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Abstract: Due to the rapid increase in population, the use of automobile vehicles increases day
by day, which causes a considerable increase in the waste tires produced worldwide. Research
studies are in progress to utilize scrap tires and waste rubber material in several fields to cater
the pollution problems in a sustainable and environmentally friendly manner. In this research,
the shredded waste tires were used in concrete to replace fine aggregates in different percentages.
The fine aggregates in the rubberized concrete were replaced 10%, 15%, and 20% by rubber. The
stress–strain behavior of the concrete models is then determined and compared with the already
established analytical models, i.e., Modified Kent and Park Model, Mander’s model, and Razvi
and Saatcioglu Model. A total of 12 standard concrete cylinders and 18 models of each type of
concrete, i.e., normal concrete, reinforced rubberized concrete with 10%, 15%, and 20% addition of
rubber, were fabricated. Specimens fabricated in each replacement of rubber were laterally confined,
employing 3 in (76 mm) and 6 in (152 mm) c/c tie spacing. The model and cylinders were subjected
to uni-axial compression tests using Universal Testing Machine (UTM). The drop in compressive
strength, stress–strain constitutive law, strain limits, and overall behavior of the rubberized reinforced
concrete were explored experimentally. The results were then compared with the analytical results of
the established models. The research can help explore the possible future for the use of rubberized
concrete for the potential application as a structural material.

Keywords: rubberized reinforced concrete; stress–strain curve; stiffness; ductility; compression strength

1. Introduction

Automobile industries are increasing continuously due to rapid increase in the usage
of vehicles worldwide. Many waste tires are producing day by day, which causes a
considerable increase in environmental pollution and proves to be great pressure on the
present solid waste management system. So, disposal of waste rubber is most necessary
to minimize and reduce the associated problems globally. The disposal rate is different
in different countries; the USA discard about 1.1 million tires per person per year, while
Australia disposes of 48 million tires every year. About 37 million tires are produced in
England, while 200,000 tons of scrap rubber are discarded in Malaysia per year. There
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is no reliable data available in Pakistan regarding the production and disposal rate of
waster rubber [1–4]. Due to the non-decomposable and undissolvable nature of the waste
rubber, there is no proper way for its disposal and hence considered the main factor
for environmental pollution. Furthermore, due to the rapid depletion of dumping sites’
availability, fire potential, and health hazards, landfilling tires are not acceptable by the
local authorities and the government [5–7]. To counter the potential hazards of rubber,
one way is to use the crumb rubber in concrete production called rubberized concrete. So,
this will cause a considerable increase in the economy and help reduce the environmental
impacts of these wastes while saving natural resources. Rubberized concrete (RC) is a type
of concrete that employs crumb rubber from already used or disposed of tires as a partial
replacement of natural aggregates. Rubberized concrete has many advantages; it provides
good workability, durability, and a smaller unit weight to the concrete mix and possesses
better aesthetics. ASTM D6270 has mentioned the properties of shredded waste tires and
can be used in civil engineering construction [8–11].

At the material level, the authors performed research using rubber as an alternative
to natural aggregates in concrete and found rubberized aggregate concrete’s tensile and
compressive properties. It was concluded that replacing coarse aggregates entirely with
chip rubber causes a 50% decrease in tensile and 85% decrease in compressive strength
of concrete. Similarly, complete replacement of fine aggregates posted a 65% decrease in
compressive strength and a 50% decrease in tensile strength of concrete. Later on, it was
explored that the workability of rubberized concrete is quite adequate, but its unit weight
is measurably less than that of plain concrete [8,12]. Researchers worked on the thermal
properties of rubberized concrete using the hotbox technique, using 5%, 10%, and 15%
of scrap rubber as volume replacement of coarse aggregate. It was observed that there is
no considerable change in concrete properties up to 5% replacement. However, beyond
5% substitution, the properties changed considerably, and a significant increase was also
noticed in the thermal behavior [4]. In another study, the effects of harsh environments,
i.e., acid, sulphate attacks, and elevated temperature on 12 different batches of concrete
employing rubber crumbs. Binding materials and aggregates were replaced with ground
granulated blast furnace slag and rubber, respectively. It was concluded from the tests that
employing 5 to 20% scrap rubber caused a reduction in compressive strength and loss of
weight due to acid and sulphate attack as compared to regular concrete [13].

