly as possible. Across
all correct responses, the median of the children’s reaction times
was computed. In addition, BNP was tested by two comparison
tasks (c.f. Defever et al., 2013): Two different Arabic numerals
(symbolic magnitude comparison) or a numerosity of dots on one
side and an Arabic numeral on the other side (mixed magnitude
comparison) were displayed on a screen, and children had to
decide which of the shown entities was larger (right or left).
These tasks have in common that they all assess core number
competencies and incorporate very simple and basic tasks as
enumeration tasks and the comparison of magnitudes (Reeve
et al., 2012; Kuhn et al., 2017).

Complex Number Processing (CNP)
One task tests the precision of the mental number line (based on
Siegler and Booth, 2004): A number was shown on a screen and
the children had to locate this number with a computer mouse on
an unscaled number line (only the endpoints were labeled with
0 and 100). The number sets task (based on Geary et al., 2009)
was used to assess the efficiency of number processing across
presentation formats: Again, an Arabic numeral was shown at
the top of the screen. In addition, numbers and/or geometric
figures (= a number set) were shown at the bottom of the screen.
Children had to compare the sum of the elements represented
as a number set with the number above and they had to decide
whether the sum of the number set was equal to the shown
number above. Two target numbers were used (5 and 9) in
this speed test. For example, on the top of the screen a 5 (as
an Arabic numeral) was shown as the target number. At the
bottom of the screen, three geometric figures and a 1 (as an
Arabic numeral) were shown. In this example, the child had to
calculate 3 (geometric figures) + 1 (as an Arabic numeral) = 4,
and compare the 4 (the sum of the number set) to the 5 (the target
number) and check whether the number set is equal or unequal
to the target number. Transcoding tasks assessed the ability to
translate heard numbers (presented by headphones) into written
Arabic numerals. These different tasks have in common that
they assess mathematical precursor skills that require more
complex number processing (CNP; Nuerk et al., 2006; Kuhn et al.,
2017).

Frontiers in Psychology | www.frontiersin.org 5 June 2021 | Volume 12 | Article 589506

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-589506 June 15, 2021 Time: 17:43 # 6

Kißler et al. Subtypes of Dyscalculia

Calculation (CALC)
The participants had to solve tasks focusing on (1) addition, (2)
subtraction, and (3) multiplication mixed with place holder tasks.
The addition and subtraction tasks ranged from fact retrieval
(e.g., 1 + 8) to more difficult tasks (e g., 183–18). Place holder
tasks are arithmetic tasks that are not to be solved linearly from
left to right, but an element of the equation has to be determined
(e.g., 4 + × = 7; what is ×?). These tasks have in common that
they all require the skill to perform arithmetic.

Attention
In the ZAREKI-R sample, three subtests of the KITAP were
used to measure different aspects of attention (Zimmermann
et al., 2005): (1) The subtest alertness (split-half reliability of
the reaction time’s median: 0.96) tests the intensity of attention.
Children had to react as quickly as possible to a witch appearing
on a screen. (2) In the subtest sustained attention (split-half
reliability of the reaction time’s median: 0.93), a sequence
of ghosts briefly appeared in the windows of a castle and
disappeared. Children had to check whether the ghost they
saw was identical to the one seen just before. (3) The subtest
flexibility (split-half reliability of the reaction time’s median:
0.93) was used to measure selective attention, i.e., the ability
to adapt the focus of attention. The screen was split in two
and on each side an identically shaped stimulus (dragon) that
varied in color appeared (one stimulus was blue, one was green).
The target (= the color of the stimulus) changed alternately
and children had to react to where the target color appeared
(on the left/right side) as quickly and correctly as possible by
pushing a button. The standardized mean of these three attention
tests was calculated in order to obtain a score for attention.
All descriptions of the used tests to measure attention are
based on the KITAP manual (Zimmermann et al., 2005). In the
sample measured at school (HRT 1–4 as dyscalculia criterion), no
attention data could be captured as the testing procedure requires
individual settings.

Statistical Analyses
All calculations were carried out with version 4.0.0 of the
statistical software R (R Core Team, 2020). The values of all
variables were T-standardized resulting in T-scores; i.e., the
standardization sample had a mean of 50 and a standard
deviation of 10. Necessary data transformations were carried out
using the R-package dplyr (Singh and Soman, 2019).

