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Background: The Latarjet procedure is a common bony augmentation procedure for anterior shoulder
instability. Historically, screw fixation is used to secure the coracoid graft to the anterior glenoid surface;
however, malpositioning of the graft leads to oblique screw insertion that contributes to complications.
Suture buttons (SBs) are a more recent fixation technique that have not been studied alongside standard
screw fixation in the context of biomechanical models of angulated fixation. This study aims to compare
the biomechanical strength of single and double, screw and SB fixation at various levels of angulation.
Methods: Testing was performed using polyurethane models from Sawbones. The graft piece was
secured with screw fixation (Arthrex, Naples, FL, USA) or suspensory button (ABS Tightrope, Arthrex,
Naples, FL, USA). Single or double constructs of screws and SBs were affixed at 0�, 15�, and 30� angles to
the face of the glenoid component. An aluminum testing jig held the samples securely while a materials
testing system applied loads. Five constructs were used for each condition and assessed load to failure
testing.
Results: For single fixation constructs, suspensory buttons were 60% stronger than screws at
0� (P < .001), and 52% stronger at 15� (P ¼ .004); however, at 30�, both were comparable (P ¼ .180).
Interestingly, single suspensory button at 15� was equivalent to a single screw at 0� (P ¼ .310). For double
fixation, suspensory buttons (DT) were 32% stronger than screws at 0� (P < .001) and 35% stronger than
screws at 15� (P < .001). Both double fixation methods were comparable at 30� (P ¼ .061). Suspensory
buttons at 15� and 30� were equivalent to double screws at 0 (P ¼ .280) and 15� (P ¼ .772), respectively.
Conclusion: These measurements indicate that the suspensory button has a significantly higher load to
failure capacity over the screw fixation technique, perpendicularly and with up to 15� of angulation.
These analyses also indicate that the suspensory button fixation offers superior strength even when
positioned more obliquely than the screw fixation. Therefore, suspensory button fixation may confer
more strength while offering greater margin for error when positioning the graft.

© 2023 Published by Elsevier Inc. on behalf of American Shoulder and Elbow Surgeons. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Anterior glenoid bone loss is common following a glenohumeral
dislocation. Increased glenoid bone loss often requires glenoid bony
augmentation to reduce recurrent instability.27,29 The most common
bony augmentation procedure is the Bristow/Latarjet procedure
which utilizes the coracoid process as a bone graft on the anterior
bus, GA 31909, USA.
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glenoid while integrating the conjoint tendon and subscapularis as a
“sling” to provide additional stability.3,11,20,24,25,36,40,42 Historically,
screw fixation has been used to secure the glenoid graft. More
recently, in an attempt to reduce potential hardware-related com-
plications associated with screws, non-screw fixation techniques
including the use of SBs and cerclages have been described with
promising early results.4,5,14

The initial report of a nonscrewglenoid augmentation technique
involved a SB.34 A SB fixation is a device with a multistrand, ultra-
high molecular weight polyethylene (UHMWPE) and braided
polyester suture looped through two opposing stainless-steel
w Surgeons. This is an open access article under the CC BY-NC-ND license (http://
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Figure 1 Off-axis suture button angulated glenoid fixation.
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buttons and passed through parallel sets of two holes: 1 drilled
through the coracoid process graft and the other through the
anterior glenoid face. This construct forms a continuous loop of
suture to secure the coracoid graft onto the glenoid surface,
achieving stable fixation and reported healing rates of 95% of the
bone block interface.5,7,15,18,24 In addition to avoiding common
hardware complications associated with traditional screw fixation,
potential SB fixation advantages over screw fixation include
removal of less bone with a smaller drilling surface area, lower
neurologic injury, and improved graft positioning (Fig. 1).4,5,10,32,33

While the alignment of the graft is crucial to the construct sta-
bility and clinical success of the procedure, proper positioning
poses a challenge. Due to anatomical constraints, off axis non-
perpendicular drilling may occur, even in the hands of an experi-
enced surgeon. Due to poor exposure, tight working space, and
limited visualization of the anterior inferior glenoid face in the
classic Bristow/Latarjet procedure, malpositioning can occur, with
superior and lateral displacement occurring in 36% and 10%-50% of
malpositioned Latarjet cases.4,5,13,15 In the traditional open Bristow/
Latarjet technique, the screw holes for the coracoid graft and the
glenoid are often separately drilled freehand, which may lead to
position variability and nonparallel graft-host angulation35 (Fig. 1).
That is, despite two straight drill holes, the independently drilled
paths may not align given surface topography.34-36

For both open and arthroscopic techniques, screw alignment is
dependent on bone graft positioning. Not only can improper posi-
tioning result in biomechanical instability of the graft fixation and
inadequate compression for proper graft union, but the occurrence
of nerve damage and early onset osteoarthritis have also been re-
ported.5,6,17 Beyond superior-inferior and medial-lateral graft
malpositioning, the bony surfaces of the glenoid and graft can be
malpositioned with off-axis drilling. Frank et al assessed the impact
of 15� off-axis angled fixation with screws and found significantly
reduced failure loads with off-axis alignment of the coracoid and
glenoid drill paths.9

To our knowledge, there are no biomechanical studies that have
directly investigated the mechanical stability of screw fixation and
SB fixation at varying levels of angulation to appreciate if one fix-
ation construct is superior to another with oblique fixation. The
purpose of this study is to compare SB to screw biomechanical
stability various levels of off-axis angulation. The authors hypoth-
esize that due to the ability to have a nonlinear route of fixation, SB
fixation will offer greater mechanical stability to the coracoid graft
when compared with the screw fixation at varying levels of
angulation from the perpendicular axis.