In recent research work, the effects of freeze-thaw process on rubberized concrete for
pavement base and sub-base materials were investigated. It was found that the resilient
modulus of rubberized aggregate concrete subjected to freeze-thaw cycles was higher
than that of control samples subjected to tests at 25 ◦C constant temperature. Therefore,
this economical and viable option of blend of RCA and rubber material can be used for
pavement base and sub-base material [14]. Authors recently investigated self-compacting
concrete by employing 2–5 mm and 5–10 mm particle size of scrap rubber via 10%, 20%,
30%, and 40% of naturally occurring aggregate by volume. Samples of eight different
mixtures were subjected to test at 7, 28, 56, and 91 days for their mechanical performance.
It was concluded from the experimental results that both the compressive and tensile
strength reduced with the increase of rubber amount and increased with the aging time,
respectively [15].

Many research studies have been carried out in rubberized aggregate concrete pro-
duction [16], where most of the research works have been carried out on the mechanical
properties of rubberized concrete mixtures. However, limited studies are available on
the structural behavior of reinforced rubberized concrete. To explore the effects of partial
substitution of rubber in concrete on the bond slippage was experimentally undertaken
in research work. Rubber percentages of 6%, 12%, 18%, and 24% as partial replacement
of fine aggregate were used to fabricate test specimens. It was concluded that the bond
strength of rubberized aggregate concrete was reduced by 20% compared to the reference
concrete. However, the residual bond stress slightly increased by about 10% [17]. Recently,
in a research work, the effects of blast loading on rubberized aggregate concrete slab were
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explored numerically. Rubberized aggregate concrete is protective structural material due
to its energy dissipation capacity. Therefore, the numerical results of the Karagozian and
Case concrete (KCC) model were compared with the experimental data. As a result, it
was concluded that the resistance to blast loading of the rubberized aggregate concrete is
enhanced [18].

The above discussion concludes that addition of crumb rubber replacing coarse ag-
gregates causes a decrease in workability, flexural strength, and split tensile strength of
concrete [19]. While investigating its durability, the freezing–thawing resistance and sulfate
resistance was considerably enhanced [20–24]. It was also noticed that the ordinary concrete
was dispersed under the loads while rubberized concrete had much deformation before
failure. This shows increased deformability, ductility, and an enhanced energy-dissipating
capacity of rubberized concrete [25–27]. This suggest that the rubberized concrete can be
used in non-load-bearing members. The negative effect of crumb rubber on mechanical
strength could be minimized and avoided by pre-treatment of the crumb rubber using
modifiers [20–24].

Limited studies are available on the structural behavior of rubberized concrete made
of replacing crumb rubber by fine aggregate. Therefore, this research investigates the effect
of replacing fine aggregate by crumb rubber investigating the stress–strain behavior of
columns. Different models regarding the investigation of stress–strain behavior of the
confined normal concrete were employed in this research for comparison. First, Kent and
Park’s model is proposed [28], which was reused in a research study to predict various
parameters and their comparison [29–32]. Modified Kent and Park Model, Mander’s
model [30,32–34], and Razvi and Saatcioglu model [35–37] were used to compare the
experimental results of this study in accordance with previous literature.

2. Methodology

In this research work, standard concrete cylinders and test specimens in reduced scale were
built; column specimens had cross-sectional dimensions of 6 in × 6 in (152 mm × 152 mm)
and 30 in (762 mm) span length, employing rubberized reinforced concrete. Natural fine
aggregates were replaced 10%, 15%, and 20% by volume via scrap rubber. The prototype of
the test specimen has a column’s cross-section of 18 in × 18 in (457 mm × 457 mm). The
focus of this study is to explore the stress–strain behavior of rubberized reinforced concrete.
The compressive strength of the rubberized and reference concrete was experimentally
explored by testing the standard concrete cylinders and stress–strain relationship of the
test specimens and compared with the available models developed for normal concrete.

3. Experimental Program
3.1. Standard Concrete Cylinder and Test Specimen

A mix ratio of 1:1.80:1.60 and water to cement ratio of 0.48 were used for casting
conventional concrete cylinders. In addition, rubberized concrete cylinders employing 10%,
15%, and 20% scrap rubber as partial replacement of sand by volume were also fabricated.
To find the behavior and relevant parameters of reinforced concrete employing rubber
crumbs, three classes: A, B, and C, were selected for casting test specimens. Table 1 shows
the specification of the test specimens.