To identify subtypes of dyscalculia, model-based clustering
(parameterized finite Gaussian mixture models) based on the
R-package mclust (Fraley et al., 2020) was performed. Each
participant of a sample was assigned to a single cluster
by calculating the probability of a person belonging to a
specific cluster based on the individual cognitive profile
(Vanbinst et al., 2015). All participants assigned to the
same cluster can be interpreted as a subgroup, and the
number of clusters corresponds to the number of subgroups
(Bouveyron et al., 2019).

The number of clusters was determined based on the Bayesian
Information Criterion (BIC; Bouveyron et al., 2019). Different
(preset) competing models that can plausibly describe cluster

structures were used to determine the number of clusters that
fits the data best: These models vary in their assumptions
regarding the geometric characteristics of the clusters as their
spatial orientation or their volume (equal vs. varying volume),
for example (Makhabel et al., 2017; Bouveyron et al., 2019; Fraley
et al., 2020). For each possible model, the BIC is calculated for
different numbers of clusters, and the lowest absolute BIC of
a model-cluster-combination suggests that this solution fits the
data best (Vanbinst et al., 2015; Bouveyron et al., 2019). Each of
the possible model-cluster-combinations was compared to other
possible model-cluster-combinations in order to find the model-
cluster-combination with the strongest evidence. Each model has
a specific identifier (e.g., “EEI”) and the clustering procedure
automatically chooses the most appropriate out of different
models. The identifier can be used to look up the characteristics of
this model in the manual of the mclust-package: For example, the
identifier EEI means that there are diagonal clusters with equal
volume and equal shape (Fraley et al., 2020). So, if a specific
model-cluster-combination of the EEI model, for example, has
the lowest absolute BIC, this means that this model-cluster-
combination is the best solution with regard to the data. As in
other studies with similar approaches (e.g., Vanbinst et al., 2015),
the results of the model-cluster-combination with the lowest
absolute BIC are presented. It makes sense to only describe and
interpret this model-cluster-combination, since all other model-
cluster-combinations fit the empirical data less well and therefore
there is no convincing evidence for these other solutions.

To check whether the subgroup-solution of the clustering
process is robust, two different ways of clustering were used.
First, a clustering was carried out at the construct level
as described before [intelligence, reading fluency, working
memory, Basic numerical processing (BNP), Complex number
processing (CNP), Calculation (CALC), and Attention]. Further,
another model-based clustering used data at the subtest level
(variables: intelligence, reading fluency, matrix span, verbal
span, enumeration, symbolic magnitude comparison, mixed
magnitude comparison, number line, number sets, transcoding,
addition, subtraction, multiplication mixed with place holder
tasks, attention). If both clustering approaches lead to similar or
identical solutions, this is an indication for the validity of the
superordinate constructs and for the robustness of the results
across levels of measurement.

The resulting subgroups of the best-fitting model were then
compared with regard to each construct/subtest used to cluster
these subgroups. These comparisons were based on using
frequentist and Bayesian t-tests to check the differences and
similarities of the subgroups in detail. The significance level for
the frequentist t-tests was adjusted by the sequentially rejective
Bonferroni test to prevent the alpha error from accumulating
(Holm, 1979), and Cohen’s d as an effect size for between-
group differences was computed with the R-package lsr (Navarro,
2015). Bayesian t-tests were carried out to check the robustness
of the frequentist results: Both approaches can lead to different
conclusions, but if the results of frequentist analyses and the
results of Bayesian analyses point to the same direction, they can
be rated as robust (Lindley, 1957; Sprenger, 2013; Wagenmakers
et al., 2018). In contrast to frequentist statistics, Bayesian methods
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(e.g., Bayesian t-tests) cannot only unravel whether there is
evidence for a difference between groups, but also verify that
there is evidence for equality of the analyzed groups (Rouder
et al., 2012; Wagenmakers et al., 2018). Bayesian analyses
were conducted with the R-package BayesFactor (Morey et al.,
2018). An important difference between frequentist and Bayesian
statistics is that Bayesian statistics do not provide p-values, but
Bayes Factors (BF). A BF lower than 0.33 suggests moderate
evidence for the null hypothesis, a BF lower than 0.10 suggests
strong evidence for the null hypothesis and a BF lower than
0.033 suggests very strong evidence for the null hypothesis;
the other way round, a BF above three suggests moderate
evidence for the alternative hypothesis, a BF above 10 suggests
strong evidence for the alternative hypothesis and a BF above
30 suggests very strong evidence for the alternative hypothesis
(Wagenmakers et al., 2018).

