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Abstract: Ultraviolet rays are closely related with human health and, recently, optimum exposure
to the UV rays has been recommended, with growing importance being placed on correct UV
information. However, many countries provide UV information services at a local level, which makes
it impossible for individuals to acquire user-based, accurate UV information unless individuals
operate UV measurement devices with expertise on the relevant field for interpretation of the
measurement results. There is a limit in measuring ultraviolet rays’ information by the users at their
respective locations. Research about how to utilize mobile devices such as smartphones to overcome
such limitation is also lacking. This paper proposes a mobile deep learning system that calculates
UVI based on the illuminance values at the user’s location obtained with mobile devices’ help. The
proposed method analyzed the correlation between illuminance and UVI based on the natural light
DB collected through the actual measurements, and the deep learning model’s data set was extracted.
After the selection of the input variables to calculate the correct UVI, the deep learning model based
on the TensorFlow set with the optimum number of layers and number of nodes was designed
and implemented, and learning was executed via the data set. After the data set was converted
to the mobile deep learning model to operate under the mobile environment, the converted data
were loaded on the mobile device. The proposed method enabled providing UV information at the
user’s location through a mobile device on which the illuminance sensors were loaded even in the
environment without UVI measuring equipment. The comparison of the experiment results with the
reference device (spectrometer) proved that the proposed method could provide UV information
with an accuracy of 90–95% in the summers, as well as in winters.

Keywords: mobile deep learning; UVI; illuminance; user’s location; natural light

1. Introduction

Ultraviolet rays (100–380 nm), which have a wavelength band shorter than visible light
as part of sunlight, reach the ground surface and greatly affect human health [1]. In general,
ultraviolet rays have been recognized to adversely affect the skin and the eyes, such as
promoting skin aging, skin cancer, keratitis, and cataracts [2]. However, UV rays contribute
absolutely to the synthesis of vitamin D, an essential component of human health and con-
tribute to musculoskeletal system, cardiovascular disease, and mental health [3,4]. As these
findings become known, in recent years, adequate UV exposure for health maintenance
has been recommended, and the necessity and importance of accurate UV information has
been emphasized [5,6]. Some studies have estimated the intensity of UV light according
to the location of latitude and longitude, suggesting an appropriate UV exposure time [7].
Moreover, many countries provide the UV intensity and corresponding outdoor activity
recommendation services through government agencies and organizations [8]. However,
these services have been based on the results of UV measurements collected through
regional base stations and were limited to UV information for a wide range of locations,
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and could not provide accurate UV information that could be changed according to the
local characteristics and weather elements. Meanwhile, specialized optical measuring
equipment such as spectrometers or ultraviolet sensing devices have been applied to obtain
more accurate UV information. Herndon et al. confirmed and published about various UV
wavelength bands (UVA, UVB, and UVC), which affected living organisms on the earth
and reached the ground surface by measuring solar light through a spectral radiometer [9].
Banerjee et al. conducted an actual solar light measurement with the currently commer-
cially available wearable UV measuring devices and UV Erythema Broadband Radiometer.
They proposed that the best performing wearable UV measuring devices could measure
the UVI with an error range within 20% compared to those with a UV radiometer [10].
However, there was a limit to the use of the general public due to the need for expertise in
optical measurement and expensive equipment and sensing devices for UV measurement.
Recently, technologies using sensors in the mobile device to check optical characteristics
such as illumination and color temperature, which have been environmental factors around
the user, or an individual’s health state have been generalizing [11,12]. Moreover, as the
technology related to artificial neural network develops, research cases are being intro-
duced to solve and predict complicated problems by establishing a deep learning model
through the characteristic analysis between highly correlated factors [13,14]. Meanwhile,
Mei et al. calculated the UV intensities through the images collected through smartphones’
CMOS sensors [15]. Feister et al. introduced a method based on the regression equation that
calculated the UV information with the element values such as illuminance of solar light
and solar zenith angle [16]. However, it could not be sufficiently validated for servicing the
UVI and expected amount of vitamin D synthesis because the experiment was performed
under the limited conditions of specific dates or climate conditions. Further, Fatma et al.
have estimated the particulate matter (PM10) values by inputting the environmental factors
such as nitrogen monoxide (NO) and ozone (O3) by the introduction of neural network
technology [17]. Meanwhile, Jacovide et al. introduced a neural network model that
calculated the solar UV and the photosynthetically active radiation (PAR) via the input of
sunshine fraction, air temperature, and humidity [18]. However, until now, attempts to
derive useful information such as the intensity of ultraviolet rays by analyzing the optical
characteristics of sunlight, which were known to be relevant, or by applying deep learning
techniques have been lacking.