3.2. Materials

Ordinary Portland cement, reinforcement, aggregates, crumb rubber, and mixing water
were used in this research work. Crumb rubber was used in the form of dust obtained from
retaining on sieve No. 200. The sieve analysis of coarse and fine aggregate is shown in
Tables 2 and 3, respectively. Deformed bar conforming to A615 (G 40) was used as main and
longitudinal reinforcement in the test specimen; #1 was provided as shear reinforcement
having 3 in (76 mm) and 6 in (152 mm) center-to-center spacing, while 8#2 were provided
as main longitudinal reinforcement. Ties spacing of 3 in (76 mm) c/c in the specimens
10RRC3, 15RRC3, and 20RRC3 and 6 in (152 mm) c/c in the specimens 10RRC6, 15RRC6,
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and 20RRC6 were provided. The formwork and reinforcement used during specimen
fabrication are shown in Figure 1c.

Table 1. Specimen details.

Class Specimen
ID Ties Spacing Reinforcement

(Longitudinal)
Rubber (%)
by Volume

Cross-Section
(in2)

A1 10RRC6 #1@ 6 in c/c

8 # 2

10 6 × 6A2 10RRC3 #1@ 3 in c/c
B1 15RRC6 #1@ 6 in c/c

15 6 × 6B2 15RRC3 #1@ 3 in c/c
C1 20RRC6 #1@ 6 in c/c

20 6 × 6C2 20RRC3 #1@ 3 in c/c
Note: RRC stands for Rubberized Reinforced Concrete.

Table 2. Sieve Analysis of Coarse Aggregates.

Sieve No Sieve Size
(mm)

Retained
Weight (gm)

Passing
Weight (gm)

Cumulative
Weight (gm)

%Age
Passing

3/4” 19 0 3998 0 100
1/2” 12.5 61 3937 61 98.5
3/8” 9.5 1242 2695 1303 67.4

4 4.75 1708 987 3011 24.7
Pan 987 0 3998 0.0

Table 3. Sieve Analysis of Fine Aggregates.

Sieve No Sieve Size
(mm)

Retained
Weight (gm)

Passing
Weight (gm)

Cumulative
Weight (gm)

%Age
Passing

4 4.75 0 1008 0 100.0
8 2.35 0 1008 0 100.0
16 1.18 1 1007 1 99.9
30 0.6 4 1003 5 99.5
50 0.3 34 969 39 96.1

100 0.15 856 113 895 11.2
200 0.075 103 10 998 1.0
Pan 10 0 1008 0.0

3.3. Fabrication Phase

First, the reference concrete cylinders were fabricated. Then, 10%, 15%, and 20%
rubberized concrete cylinders and specimens were fabricated in three consecutive days
and were placed in the water tank for 28 days of curing. For proper concrete placement,
a tamping rod made of steel was used while concreting in standard concrete cylinders.
However, a mechanical vibrator of a 1-inch diameter was used to remove voids and
entrapped air during the fabrication of the test specimens.

3.4. Test Specimens

For observance and clarity of cracks during the tests, specimens were whitewashed.
The concrete cylinders and specimens were then labelled as shown in Figure 1d.

A total of 12 standard concrete cylinders and eighteen test specimens were constructed
for the evaluation of mechanical properties. Figure 1a shows the long and cross-section of
the specimen. The specimen nomenclature is given such that first two digits shows percent
replaced fine aggregate by crumb rubber, RRC denotes Rubberized Reinforced Concrete
and the last digit reflect the spacing of ties in inches. For instance, column specimen 10RRC6
means RRC with 10% fine aggregate replacement by crumb rubber with ties spacing of
6 inches c/c.
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Figure 1. Models fabrication phase: (a) long and cross-section of the specimen, (b) universal testing
machine, LVDT, and data logger, (c) reinforcement and formwork of the specimen, (d) fabricated and
labeled standard concrete cylinders and test specimens.

3.5. Experimental Investigation

The experimental investigation of the models revealed the stress–strain curve of
reduced scale specimens built in reinforced concrete employing rubber crumb. The curves
were compared with the previously determined models for normal reinforced concrete
having the same mix ratio of 1:1.80:1.60 with a water to cement ratio of 0.48. The strength of
crumb rubber concrete is determined experimentally by testing the specimens with partial
replacement of fine aggregates via rubber. Variation in the behavior due to lateral ties’
spacing was also explored in this research by employing 3 in (76 mm) and 6 in (152 mm)
spacing of transverse reinforcement.

3.6. Testing Setup

The test specimens were examined experimentally under uni-axial load (monotonic
2 k/in2/min) using the Universal Testing Machine (UTM) available at the Structural
Engineering Laboratory, Civil Engineering Department, University of Engineering and
Technology Peshawar, Khyber Pakhtunkhwa, Pakistan. Two linear variable displacement
transducers (LVDTs) were placed on opposite sides of the specimen to measure average
axial deformation. Test data were recorded and transferred to the computer accordingly.
The UTM and LVDT utilized in this research study can be seen in Figure 1b.