In addition, repeated-measures ANOVAs were calculated to
check whether there was a main effect of subgroup (between-
group factor), i.e., a mean difference across constructs/subtests
between the assumed subtypes (Bulut and Desjardins, 2018;
Bulut and Desjardins, 2020). Further, we also checked whether
there was a main effect of test (within-group factor), i.e.,
whether mean performance across constructs/subtests varied
independently of subgroups (within groups: intelligence, reading
fluency, working memory, BNP, CNP, calculation, and attention).
Most importantly, we investigated interaction effects to check
whether the identified subgroups differed disproportionately
with regard to each different construct/subtest. If subgroups
differ disproportionately, profile lines of the subgroups do not
run in parallel. Parallelism was additionally tested using profile
analysis based on the R package profileR (Bulut and Desjardins,
2018, 2020). Necessary data set modifications were done by
using the R-package reshape2 (Wickham, 2020) and ANOVAs
as well as effect sizes for ANOVAs – generalized eta squared
(η2

G; Bakeman, 2005) – were computed with the R-package ez
(Lawrence, 2016).

As already indicated, it was checked whether relative
frequency of children with dyscalculia and a comorbid reading
disorder differed across subtypes. To test this, χ2-tests were
conducted with the categorical variables (1) reading disorder
(yes/no) and (2) subtype. If the prerequisites for χ2-tests (i.e.,
sufficient cell sample sizes) were not met, Fisher’s exact test for
count data was conducted.

Missing data can significantly influence and distort the results
of statistical analyses. Therefore, a two-step approach was used
here. In a first step, only complete data sets (data of children
with no missing data) were analyzed. In this case, the ZAREKI-
R sample consisted of 93 children (26 children with a comorbid
reading disorder) and the HRT sample consisted of 67 children
(38 children with a comorbid reading disorder). In a second step,
the function imputeData from the R-package mclust (Fraley et al.,
2020) was used to impute missing data, and the most important
calculations were repeated to check the robustness of the results.
Because added data vary as a function of random start points,
it is strongly recommended to compute multiple imputations
(Fraley et al., 2012). To check if the results were robust across
imputations, central calculations were rerun with imputed data

sets generated with three random seeds (3; 3,000; 3,000,000)
(Fraley et al., 2012). If all results point into the same direction,
the results can be interpreted as robust.

RESULTS

In all cases (ZAREKI-R sample and HRT sample; analyses
on construct level and on subtest level; with and without
imputation), mixture model analyses consistently suggested that
there were two subgroups of CwD. The EEI-model (cluster
characteristics: two diagonal clusters with equal volume and equal
shape; Fraley et al., 2020, p. 105) was the model that described the
data best in both samples (ZAREKI-R and HRT; each without
imputations and clustered by constructs). The absolute BIC of
the ZAREKI-R sample (without imputation and with analyses
on construct level) was 4,390 and the absolute BIC of the HRT
sample (without imputation and with analyses on construct level)
was 2,851. The results described in the following are based on
complete data sets at the construct level. If deviations occurred in
alternative calculations (with imputed data or at the subtest level),
these deviations are reported.

For both resulting subgroups of the ZAREKI-R sample,
the results of descriptive analyses (mean, standard deviation,
skewness, kurtosis, minimum, and maximum) for complete data
sets (construct level) are shown in Table 1. The results of
descriptive analyses of the HRT sample for complete data sets
(construct level) are shown in Table 2. To check the robustness
of the results, the clustering processes were carried out again
at the level of subtests: The results of the descriptive analyses
for the resulting subgroups are shown in Table 3 (ZAREKI-
R sample, complete data sets) and Table 4 (HRT sample,
complete data sets).

Mean comparisons of the two identified subgroups for
complete data sets are shown in Table 5 (construct level) and
Table 6 (subtest level). In each sample, there was one subgroup
(named: subgroup 2) that almost always reached lower test scores
(means) in comparison to the other subgroup (named: subgroup
1). Differences between the two subgroups were very small for
some measures (e.g., for BNP in the HRT sample or for working
memory in both samples), and significantly large for others
(e.g., CNP and CALC in both samples). The descriptive analyses
therefore suggest that the profiles of the subgroups differed, and
that the distinctiveness of subgroups’ profiles varied between
cognitive measures.

This was tested by ANOVA, showing for the HRT sample
that (a) there was a significant main effect of the factor
subgroup, F(1,65) = 37.84, p < 0.001, η2

G = 0.10; (b) there
was a significant main effect for the different constructs,
F(5,325) = 15.92, p < 0.001, η2

G = 0.16; (c) there was a significant
interaction effect for subgroups and constructs, F(5,325) = 5.08,
p < 0.001, η2

G = 0.06. The profile analysis confirmed these
results, providing evidence against parallelism of the subgroups‘
profiles, F(5,61) = 8.54, p< 0.001.