Therefore, this paper proposed a mobile deep learning system that calculates the UVI
through input the luminance at the user’s location. The proposed system consisted of
a natural light database that supported data set extraction of the deep learning, a deep
learning server that supported construction and learning of the artificial neuron network
model, and a mobile device that measured the luminance at the user’s location and imple-
ments UV information service. In the deep learning server, a data set was constructed with
the values of the luminance, UVI, and solar zenith angle through characteristics analysis
of the natural light. The deep learning model that calculated the UVI via inputting the
luminance, solar zenith angle, and monthly characteristics was designed and implemented,
and then, the learning was executed by means of the learning data set. The learned model
was then converted to the mobile deep learning model and the model was distributed, so
that the mobile deep learning system that calculated the UVI through the illuminance data
collected via the mobile device of the user was realized. Therefore, the method of providing
UV information using the illuminance sensors in the mobile device and deep learning
technology even without UV measuring equipment was proposed. It aimed to validate
the UVI calculation performance of the proposed method by the comparison experiment
with those of spectral radiometer and by calculating and comparing the expected amount
of vitamin D synthesis drawn by the equation to confirm the potential provision of UV
information to improve the user’s health.
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2. Mobile Deep Learning System

In this paper, a mobile deep learning system that calculated the UVI through mea-
surement of the luminance at the user’s location by means of mobile devices such as smart
phones that were easily used by many peoples, was proposed. The proposed system was
realized by the natural light DB collected through actual measurement, the learning data
set extracted from the natural light DB, and the deep learning server and mobile device to
establish the deep learning model and implementation. Figure 1 shows the overview of the
proposed system.
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Figure 1. Overview of the mobile deep learning system.

The characteristics of the natural light were measured through the spectrometer (CAS
140CT, Instrument Systems, Munich, Germany) in order to develop the proposed system,
and the measured data were stored in the natural light DB. The measurement was carried
out at the location of latitude of 36.85◦ and the longitude of 127.15◦ for about 2 years
and 6 months (April 2017–September 2019) in order to collect optical characteristics of
irradiance, illumination, color temperature, and chromaticity coordinate by wavelength.
The correlation between the characteristics of the natural light was analyzed, the input
variables of the deep learning model were selected, and then the data set was extracted
for the leaning. The deep learning model based on the TensorFlow (Open-source library,
Google, Pasadena, CA, USA) was then designed and realized followed by execution of the
learning through the data set extracted in the previous stage. The model was converted
to the mobile deep learning model format (TensorFlow Light) to execute the model in the
mobile device, and it was distributed to the mobile devices of the users. In the mobile
device, the illumination was measured through the sensor, and the illumination data were
inputted into the mobile deep learning model to calculate the UVI in order to provide the
relevant UV information.

3. Natural Light DB-Based Learning Data Set

In order to calculate the UVI through the proposed method, input variables of the
deep learning model, which had a high correlation with the output variables and was
easy to measure by the user, were selected, and data set for the model learning were
needed [19]. For that, the correlation between the characteristics of the natural light was
analyzed through the measured natural light DB. The correlations between illuminance,
color temperature, chromaticity coordinates (x,y) which were judged possible to collect
through the illuminance and color sensors that were loaded on most of the mobile devices
and short wavelength ratio of visible light, and UVI were analyzed. In addition, the
correlation between the UVI and the solar zenith angle that have been known to have a
high correlation through the previous study cases was also examined [20]. The solar zenith
angles, provided by the Korea Astronomy and Space Science Institute for the areas where
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the natural light was measured, were applied. Figure 2 shows the correlation between the
characteristics of the natural light, the solar zenith angles, and the UVI.
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Figure 2. Correlation analysis results between the characteristics of the natural light.