4. Results and Discussion

Data recorded during the compression test of cylinders and models were transferred
into the computer for analysis. In addition, the results obtained for rubberized reinforced
concrete were compared with the available models for reference concrete of the same
mix ratio.

4.1. Observed Behavior and Comparison of 10RRC6 Models

It was observed in the specimens of rubberized reinforced concrete having 10% addi-
tion of rubber and tie bar having 6 in spacing, that the increase in load caused an increase in
vertical stresses, followed by failure and spalling of the cover concrete. Further increase in
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load caused the failure of core concrete and then buckling of the longitudinal reinforcement
while the tie bar remained unopened in all three specimens. The failure pattern is shown in
Figure 2a.
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curves of 10RRC6 and their comparison with the models of reference
concrete: (a) Damages and behavior of 10RRC6 specimen, (b) Comparison with Modified Kent Model,
(c) Comparison with Mander Model, (d) Comparison with Razvi Model.

The trend of the test specimens’ results was contrasted with the Modified Kent and
Park Model of corresponding normal concrete in Figure 2. It can be observed that the
strain at peak and peak strength of rubberized concrete specimens increased. However,
the relative ductility, stiffness, and ultimate strain of rubberized concrete decreased in
comparison with the Modified Kent and Park Model. Figure 2b illustrates the graphical
comparison of the test specimens’ results with the model. The test results of the specimens
were then compared with the analytical results of Mander’s Model. It can be noted that the
strain at peak, peak strength, and ultimate strain increased while the stiffness and relative
ductility decreases. Figure 2c indicates the graphical comparison of the test specimens’
results with Mander’s Model.

Similarly, the trend of the results of the specimens was finally compared with the
analytical values of the Razvi and Saatcioglu Model. Table 4 shows that the strain at
peak and peak strength increased while the relative ductility, ultimate strain, and stiffness
decreased. Figure 2d shows the graphical variation and comparison of the test specimens’
results with the model.

4.2. Observed Behavior and Comparison of 10RRC3 Models

It was noticed in the specimens of rubberized reinforced concrete having 10% addition
of rubber and tie bar employing 3 in spacing that the increase in load caused an increase in
vertical stresses, followed by failure and spalling of the cover concrete. Further increase
in load caused failure of the core concrete followed by a buckling of the longitudinal
reinforcement while the tie bar remained unopened in all three specimens of this type. The
failure pattern is shown in Figure 3a. The experimental values found from the tests of
the specimens given in Table 5 were matched with the analytical values of the Modified
Kent and Park Model. It can be concluded that the strain at peak and peak strength
increased while the stiffness, relative ductility, and ultimate strain decreased. Figure 3b
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illustrates the comparison of the test specimens’ results graphically with the model. The
experimental findings were also matched with Mander’s model. It was concluded that the
strain at peak and peak strength increased while the stiffness, ultimate strain, and relative
ductility decreased. Figure 3c graphically compares the test specimens’ results with the
Mander’s Model.

Table 4. Results of 10RRC6 specimens and their comparison with the analytical models.

Parameter 10RRC6
(Average) MKM

%
Difference
w.r.t MKM

MM
%

Difference
w.r.t MM

RM
%

Difference
w.r.t RM

Peak Strength (ksi) 3.38 3.15 (+) 07.30 3.14 (+) 07.64 3.19 (+) 05.95
Ultimate Strain (in/in) 0.0065 0.0069 (−) 05.79 0.0058 (+) 12.06 0.0125 (−) 48.00
Strain at Peak (in/in) 0.0035 0.002 (+) 75.00 0.0021 (+) 66.66 0.0022 (+) 59.09

Relative Ductility 1.86 3.4 (−) 45.29 2.76 (−) 32.60 5.58 (−) 66.66
Stiffness (ksi) 1396 3108 (−) 55.08 3139 (−) 55.52 3160 (−) 55.82

Where MKM = Modified Kent Model, MM = Mander Model and RM = Razvi Model.
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curves of 10RRC3 along with its comparison with various analytical
models of reference concrete: (a) Damages and behavior of 10RRC3 specimen, (b) comparison with
Modified Kent Model, (c) comparison with Mander’s Model, (d) comparison with Razvi Model.

Table 5. Results of 10RRC3 specimens and their comparison with the analytical models.