In line with these findings, an ANOVA for the ZAREKI-R
sample also showed (a) a significant main effect for subgroups,
F(1,91) = 77.03, p < 0.001, η2

G = 0.13; (b) a significant
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main effect for the different constructs, F(6,546) = 6.04,
p < 0.001, η2

G = 0.05; (c) a significant interaction effect
for subgroups and constructs, F(6,546) = 3.96, p < 0.001,
η2

G = 0.03. Again, profile analysis indicated that there was
no parallelism of the subgroups’ profiles, F(6,86) = 7.12,
p < 0.001. The next paragraphs describe these profile
differences in more detail.

Intelligence
Means for intelligence in subgroup 1 were higher than means
for intelligence in subgroup 2 across samples and for all ways of
clustering. This difference was significant in the main analyses
if the subgroups were clustered at the construct level (Table 5),
but not robust in all t-tests with imputations. In some cases, the
results of Bayesian analyses did not confirm the significant results

TABLE 1 | Descriptive statistics of the ZAREKI-R sample—clustered by constructs.

Subgroup 1 (n = 27) Subgroup 2 (n = 66)

M SD Skewness Kurtosis Min. Max. M SD Skewness Kurtosis Min. Max.

Intelligence 48.24 6.09 0.32 1.76 39.17 58.33 45.34 6.01 0.02 2.41 30.83 58.33

Reading fluency 45.80 11.08 0.15 2.25 24.67 68.00 41.51 9.59 0.54 4.01 21.33 72.00

Working Memory 47.30 5.77 0.32 2.48 37.50 60.50 45.87 4.92 0.20 3.61 33.00 59.50

Basic numerical processing 50.89 7.73 0.40 2.94 36.00 67.00 43.38 6.76 0.31 2.92 29.00 60.00

Complex number processing 47.41 5.06 −0.11 1.73 38.00 55.00 40.64 4.83 −0.24 2.56 30.00 51.00

Calculation 47.48 4.11 0.02 3.91 37.00 58.00 37.30 3.95 0.11 2.30 30.00 46.00

Attention 47.53 7.22 −0.15 1.74 34.67 57.67 41.55 7.48 −0.06 2.45 22.33 58.00

All variables are T-standardized (mean = 50, SD = 10).

TABLE 2 | Descriptive statistics of the HRT sample—clustered by constructs.

Subgroup 1 (n = 39) Subgroup 2 (n = 28)

M SD Skewness Kurtosis Min. Max. M SD Skewness Kurtosis Min. Max.

Intelligence 47.35 9.32 0.32 2.48 31.33 67.00 42.17 6.68 −0.05 2.61 30.00 55.33

Reading fluency 38.17 9.97 0.15 2.32 20.00 60.00 33.79 10.24 0.67 2.76 18.67 58.00

Working Memory 45.28 9.12 0.21 2.13 32.00 65.00 43.82 8.33 0.14 2.74 26.00 60.00

Basic numerical processing 46.33 8.37 0.64 3.64 31.00 72.00 46.11 9.08 −0.03 2.55 28.00 65.00

Complex number processing 48.03 4.05 0.11 2.79 39.00 58.00 36.79 4.23 −0.29 2.66 28.00 44.00

Calculation 44.77 4.42 0.04 2.06 37.00 53.00 35.82 4.23 −0.13 3.62 26.00 46.00

All variables are T-standardized (mean = 50, SD = 10).

TABLE 3 | Descriptive statistics of the ZAREKI-R sample–clustered by subtests.

Subgroup 1 (n = 26) Subgroup 2 (n = 60)

M SD Skewness Kurtosis Mix. Max. M SD Skewness Kurtosis Min. Max.

Intelligence 46.99 6.36 0.47 2.00 38.33 58.33 45.72 5.88 0.08 2.58 30.83 58.33

Reading fluency 45.49 10.32 0.51 2.37 28.67 68.00 40.88 9.37 0.36 4.03 21.33 72.00

Matrix span 46.23 8.82 0.14 2.38 33.00 65.00 45.87 7.13 0.02 2.77 30.00 61.00

Verbal span 48.54 5.43 0.50 2.71 41.00 61.00 45.98 6.32 0.97 3.97 36.00 67.00

Dot enumeration 51.35 10.83 0.52 2.70 33.00 75.00 42.22 8.53 −0.20 3.12 22.00 65.00

Symbolic magnitude comparison 50.15 9.56 0.10 2.11 35.00 68.00 43.77 11.96 0.31 2.40 22.00 69.00