The correlation between the characteristics of the sunlight through the analysis results
in Figure 2 was the highest between the illumination and the UVI with about 0.766. The
solar zenith angle, which was a variable obtained through the GPS sensor in the mobile
device, was highly and negatively correlated with the UVI (correlation coefficient of
−0.931). On the contrary, the chromaticity coordinates (x, y) of the natural light had a low
correlation. The short wavelength ratio, though it had a high correlation, was judged as
not suitable as a variable for the deep learning since there was a limit in data collection
through the mobile devices. Furthermore, considering the previous study cases that said
that natural light and the UVI could have different modes in reaching to the ground surface
due to the seasons or monthly weather characteristics, the monthly illumination and the
UVI distribution were analyzed. The results are illustrated in Figure 3 [21].
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In Figure 3, the monthly illumination and UVI at the measurement location of the
natural light (Cheonan, Korea) shows that as the illumination was increased, the UVI was
also increased, in general. In the figure, the annual maximum illuminance was about
120,000 lux and the annual maximum UVI was 12 or higher. In addition, the UVI was
higher during the relatively warm seasons (May–July), and it was low during the cold
seasons (November–January). Specifically, the comparison results of the maximum UVI
values in the same illuminance (110,000 lux) showed that the UVI was about 2 in December
and it was about 9 in May, exhibiting a prominent difference of the UVI by month (season)
even if the same illuminance was measured. The monthly maximum UVI values were
extracted for 1:00 p.m. during the noon-afternoon where the UV index was expected to be
the maximum and the correlation between the illuminance and the UVI was calculated
according to Pearson’s correlation coefficient. The results are arranged in Table 1.

Table 1. Pearson’s correlation between the monthly average illuminances and the UVI (Ultraviolet Index).

Month 1 2 3 4 5 6 7 8 9 10 11 12

Illuminance 109,553 105,979 113,366 114,582 114,631 118,696 119,874 110,516 118,333 108,353 98,414 109,484
UVI 5.66275 3.70099 7.3346 8.35783 9.403 14.3897 10.3591 8.45462 8.32092 6.87911 3.42396 4.35982

Correlation 0.7908 0.8588 0.8951 0.8422 0.8368 0.8156 0.8230 0.7197 0.7595 0.7959 0.8449 0.7766

The monthly maximum illuminance was relatively low in January, October, November,
and December, whereas it was high in June, July, and September. However, the UVI was
higher than 10 only in June and July, and it was relatively low with about 8.3 in September
even under the similar illuminance. The illuminance and the UVI were relatively low
in August compared with the adjourning months, which was due to the high rainfall.
Moreover, the correlation between the illuminance and the UVI was high about 0.85 in
February, March, and November, whereas it was low with about 0.76 in August and
September, which indicated that the distribution patterns of the illuminance and the UVI
were different. It was anticipated that it would be advantageous to reflect monthly UV
characteristics together to calculate the UVI through the illuminance values at the user’s
location. The analysis results showed that the UVI was, in general, highly correlated with
the illuminance of sunlight and solar zenith angle. Therefore, multiple linear regression
or neural network model was assumed to be possibly applied in this study. Nonetheless,
since the differences in correlation by month/time were large, the neural network model
could predict more accurate results in the proposed method to which various elements
with significant variations were inputted [22].

In addition, it was judged as beneficial to calculate an accurate UVI if the monthly UV
characteristics were reflected in the mobile deep learning model. The data set for mobile
deep learning was extracted through the UVI, illuminance, and solar zenith angle based on
the correlation between the above characteristics of the natural light, monthly illuminances,
and UVI patterns.