Parameter. 10RRC3
(Average) MKM

%
Difference
w.r.t MKM

MM
%

Difference
w.r.t MM

RM
%

Difference
w.r.t RM

Peak Strength (ksi) 3.65 3.2 (+) 14.06 3.27 (+) 11.62 3.24 (+) 12.65
Ultimate Strain (in/in) 0.0073 0.0081 (−) 09.87 0.0075 (−) 02.14 0.014 (−) 47.85
Strain at Peak (in/in) 0.0045 0.0021 (+) 114.28 0.0025 (+) 80.00 0.002 (+) 87.50

Relative Ductility 1.79 3.94 (−) 54.56 2.98 (−) 39.93 5.76 (−) 68.92
Stiffness (ksi) 1628 3292 (−) 50.54 3150 (−) 48.31 3171 (−) 48.65

Where MKM = Modified Kent Model, MM = Mander Model and RM = Razvi Model.
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Finally, the results were compared with the third model, i.e., Razvi and Saatcioglu
Model. The strain at peak and peak strength increased while the relative ductility, stiffness,
and ultimate strain decreased. Graphical comparison and variation of the test specimens
results are shown in Figure 3d.

Comparison of 10RRC6 and 10RRC3 Specimens

Table 6 shows the average experimental values of 10RRC6 and 10RRC3 specimens. It
is evident that the stiffness and peak strength of 10RRC3 increased by 16.62% and 7.9%
in contrast to 10RRC6, respectively, due to decreasing the spacing of the ties. Similarly,
the strain at peak and ultimate strain of 10RRC3 has increased by 21.62% and 25.86%,
respectively. However, a reduction of 3.8% was found in the relative ductility of 10RRC3
compared to 10RRC6 due to the higher stiffness of the 10RRC3.

Table 6. Results of 10RRC3 and 10RRC6 specimens.

Parameter 10RRC6
Average

10RRC3
Average

% Difference
w.r.t 10RRC3

Peak Strength (ksi) 3.38 3.65 (+) 07.39
Ultimate Strain (in/in) 0.0058 0.0073 (+) 20.54
Strain at Peak (in/in) 0.0037 0.0045 (+) 17.77

Relative Ductility 1.86 1.79 (−) 03.91
Stiffness (ksi) 1396 1628 (+) 14.25

4.3. Observed Behavior and Comparison of 15RRC6 Models

It was observed in the specimens of rubberized reinforced concrete having 15% ad-
dition of rubber and tie bar of spacing 6 in (152 mm) that the increase in load caused an
increase in vertical stresses, followed by failure and spalling of the cover concrete. Further
increase in load caused the failure of core concrete followed by a buckling of the longitudi-
nal reinforcement while the tie bar remained unopened in all three specimens of this type.
The failure pattern is shown in Figure 4a. The average results of 15RRC6 specimens were
compared with the analytical model, i.e., Modified Kent and Park Model. Figure 4 shows
that the strain at peak and peak strength increased while the relative ductility, stiffness,
and ultimate strain decreased. Graphical variation and comparison of the test specimens’
results can be seen in Figure 4b. Likewise, the results were compared with the second
model of corresponding normal concrete, i.e., Mander’s Model. Table 7 shows that the
strain at peak and peak strength increased while the stiffness, ultimate strain, and relative
ductility decreased. Graphical variation and comparison of the test specimens’ results with
the model are shown in Figure 4c.

Similarly, test results of 15RRC6 specimens and those of the analytical model, given in
Table 7, were also compared. Again, strain at peak and peak strength increased while the rel-
ative ductility, stiffness, and ultimate strain decreased compared to the Razvi and Saatcioglu
Model. Figure 4d shows the graphical comparison of the test specimens’ results Model.

4.4. Observed Behavior and Comparison of 15RRC3 Models

It was found in the specimens of rubberized reinforced concrete having 15% of rubber
and tie bar of spacing 3 in (76 mm), that the increase in load causes an increase in vertical
stresses, followed by failure and spalling of the cover concrete. Further increase in load
causes the failure of core concrete followed by a buckling of the longitudinal reinforcement
while the tie bar remained unopened in all three specimens of this type. The failure pattern
is shown in Figure 5a. The experimental results of the specimens and the analytical model
results are shown in Figure 5. The strain at peak and peak strength increased while the
relative ductility, stiffness, and ultimate strain decreased compared to the corresponding
normal concrete model, i.e., Modified Kent and Park Model. Results of the specimens and
their comparison with the analytical model are graphically shown in Figure 5b.
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curves of 15RRC6 along with its comparison with various analytical
models of reference concrete: (a) Damages and behavior of 15RRC6 specimen, (b) comparison with
Modified Kent Model, (c) comparison with Mander Model, (d) comparison with Razvi Model.