Mixed magnitude comparison 51.77 13.14 0.12 2.15 31.00 75.00 44.02 10.95 0.16 2.56 22.00 71.00

Transcoding 46.73 8.30 −0.38 1.65 32.00 58.00 41.03 9.14 −0.04 1.84 22.00 54.00

Number sets 47.35 8.67 0.49 2.99 32.00 68.00 41.02 6.30 0.18 2.68 28.00 57.00

Number line 48.00 5.58 −0.36 2.06 37.00 57.00 40.30 7.63 0.41 3.48 23.00 63.00

Addition 48.35 6.39 0.42 2.31 39.00 61.00 36.47 4.73 −0.27 2.86 24.00 46.00

Subtraction 44.96 4.89 0.31 2.91 37.00 57.00 37.27 6.20 0.52 2.28 26.00 49.00

Multiplication mixed with place holder tasks 48.62 7.51 −0.10 2.96 33.00 65.00 38.35 7.04 0.13 2.35 25.00 53.00

Attention 47.24 7.53 −0.29 2.00 32.00 57.67 41.68 7.76 −0.04 2.42 22.33 58.00

All variables are T-standardized (mean = 50, SD = 10).
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TABLE 4 | Descriptive statistics of the HRT 1-4 sample—clustered by subtests.

Subgroup 1 (n = 43) Subgroup 2 (n = 24)

M SD Skewness Kurtosis Min. Max. M SD Skewness Kurtosis Min. Max.

Intelligence 46.40 9.45 0.39 2.53 30.00 67.00 43.01 6.63 −0.16 2.61 30.00 55.33

Reading fluency 38.03 10.20 0.05 2.16 20.00 60.00 33.31 9.80 0.92 3.60 18.67 58.00

Matrix span 45.07 9.08 0.24 2.10 32.00 65.00 43.96 8.30 0.08 2.93 26.00 60.00

Dot enumeration 46.70 11.31 0.65 3.18 22.00 74.00 42.25 9.66 −0.03 1.88 27.00 58.00

Symbolic magnitude comparison 47.58 11.90 0.74 2.79 29.00 75.00 44.63 12.46 −0.02 2.12 22.00 65.00

Mixed magnitude comparison 46.88 12.44 0.40 2.86 22.00 75.00 47.42 11.50 0.03 2.11 26.00 69.00

Transcoding 49.91 5.72 −0.58 2.16 40.00 58.00 34.63 6.21 −0.11 2.13 22.00 44.00

Number sets 44.56 7.18 0.11 2.74 29.00 60.00 37.96 6.08 −0.13 2.11 26.00 49.00

Number line 48.00 8.12 0.57 2.85 36.00 69.00 35.75 4.61 0.96 4.19 29.00 49.00

Addition 44.70 6.70 0.58 2.90 34.00 60.00 35.04 6.54 0.30 2.97 24.00 51.00

Subtraction 43.07 6.39 0.79 4.62 30.00 65.00 34.67 5.35 −0.33 2.17 26.00 43.00

Multiplication mixed with place holder tasks 45.28 7.78 0.29 2.85 30.00 64.00 35.46 5.64 −0.52 2.81 24.00 45.00

All variables are T-standardized (mean = 50, SD = 10).

TABLE 5 | Subgroup mean comparison—clustered by constructs.

ZAREKI-R HRT 1–4

t-test Cohen’s d BF t-test Cohen’s d BF

Intelligence 2.10* 0.48 1.57 2.65* 0.62 3.48

Reading fluency 1.87 0.43 1.07 1.76 0.43 0.93

Working memory 1.20 0.28 0.44 0.67 0.17 0.31

Basic numerical processing 4.66*** 1.07 1589.59 0.11 0.03 0.25

Complex number processing 6.06*** 1.38 3.28×105 11.00*** 2.73 2.15×1013

Calculation 11.16*** 2.55 3.19×1015 8.32*** 2.06 7.63×108

Attention 3.54*** 0.81 43.98 − − −

Interpretation of p-values: p < 0.05*, p < 0.01**, p < 0.001*** the significance level was adjusted by the sequentially rejective Bonferroni test to prevent the alpha error
from accumulating (Holm, 1979); interpretation of BFs (Wagenmakers et al., 2018): BF < 0.33 (moderate evidence for the null hypothesis), BF < .10 (strong evidence for
the null hypothesis), BF < 0.033 (very strong evidence for the null hypothesis), BF > 3 (moderate evidence for the alternative hypothesis), BF > 10 (strong evidence for
the alternative hypothesis), BF > 30 (very strong evidence for the alternative hypothesis).

of the frequentist analyses, e.g., ZAREKI-R without imputations
(Table 5): t(91) = 2.10, p < 0.05, but BF = 1.57. Differences in
intelligence were not significant if the subgroups were clustered
at the subtest level (Table 6). Overall, the data suggest a very small
difference between subgroups in terms of their language-free
intelligence (subgroup 1> subgroup 2).