4. Mobile DNN Model for Calculation of the Illuminance-Based UV Information

In the study, an artificial neuron network model, executed by linking the deep learning
server and the mobile device, was realized in order to calculate UV information through
input the illuminance values at the user’s location. An artificial neural network is a
model that solves the problem while making the connection intensities of the neuron
(node), which was composed of the input layer, hidden layer, and output layer adapted
and changed to the optimum condition. The DNN was constructed with more than two
hidden layers [23]. Deep learning technology has been utilized in computer vision, natural
language processing, and voice recognition [24]. Saez et al. applied the deep learning
technology in the recognition of activity [24], while Merenda et al. applied the mobile
deep learning library that was provided by Google to realize the Edge Computing for IoT
devices, all of which broadened the scope of the deep leaning [25]. The deep learning
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server was made to support implementation of the deep learning model and the mobile
service through the natural light data set, while the mobile device would execute the deep
learning model and provide the UV information service. Figure 4 shows the construction
and the execution flow of the proposed mobile DNN (Deep Neural Network) model.
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The deep learning model in Figure 4 shows the calculation results of the UVI intensity
by means of input the illuminance data measured at the current location via illuminance
sensor in the mobile device of the user as well as the GPS-based solar zenith angle informa-
tion. In the deep learning server, the Keras (2.1.1) framework was used to realize the neural
network model code, and the open-source library TensorFlow of the Google that has been
widely used recently to predict changing atmospheric quality and weather observation
data was applied [26,27]. The predication and calculation performance of the artificial
neural network model based on the TensorFlow depends on the key setting variables such
as each input, output, hidden layer, and number of nodes [28]. Therefore, a comparison
experiment was carried out to select the key input parameter, hidden layer, and number of
nodes necessary for implementation of the optimum artificial neuron network model. First,
the variables of illuminance, solar zenith angle, and seasonal UV characteristics ratio were
combined to decide the input variables; these variables were set as each input of the artifi-
cial neuron network model, and then, the performance of each model was examined. The
performance of each model was compared by calculating mean absolute errors (MAE). In
addition, the calculation result of each model was confirmed while increasing the number
of the hidden layer from 1 to 3 to compare the difference according to the construction of
the multiple hidden layers. The comparison results are displayed in Table 2. Since there
was no standard provided for the number of the hidden layer, it was set to 16, which was a
multiple of 2 closest to the number of input nodes (n) when the illuminance, solar zenith
angle, and monthly characteristics were inputted according to the methods proposed in
the existing literatures and researches [29].

Table 2. Pearson’s correlation between the monthly average illuminances and the UVI.

Input Variables/Number of Hidden Layers 1 2 3

Illuminance 0.81 0.81 0.81
Illuminance and solar zenith angle 0.38 0.37 0.36

Illuminance, solar zenith angle, and monthly characteristics 0.31 0.29 0.29

In Table 2, the average MAE, when the illuminance, solar zenith angle, and monthly
characteristics were used altogether as the input values, was the most excellent showing
0.30, whereas when the hidden layer was multiple in number under the same condition,
the MAE was excellent with 0.29. The illuminance, solar zenith angle, and monthly
characteristics were selected as input variables for the proposed DNN model based on the
results in Table 2, and it was constructed with multiple hidden layers. One-Hot Encoding
method was applied so that the monthly (January–December) characteristics could be
processed as type data not as simple numeric data [30]. In addition, the number of the
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hidden layers and the number of nodes in each hidden layer were adjusted once again to
calculate more accurate UV information. The results are illustrated in Figure 5.
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Figure 5 shows the comparison results of the MAE in each stage while adjusting the
number of the hidden layer to 2–4 and the number of the node to 8, 16, 32, 64, and 128.
When the numbers of nodes were more than 64, more than 32, and more than 32 with
the numbers of hidden layer of 2, 3, and 4, respectively, the best MAE of 0.28 could be
obtained. Therefore, for the Deep Neural Network (DNN) that proposed to make the
hidden layer and nodes minimum while maintaining the minimum MAE, the hidden layer
was set to 2 and the number of the node in each hidden layer was set to 64. A learning
that adjusted a connection process between each node of the DNN model by itself was
conducted through the data set extracted from the analysis of three sheets of measured
natural light DB. The activation function that converted the input signal to the output signal
ReLU (Rectified Linear Unit) that has been used the most to process nonlinear data was
applied [31]. Figure 6 shows the implementation results of the DNN model that calculated
the illumination-based UV information.
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The DNN model based on the TensorFlow was realized according to Figure 6, and it
was converted to the deep model form TensorFlow Lite Model for the mobile device [32].
The converted deep learning model was distributed to the mobile devices of each user



Sensors 2021, 21, 1227 8 of 12

through the server to provide the UV information at the user’s location in real time
regardless of internet connection status. However, a mobile DNN model that was renewed
continuously according to the latest natural light DB by way of the monthly update function
through the deep learning server. Moreover, in the user’s mobile device, the TensorFlow
Lite Interpreter was installed together so that the distributed deep learning model could be
interpreted and executed. The interpreter was able to provide the accurate UVI intensity
at the user’s location. Moreover, the expected vitamin D synthesis information was also
provided to support an adequate exposure to UV. The expected amount of vitamin D
synthesis was calculated with Equation (1) proposed in the research by Godar [33].