Table 7. Results of 15RRC6 specimens and their comparison with the analytical models.

Parameter 15RRC6
(Average) MKM % Variation

w.r.t MKM MM % Variation
w.r.t MM RM % Variation

w.r.t RM

Peak Strength (ksi) 3.12 2.92 (+) 06.84 2.92 (+) 04.45 2.92 (+) 07.87
Ultimate Strain (in/in) 0.0058 0.0074 (−) 21.62 0.0074 (−) 29.72 0.0074 (−) 14.86
Strain at Peak (in/in) 0.0037 0.002 (+) 85.00 0.002 (+) 70.00 0.002 (+) 60.00

Relative Ductility 1.59 3.65 (−) 56.43 3.65 (−) 58.08 3.65 (−) 46.30
Stiffness (ksi) 1098 2874 (−) 61.79 2874 (−) 64.40 2874 (−) 61.16

Where MKM = Modified Kent Model, MM = Mander Model and RM = Razvi Model.
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curves of 15RRC3 along with its comparison with various analytical
models of reference concrete: (a) Damages and behavior of 15RRC3 specimen, (b) Comparison with
Modified Kent Model, (c) Comparison with Mander Model, (d) Comparison with Razvi Model.
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The specimens’ results were also compared with the second model, i.e., Mander’s
Model for normal concrete. Strain at peak and peak strength increased while the relative
ductility, stiffness, and ultimate strain decrease. Figure 5c shows the graphical comparison
of the test specimens’ results with the model. Likewise, the results of the test specimens
were matched with the 3rd model, i.e., Razvi and Saatcioglu Model. It can be seen from
Table 8 that the strain at peak and peak strength increased while the relative ductility,
stiffness, and ultimate strain decrease. Figure 5d shows the graphical comparison of the
test specimens’ results.

Table 8. Results of 15RRC3 specimens and their comparison with the analytical models.

Parameter 15RRC3
(Average) MKM % Variation

w.r.t MKM MM % Variation
w.r.t MM RM % Variation

w.r.t RM

Peak Strength (ksi) 3.22 2.96 (+) 08.78 3.02 (+) 06.62 3.17 (+) 01.57
Ultimate Strain (in/in) 0.0068 0.0086 (−) 20.93 0.0074 (−) 08.10 0.013 (−) 47.69
Strain at Peak (in/in) 0.0042 0.0021 (+) 100.00 0.0025 (+) 68.00 0.003 (+) 40.00

Relative Ductility 1.63 4.18 (−) 61.00 2.96 (−) 44.93 4.32 (−) 62.26
Stiffness (ksi) 1161 2877 (−) 59.64 3023 (−) 61.59 2891 (−) 59.84

Where MKM = Modified Kent Model, MM = Mander Model and RM = Razvi Model.

Comparison of the Behavior of 15RRC6 and 15RCC3

Experimental results from the tests of both types of specimens, i.e., 15RRC6 and
15RRC3 were also compared in Table 9. It is evident from the average values that the
stiffness and peak strength of 15RRC3 has increased by 5.74% and 3.2%, respectively, as
compared to 15RRC6. Furthermore, the strain at peak and ultimate strain of 15RRC3 has
increased by 13.51% and 17.24%, respectively.

Table 9. Results of 15RC6 and 15RCC3 specimens.

Parameter 15RRC6
(Average)

15RRC3
(Average)

% Variation
w.r.t 15RRC3

Peak Strength (ksi) 3.12 3.22 (+) 03.10
Ultimate Strain (in/in) 0.0058 0.0068 (+) 14.70
Strain at Peak (in/in) 0.0037 0.0042 (+) 11.90

Relative Ductility 1.59 1.63 (+) 02.45
Stiffness (ksi) 1098 1161 (+) 05.42

4.5. Observed Behavior and Comparison of 20RRC6 Models

It was noticed in the specimens of rubberized reinforced concrete having 20% of rubber
and tie bar of spacing 6 in (152 mm) that the increase in load causes an increase in vertical
stresses, followed by failure and spalling of the cover concrete. Further increase in load
causes the failure of core concrete followed by a buckling of the longitudinal reinforcement
while the tie bar remained unopened in all three specimens of this type. The failure pattern
is shown in Figure 6a. The average results obtained from the tests of the specimens were
matched with the results of the analytical model, i.e., Modified Kent and Park Model.
Figure 6 indicates that the strain at peak, peak strength increased while the relative ductility,
stiffness, and ultimate strain decreases. Figure 6b shows the graphical comparison of the
test specimens’ results with that of the model.
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curves of 20RRC6 along with its comparison with various analytical
models of reference concrete: (a) Damages and behavior of 20RRC6 specimen, (b) comparison with
Modified Kent Model, (c) comparison with Mander Model, (d) comparison with Razvi Model.