Reading Fluency
Although means in subgroup 1 were generally higher than
means in subgroup 2, there was no clear statistical evidence
for differences between subgroups. In the ZAREKI-R sample,
there was a significant difference between the two subgroups
if imputations were used [seed = 3,000,000; t(101) = 2.53,
p < 0.05, BF = 3.52], but this difference was not robust.
Overall, subgroup differences seemed to be very small and mostly
insignificant, but there was also no clear Bayesian evidence for the
groups being equal.

Working Memory
Working memory differences between subgroups were very
small—both at construct level and at the subtest level: The t-tests

were not significant and the BFs were below 1. So, there was no
evidence for a difference between these two groups with regard to
working memory and there was even moderate evidence for the
null hypothesis, i.e., equality of subgroups (HRT sample without
imputations: BF = 0.31). In the HRT sample, only the matrix span
task was used to assess working memory and these results were
identical if the subgroups were clustered by subtests (Table 6): In
many cases, there was even moderate evidence for the subgroups
being equal because BFs were below 0.33. It should be kept in
mind here that in the ZAREKI-R sample, two different tests for
assessing working memory were used: matrix span and verbal
span (cf. section “Working Memory”). If the subgroups were
clustered by subtests, there were significant differences (based on
imputed data), but these differences were not robust.

Mathematical Skills
The two subgroups in both samples differed very strongly in their
mathematical skills; especially for CALC and CNP, very strong
and robust evidence for a difference was found. In addition, a
significant difference between the two subgroups occurred in the
ZAREKI-R sample for BNP, t(91) = 4.66, p< 0.001, BF = 1589.59.
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TABLE 6 | Subgroup mean comparison—clustered by subtests.

ZAREKI-R HRT 1–4

t-test Cohen’s d BF t-test Cohen’s d BF

Intelligence 0.89 0.21 0.34 1.55 0.39 0.71

Reading fluency 2.03* 0.48 1.40 1.84 0.47 1.07

Matrix span 0.20 0.05 0.25 0.49 0.13 0.29

Verbal span 1.79 0.42 0.95 − − −

Dot enumeration 4.19*** 0.98 306.95 1.62 0.41 0.78

Symbolic magnitude comparison 2.41 0.57 2.81 0.96 0.24 0.38

Mixed magnitude comparison 2.84* 0.67 7.09 −0.17 0.04 0.26

Transcoding 2.73* 0.64 5.53 10.17*** 2.59 9.11×1011

Number sets 3.80** 0.89 92.25 3.80** 0.97 81.06

Number line 4.63*** 1.09 1307.06 7.88*** 1.73 2.12×106

Addition 9.58*** 2.25 1.05×1012 5.71*** 1.45 3.86×104

Subtraction 5.61*** 1.32 4.69×104 5.46*** 1.39 1.62×104

Multiplication mixed with place holder tasks 6.09*** 1.43 3.07×105 5.43*** 1.38 1.45×104

Attention 3.08* 0.72 12.77 − − −

Interpretation of p-values: p < 0.05*, p < 0.01**, p < 0.001***; the significance level was adjusted by the sequentially rejective Bonferroni test to prevent the alpha error
from accumulating (Holm, 1979); interpretation of BFs (Wagenmakers et al., 2018): BF < 0.33 (moderate evidence for the null hypothesis), BF < 0.10 (strong evidence
for the null hypothesis), BF < 0.033 (very strong evidence for the null hypothesis), BF > 3 (moderate evidence for the alternative hypothesis), BF > 10 (strong evidence
for the alternative hypothesis), BF > 30 (very strong evidence for the alternative hypothesis).

However, there was no such difference in the HRT sample,
t(65) = 0.11, p = 0.92, BF = 0.25. The results were robust. Of all
constructs or subtests, subgroups differed most strongly in terms
of their mathematical skills.