VitD [IU] = 49 VUD
[

J
m2

]
· STF·PBE·AF

SPF
. (1)

In Equation (1), the VUD was the vitamin D weighting UV rays’ amount, STF is the skin
type factor where Type II has an STF value of 3.2/3, type III has 3.2/4, type IV has 3.2/5.25,
and type V has 3.2/7.5 [33]. The percent body exposure (PBE) is the body exposure ratio,
which is differently applied by the season and age [34], while the AF refers to the age factor
having 1.0 for younger than 21, 0.83 between age 22 and 40, 0.66 for age 41–59, and 0.49 for
age older than 60 [35]. SPF is the sun protection factor and is presented as values between
0 and 1, with 1 being no UV protection agent used. Equation (2) is the formula to calculate
the accumulation amount (DUVout) by an hour of vitamin D UV irradiance by exposure
to the sunlight. In order to calculate the UV intensity outdoors at the user’s location,
DUV calculation equation (Equation (3)), which applied action spectrum conversion factor
(ASCF) and geometric conversion factor (GCF), was used [36].

VUD =
∫ tc

0
DUVout(t) dt (2)

DUVout = EUV
[
W/m2

]
·ASCF·GCF. (3)

ASCF in Equation (3) is the correction factor of the action spectrum, which converts
the UV irradiance reacting the horizon into the body surface’s radiance intensity. It is a
variable considering the season and user’s location, which was introduced in the research
by the Pope. The ASCF (1.049 for spring, 1.104 for summer, 1.029 for autumn, and 0.842
for winter) and GCF (0.600 for spring, 0.600 for summer, 0.655 for autumn, and 0.655
for winter), which corresponded to the latitude of 35◦ N, were applied in this study [37].
In addition, the EUV was the UVI where erythema weight was applied and calculated
through Equations (4) and (5) [36].

UVI = k
∫ 400

280
E(λ)·W(λ) dλ = k

[
m2/W] · EUV [W/m2

]
, (4)

EUV = UVI/k
[

W
m2

]
, (k = 40). (5)

In the Equation (4), UVI could be cumulatively calculated with the weightage accord-
ing to the wavelength in the spectral irradiance in the 280–400 nm band, but in this paper,
the UVI values calculated through the DNN model were used. The EUV was calculated
through Equation (5) and the UVI as well as the amount of expected vitamin D synthesis
for current illuminance were provided through the mobile device.

5. Performance Evaluation

An experiment was conducted to evaluate the accuracy of illuminance-based UVI
calculation method and the possibility of UV information service. The results of the UVI
calculated through the proposed mobile DNN model after inputting the illuminance at the
user’s location and measurement though spectrometer (CAS 140CT, Instrument Systems,
Munich, Germany) were compared. The mobile device used was the smart phone from
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Company S (A5 2017, Samsung, Suwon, Korea) for the UV information service such as
measurement of the illuminance and installation of the DNN model. The experiment was
carried out on the day of the highest UV intensity and on the selected day in summers
having the highest UV intensity and in winters having the lowest UV intensity. The
experimental results are displayed in Figure 7.
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The UVI calculated through the proposed method in Figure 7 showed errors of 0.41
in summers (Figure 7a) and 0.08 in winters (Figure 7b) compared with the measurement
results through the reference device. A relatively high error was found in the summers
(Figure 7a) where the UVI indices were high, while lower error was observed in the winters
(Figure 7b) where the UVI indices were relatively low. The mean errors in each season
considering the maximum UVI and variation of the UVI by season were 13.31% and 12.67%,
respectively, showing an insignificant performance difference by season. In addition, the
expected amounts of vitamin D synthesis during the expected activity hours (7:00 a.m.~4:00
p.m.) on each of the experimental day to check supporting performance of an adequate UV
exposure were proposed. The results are tabulated in Table 3.

Table 3. Comparison of expected amount of vitamin D synthesis with the UVI calculation results (12 June 2019–27 November 2019).