The results were also compared with the second model established for reference
concrete. It can be seen from Figure 6 that the strain at peak and peak strength increased
while the relative ductility, stiffness, and ultimate strain decreases in contrast to the model,
i.e., Mander’s Model. Figure 6c shows the graphical comparison of the test specimens’
results with the model. Likewise, the results of the specimens were also compared with
those of the established model, i.e., Razvi and Saatcioglu Model. It can be seen from Table 10
that the strain at peak and peak strength increased while the relative ductility, stiffness, and
ultimate strain decreasd in contrast to the model’s results. Figure 6d shows the graphical
comparison of the test specimens’ results with the model.

Table 10. Results of 20RRC6 specimens and their comparison with the analytical models.

Parameter 20RRC6
(Average) MKM % Variation

w.r.t MKM MM % Variation
w.r.t MM RM % Variation

w.r.t RM

Peak Strength (ksi) 2.32 2.22 (+) 04.50 2.22 (+) 04.50 2.29 (+) 01.31
Ultimate Strain (in/in) 0.0057 0.0099 (−) 42.42 0.007 (−) 18.57 0.0138 (−) 58.69
Strain at Peak (in/in) 0.0035 0.002 (+) 75.00 0.0022 (+) 59.09 0.0025 (+) 40.00

Relative Ductility 1.64 4.86 (−) 66.25 3.18 (−) 48.42 5.52 (−) 70.28
Stiffness (ksi) 857 2171 (−) 60.25 2612 (−) 67.18 2234 (−) 61.63

Where MKM = Modified Kent Model, MM = Mander Model and RM = Razvi Model.

4.6. Observed Behavior and Comparison of 20RRC3 Models

It was found in the specimens of rubberized reinforced concrete having 20% of rubber
and tie bar of spacing 3 in (76 mm), that the increase in load causes an increase in vertical
stresses, followed by failure and spalling of the cover concrete. Further increase in load
causes the failure of core concrete followed by a buckling of the longitudinal reinforcement
while the tie bar remained unopened in all three specimens of this type. The failure pattern
is shown in Figure 7a.
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curves of 20RRC3 along with its comparison with various analytical
models of reference concrete: (a) Damages and behavior of 20RRC3 specimen, (b) comparison with
Modified Kent Model, (c) comparison with Mander’s Model, (d) comparison with Razvi Model.

At last, the test specimens’ behavior and parameters were compared with the model
i.e., Modified Kent and Park Model. It can be observed from Figure 7 that the strain at
peak and peak strength increased while the relative ductility, stiffness, and ultimate strain
decreased in contrast to the model’s parameters. Figure 7b illustrates the variation and
comparison of the test results with that of the model. The obtained results of the test
specimens were also compared with Mander’s Model. Strain at peak and peak strength
increased while the relative ductility, stiffness, and ultimate strain decrease. Figure 7c shows
the graphical comparison of the test specimens’ results with the model. Likewise, the results
were then compared with the 3rd model, i.e., Razvi and Saatcioglu Model. Table 11 shows
that the strain at peak and peak strength increased while the relative ductility, stiffness, and
ultimate strain decreased compared to the analytical model’s results. Figure 7d shows the
graphical comparison of the test specimens’ results with the model.

Table 11. Results of 20RRC3 specimens and their comparison with the analytical models.

Parameter 20RRC3
(Average) MKM % Variation

w.r.t MKM MM % Variation
w.r.t MM RM % Variation

w.r.t RM

Peak Strength (ksi) 2.52 2.26 (+) 11.50 2.31 (+) 09.09 2.31 (+) 09.09
Ultimate Strain (in/in) 0.0064 0.011 (−) 41.81 0.00889 (−) 28.00 0.014 (−) 54.28
Strain at Peak (in/in) 0.0045 0.0021 (+) 114.28 0.0026 (+) 73.07 0.0026 (+) 73.07

Relative Ductility 1.44 5.29 (−) 72.77 3.42 (−) 57.89 5.38 (−) 73.23
Stiffness (ksi) 845 2171 (−) 61.07 2566 (−) 67.06 2261 (−) 62.54

Where, MKM = Modified Kent Model, MM = Mander Model and RM = Razvi Model.