Attention
Attention was only assessed in the ZAREKI-R sample, and the
scores for attention were higher in subgroup 1 than in subgroup
2. There was a significant difference between the two subgroups
in this sample if clustered by constructs, t(91) = 3.54, p < 0.001,
BF = 43.98. If clustered by subtests, this difference was significant
as well, t(84) = 3.08, p < 0.05, BF = 12.77. These results were
robust if imputations were used. There was clear evidence for a
difference between the subgroups, but this difference was not as
pronounced as for the mathematical skills (CALC and CNP).

Comorbid Reading Disorder
χ2-tests (for complete data sets at the construct level) showed
no significant associations between reading disorder (PR < 10)
and the identified subtypes (HRT: χ2 = 0.66, p = 0.42; ZAREKI-
R: χ2 < 0.01, p = 0.98). For alternative calculations (e.g.,
analyses at the subtest level), the results were almost identical and
therefore robust.

Comorbid Low Intelligence
Overall, the model-based clustering revealed a slightly impaired
subgroup on the one side (subgroup 1) and a severely impaired
subgroup on the other side (subgroup 2) in CwD (mathematical
abilities: PR < 10). The fact that subgroup 2 showed lower
performance in nearly all areas might lead to the assumption
that this might be due to a substantial proportion of children
with low intelligence (PR < 10) in this subgroup. However, in
the ZAREKI-R sample, Fisher’s exact test for count data did

not suggest a systematic dependency between low intelligence
and subgroup affiliation, p = 0.32. In the HRT sample, there
again was no systematic dependency between low intelligence
and subgroup affiliation, χ2 = 0.36, p = 0.55. Results appeared
robust across alternative calculations.

Comorbid Attention Deficits
There was a significant difference in attention between the two
subgroups in the ZAREKI-R sample (subgroup 1 > subgroup 2).
In fact, 22 of 66 children of subgroup 2 and only 3 of 27 children
of subgroup 1 displayed deficits in attention (PR < 10). Fisher’s
exact test for count data suggested a systematic dependency
between attention deficits and subgroup affiliation (p = 0.038).
Again, alternative calculations provided similar results and were
therefore robust.

DISCUSSION

In contrast to many other studies with data-driven designs
(e.g., Bartelet et al., 2014; Chan and Wong, 2020), no large
number of subtypes in CwD was identified in this methodically
advanced study. Two subgroups of children with dyscalculia
were consistently found, and this result was robust regardless of
whether (a) only complete data sets or imputed data sets were
used, (b) the clustering was carried out at the level of subtests
(e.g., dot enumeration, magnitude comparison) or aggregated
constructs (e.g., basic numerical processing) or (c) different
dyscalculia assessments were used (HRT 1–4 or ZAREKI-R). In
addition, the number of subgroups was not affected by taking the
construct of attention into account (only assessed in the ZAREKI-
R sample). Although not a complete multiverse analysis (Steegen
et al., 2016), the results suggest very convincingly that there are
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two subtypes of CwD: a slightly impaired subtype (subgroup 1)
and a severely impaired group (subgroup 2).

The results of this study underline that different study designs
and clustering methods can come to different results. However,
this does not necessarily imply that other ways to cluster CwD
are misguided: Of course, the formation of subtypes is always a
generalization and therefore just a heuristic to facilitate practical
decision-making. It must always be weighed to which extent
individualization or generalization serves a specific purpose.
Furthermore, subtypes from data-based studies depend on the
sample, assessments, and constructs under investigation. Hence,
results of the present study may differ from other studies (e.g.,
Bartelet et al., 2014; Chan and Wong, 2020) because only
children with very poor mathematical performance (PR < 10)
were examined here, and children at risk of dyscalculia (PR
between 10 and 25) were excluded. However, children at risk of
dyscalculia may display very heterogeneous deficits, and hence,
excluding this group may explain the comparably small number
of subgroups in our study. Further, the relatively small sample
size for a mixture model analysis may be regarded as a key
limitation—more subgroups might have emerged in the case
of larger sample sizes of CwD, which, however, are resource-
intensive to obtain.

Results of the ZAREKI-R sample differed from the HRT
sample in one aspect: There was a large difference in basic
numerical processing between the two subgroups in the ZAREKI-
R sample, but there was no such difference in the HRT sample.
This could be a bias due to the different focus of these diagnostic
tests: The HRT 1–4 mainly tests the ability to calculate and
arithmetic skills, but the HRT 1–4 does not strongly focus
on BNP, whereas the ZAREKI-R does. Nevertheless, the two
subgroups – regardless of the diagnostic test – showed large
differences in calculation and complex number processing. All
in all, subgroups differed in particular in the extent to which
their mathematical skills were impaired. The fact that CwD can
be divided into subgroups based on the severity of impairments
is in line with other studies that have also distinguished
children with mathematical deficits into subgroups based on their
mathematical skills (e.g., Skagerlund and Träff, 2016).