Input

Summer (12 June 2019) Winter (27 November 2019)

Reference Equipment
(CAS 140CT) Proposed Model Reference Equipment

(CAS 140CT) Proposed Model

UVI Vitamin D UVI Vitamin D UVI Vitamin D UVI Vitamin D

7:00 2.03 263.44 1.42 184.59 0.03 4.45 0.02 2.93
8:00 3.12 404.71 3.08 400.01 0.38 49.40 0.44 56.98
9:00 4.69 609.00 4.78 620.00 0.98 126.51 1.13 145.95
10:00 6.22 806.69 6.28 814.58 1.27 164.30 1.46 189.41
11:00 6.95 901.56 7.48 970.03 1.30 168.59 1.25 162.16
12:00 7.17 929.58 7.98 1034.93 1.37 177.28 1.41 182.98
13:00 6.36 824.77 8.03 1041.57 1.47 191.05 1.64 213.08
14:00 4.50 584.14 5.59 724.68 0.94 122.37 0.84 109.14
15:00 3.00 389.50 3.84 498.64 0.26 33.52 0.23 29.47
16:00 2.10 271.77 2.41 312.06 0.05 7.03 0.05 6.68

Average 4.61 598.52 5.09 660.11 0.81 104.45 0.85 109.88

Table 3 shows the calculation results of the expected amount of vitamin D synthesis
assuming that adults of age higher than 21 years with the skin type II in Korea (latitude:
36.85, longitude: 127.15) exposed to the solar UVI for 20 min (skin exposure area 15%, sun
cream not used) under the UVI condition by each time. The amount of vitamin D synthesis
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during summers (12 June 2019) was on an average of 598.52 IU when the measurement
value of the reference equipment was employed, whereas it was 660.11 IU by way of the
calculation result of the proposed method. In addition, the amount of vitamin D synthesis in
winters (27 November 2019) was on an average of 104.45 IU when the results of the reference
equipment were employed, and it was 109.88 IU with the calculation results through the
proposed method, which could provide the expected amount of vitamin D having an
accuracy of about 90–95% compared with the values through the reference equipment.

6. Conclusions

As ultraviolet rays in the sunlight absolutely attribute human vitamin D synthesis,
recently optimum exposure to UV has been recommended to maintain health, and conse-
quently, the necessity of accurate UV information also has been increasing. In this paper, a
mobile deep learning system was proposed to provide an accurate UV information through
the illumination values at the users’ locations. Accordingly, the correlation between the
characteristics of natural light such as the illumination and UVI was analyzed through
the natural light DB measured and collected with a spectrometer for about 2 years and
5 months (April 2017–August 2019) at the latitude of 36.85◦ and longitude of 127.15◦

(Kongju National University, Cheonan, Korea), and then, a data set was extracted for
the deep learning model. In addition, it was confirmed that there was a high correlation
between the UVI and the solar zenith angle, and monthly distribution of the illumination
and UVI was different. A data set comprised characteristics values of the illuminance,
UVI, and solar zenith angle was extracted based on the characteristics analysis results of
the natural light. A selection process of the input variables to realize an optimum deep
learning model and selection process of number of the layer and nodes were performed.
The deep learning was, therefore, designed to have two hidden layers that input the illumi-
nation, solar zenith angle, and monthly characteristics as well as 64 nodes in each hidden
layer. Implementation of the deep learning model in the mobile deep learning server was
followed through the TensorFlow, which was an open-source library of Google, and then, a
learning based on the data set extracted through the analysis of the natural light DB was
executed. The TensorFlow model (.h format) with the completed learning was converted
to the TensorFlow Lite model (.tflite), and then, it was distributed to the mobile devices
to execute the proposed system through the interpreter of the deep learning model. With
these factors, a system technology based on deep mobile learning, which could provide
UV information at each user’s location, was realized through the input of the illuminance
collected through the mobile device even when a separate UV-measuring equipment was
not equipped. The actual measurement was performed to compare the proposed model
loaded on the smartphone (Galaxy S, Samsung, Korea) with the reference device (spectral
radiometer, CAS 140CT). The results suggested that accurate UVI information could be
calculated with the accuracies of 90% and 95% during summers and winters, respectively.
Furthermore, the expected amount of vitamin D synthesis was also provided based on the
calculated UVI information so that the UV information service could also be realized to
improve users’ health using the mobile device.

In the future, efforts will be made on the improvement of UVI calculation accuracy
through renewal of the learning data and continuous leaning of the mobile deep learning
model. Furthermore, it is planned to conduct researches for development of the UV
information system based on the flatform that can collect and share the UV information,
which is highly related with the individual health, through mobiles used by most of
the people.
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