Comparison of 20RRC6 and 20RRC3

Various parameters of 20RRC6 specimens were compared in Table 12 with that of
20RRC3. It is shown in that the stiffness almost remained the same for both types of
specimens. However, the peak strength of 20RRC3 is increased by 8.6% as compared to
20RRC6. The strain at peak and ultimate strain of 20RRC3 has increased by 28.57% and
12.3%, respectively, respectively, in contrast to 20RRC6. Relative ductility of 20RRC3 was
reduced by 12.2% in contrast to 20RRC6 specimens.
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Table 12. Results of 20RRC6 and 20RRC3 specimens.

Parameter 20RRC6
(Average)

20RRC3
(Average)

% Variation
w.r.t 20RRC3

Peak Strength (ksi) 2.32 2.52 (+) 07.93
Ultimate Strain (in/in) 0.0057 0.0064 (+) 10.93
Strain at Peak (in/in) 0.0035 0.0045 (+) 22.22

Relative Ductility 1.64 1.44 (−) 13.88
Stiffness (ksi) 857 845 (−) 01.42

4.7. Stiffness Degradation

The stiffness of the models decreases by increasing the percentage of rubber. The de-
crease in stiffness of the members also depends upon the spacing of the lateral ties. However,
the degradation does not follow a specific trend. The average stiffness of each percentage
can be seen Figure 8a,b for 6 in (152 mm) and 3 in (76 mm) c/c tie spacing, respectively.
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4.8. Reduction in Weight

Rubber being a lightweight material as compared to sand; significant reduction in the
weight of concrete was recorded due to partial replacement of sand via different percentages
of rubber by volume. The effect of rubber addition on weight can be seen in Figure 8c.

4.9. Relative Ductility

It was found from the test data that the relative ductility decreases due to the incorpo-
ration of rubber in concrete as compared to corresponding normal concrete. It was explored
that the decrease in relative ductility of the members also depends upon the spacing of
the lateral ties. However, the degradation does not follow a specific trend. The relative
ductility of each percentage can be seen in Figure 8d,e for 6 in (152 mm) and 3 in (76 mm)
c/c tie spacing, respectively.
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4.10. Compressive Strength

Due to less adhesion between the rubber and the cement matrix, the compressive
strength generally decreases by increasing the addition of rubber. The compressive strength
of all types of specimens can be seen in Figure 8f.

5. Conclusions

This research study focused on exploring the stress–strain relationship of rubberized
reinforced concrete test column specimens (scale down) and their comparison with the
established analytical models. The following conclusions have been summarized from the
current research work.

1. The experimental data recorded during testing of the concrete cylinders and reinforced
test specimens shows that 20% rubber replacement via fine aggregates causes an 8.4%
reduction in weight and 41.86% in compressive strength compared to normal concrete.
The peak strength has increased from 7% to 14% concerning the Modified Kent and
Park Model. The reinforced rubberized concrete stiffness decreased while the strain at
peak increased.

2. Likewise, the ultimate strain was decreased in each series, and the degradation of
stiffness occurs at 50.53%, 64.72%, and 74.34% concerning normal concrete. Similarly,
employing scrap rubber crumbs in concrete causes the relative ductility to decrease
by 39.60%, 44.93%, and 51.27% compared with Modified Kent and Park Model, for
10%, 15%, and 20% volume replacement (3 inches spacing). It was also found that
the relative ductility is reduced for specimens having 3 in (76 mm) c/c tie spacing
in contrast to specimens having 6 in (152 mm) c/c tie spacing by using rubberized
concrete due to confinement of lateral ties.

3. The plain and reinforced concrete employing crumb rubber is under investigation
worldwide at different sections and full-frame structure levels. The Poison’s ratio
of rubberized aggregate concrete and its variation with percentage replacement of
rubber is under exploration. It is recommended to build frame structures and various
sections of structural members, i.e., beam and column of plain and reinforced concrete,
and be tested under static and dynamic loading to know the performance parameters
and behavior so that scrap rubber can be confidently used as building materials.
This will serve as a guideline of reusability of rubber in construction industries and
will minimize the associated problems like contamination of the environment and
dumping site availability.

4. With the advancement in artificial intelligence (AI), wide variety of civil engineering
problems are solved using AI [38–45]. AI models shall be developed that can product
the mechanical and durability properties of rubberized concrete. This way, cost, time,
and economy of the project can be effectively increased.
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