The results of this study suggest that working memory (in
particular if measured with a matrix span task that is combined
with a distracting task) and reading fluency do not appear to be
helpful to characterize different subtypes. The result that reading
ability seems to be of no importance for the characterization of
subgroups contradicts some prior findings of subtyping CwD
(e.g., Ozols and Rourke, 1988; Rourke, 1993). This result also
seems to contradict the fact that dyscalculic children with
comorbid reading disorders are usually more impaired than
children with isolated dyscalculia (e.g., Kißler et al., 2021). Hence,
finding a more impaired subtype of CwD with comorbid reading
disorders would have been plausible. However, our analysis
strategy did not provide results that support the view that reading
difficulties co-occur with more severe mathematical difficulties,
possibly due to the relatively strict criterion for identifying
children with dyscalculia in this study (PR < 10), which results
in lower comorbidity rates between dyscalculia and reading
disorders (Moll et al., 2014). Even though our analyzes could

not find a subtype that is characterized by comorbid reading
disorders, remedial teaching should nevertheless be individually
tailored to the respective child and the child’s needs.

In this study, intelligence seems barely relevant to subtype
CwD–in contrast to the findings of Bartelet et al. (2014), for
example. Overall, we found a slightly impaired subtype (subgroup
1) as well as a severely impaired subtype (subgroup 2) in CwD,
and the intelligence of subtype 2 tends to be slightly lower. Even
if there seems to be a small difference in terms of intelligence
between the subtypes, no significant accumulation of children
with an IQ below 80 (PR < 10) in subtype 2 could be found.
Nevertheless, the fact that the children in subtype 2 showed a
generally lower cognitive profile could be partly linked to a lower
intelligence. Overall, in this study, intelligence seemed to be less
relevant in the formation of subgroups compared to attention
and math skills themselves—this supports the assumption that
the intelligence discrepancy criterion should be of secondary
importance (e.g., Ehlert et al., 2012; Kuhn et al., 2013).

In the ZAREKI-R sample, there was strong evidence that
attention matters: Subgroup 2 was severely impaired in attention.
Due to the study design, it is unclear whether this finding
depends on the selected test method (ZAREKI-R) and setting
(individual administration at university) or whether this is
a general characteristic. However, comorbidity in terms of
attention deficits appears to be relevant in the characterization
of subtypes in CwD: There seems to be one subtype of CwD that
does not only display major difficulties in mathematics but is also
characterized by considerable deficits in attention. Because this
result was only obtained in one of the two subsamples analyzed
here, more research is needed to replicate this result.

The fact that the subtypes differ most strongly in terms of
their mathematical skills means that among CwD (PR < 10),
there is one group of children that is even more strongly
impaired. There is no subtype that is characterized in particular
by comorbid deficits in single non-mathematical abilities (e.g.,
working memory or reading skills). Rather, the subtypes tend
to differ in more than one area (but in particular in different
mathematical abilities and in attention at once), meaning that
comorbidity is still a relevant issue when talking about subtypes
in dyscalculia. Overall, the existence of subtype 2 allows the
conclusion that attention problems are present in children with
severe impairments in their mathematical abilities.

The results of this data-driven study suggest that the existence
of two subtypes is robust and plausible. From a practical point
of view, a two-subtype-solution can be useful for educational
decision-making: Even though each child with dyscalculia needs
specific intervention approaches and materials tailored to its
individual needs, this two-subtype solution could be the basis for
the development of different educational materials taking into
account the two broad subtypes that were found in this study.
Specifically, when planning interventions to foster CwD, it is
important to have in mind that some of these children have
substantial attention problems. In further studies, it should be
examined whether interventions to improve attention, or taking
attention deficits systematically into account during intervention,
could lead to an improvement in mathematical skills in this
subtype. In the research field of training programs, there are
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first approaches that try to take the comorbidity of reading
disorders and attention disorders into account (Koenigs et al.,
2019). Similar approaches for CwD would make sense in light
of the results of this study. For educational practice, this means
that math teachers should be made aware that children with
the biggest problems in mathematics tend to have problems in
attention too—and these children may have to be separately
addressed. However, recent research (von Wirth et al., 2021)
suggests that attention deficits in children with ADHD do not
substantially affect basic numerical processing, and that ADHD
in children with dyscalculia does not substantially deteriorate
mathematical deficits. Therefore, further research is needed to
illuminate the role of attention and attention deficits in children
with dyscalculia.
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