Methods

Constructs of interest

The biomechanical stability of SB constructs and traditional
metal screws of various trajectories were compared in the setting of
modeled glenoid bony augmentation. Four-strand suture strand
Arthrex TightRope ABS (Arthrex, Naples, FL, USA) 8 mm � 12 mm
AR-1588TB with steel button was chosen as the representative SB
construct (Arthrex, Naples, FL, USA). This construct, similar to other
SB constructs, is composed of multi-stranded long chain UHMWPE
core with a polyester and UHMWPE braided jacket constructed
with an adjustable loop mechanism and two opposing stainless
steel cortical buttons, and a tensioning device that allows up to 80 N
of tension to be applied to the construct. For the screw constructs,
3.75 mm� 38mmpartially threaded, cannulated screwswere used
as standard-of-care comparison for SB performance and were
tightened to 8 Nm torque. This value was selected through pilot
testing to prevent screw-hole stripping as limited by construct
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integrity. In accordance with prior literature,5,8,28,30,38 five con-
structs of each fixation system for each insertion trajectory were
examined in a both a single and double formation. Groups included
single screw (SS0, SS15, SS30), double screw (DS0, DS15, DS30),
single SB (SSB0, SSB15, SSB30), and double SB (DSB0, DSB15,
DSB30). Numbers in construct abbreviations reflect degrees off
parallel axis to the glenoid surface (0�, 15�, and 30�).

Sawbones model specifications

To model a glenoid defect repaired with a coracoid graft, poly-
urethane cellular foam blocks from Sawbones® (Pacific Research
Labs, Vashon Island, WA, USA) were chosen for consistent testing
across each specimen. Both 240 kg/m3 (15 lb/ft3) and 320 kg/m3

(20 lb/ft3) blocks were selected and pilot tested as prior studies
have identified coracoid and glenoid bone density to vary between
256-320 kg/m3 (15-20 lb/ft3).21,38 Prior studies have varied in the
density of testing materials ranging from 480 kg/m3 (30 lb/ft3

non-cortical block9 up to 1602 kg/m3 (100 lb/ft3).38 A density of
240 kg/m3 (15 lb/ft3) was selected as pilot testing results identified
better appreciation of differences in construct strength similar to
testing failure values of cadaveric specimens. The 240 kg/m3



Figure 2 Graft fixation with double screw (Left) and double suture-button (Right).
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(15 lb/ft3) density was felt to reflect a worse case scenario of in vivo
glenoid and coracoid biomechanical strength in an individual with
clinically realistic suboptimal bone quality.8,9,21,30,38,41

Rectangular geometry and dimensioning of the glenoid piece was
based on previous work.25,38 The glenoid was dimensioned 39
mm� 40mm� 23.2mm (width x height x depth, respectively)which
model the average glenoid width and height after the generation of a
25% defect in the glenoid. The graft piece was dimensioned based on
samples in Willemot et al, which were values established by previous
investigations of harvested coracoid samples.30,38,41 Final dimensions
of the graft were 26.4 mm � 13.7 mm � 9.3 mm (Fig. 2).

Construct assembly

Each model was each drilled with 1 hole for the single fixation
technique and 2 holes for the double fixation technique to simulate
drill holes using prefabricated drilling jigs with appropriate hole
angulation (Fig. 3). The graft piece was then secured to the glenoid
piece with either screws or SBs in the specified single or double for-
mation using a benchtop vice alignment jig. Screws were tightened to
8 Nm torque. In accordance with the technique guide, SBs were
tensioned to 80 N via tensioning device.16 Two square knots were tied
in each SB construct following tensioning by a single fellowship-
trained orthopedic surgeon. Coracoid graft drill diameter was 4 mm,
positioned 7.7mm from top of construct, and 4.5mm from the vertical
centerline. Glenoid component drill inner diameter 2.75 mm.

Biomechanical testing

An aluminum testing jig was fabricated to hold the samples
securely during the testing procedure. Testing was performed on a
materials testing system (MTS 858; MiniBionix, Eden Prairie, MN,
USA). Each sample was preloaded between 2 N and 5 N to remove
slack from the system, as done in previous work.38

The Multipurpose Testware was used to replicate the cyclic
loading parameters outlined in Willemot et al38 a 7-phase, 100
cycle per phase, 1 Hz, sinusoidal cyclic loading protocol, following a
stair-step pattern in load control. The phases were (1) 0 N to 5 N, (2)
5 N to 10 N, (3) 10 N to 25 N, (4) 25 N to 50 N, (5) 50 N to 100 N, (6)
100 N to 150 N, and (7) 150 N to 200 N of inferiorly directed force.
These were immediately followed by return to 0 mm displacement
and then a load-to-failure ramp function in displacement control at
a rate of 0.5 mm/s. The absolute end level for load to failure was
defined as 7.0 mm below the zero-point defined at the beginning of
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each test, a displacement value based on previous work.28,39 There
was an n ¼ 5 for both the cycle displacement and load to failure
testing for each single and double screw fixation and SB fixation
techniques. Time, force, and displacement data were collected
continuously at a sampling rate of 500 Hz. Load values were
captured with a 1500 N load cell and displacement was measured
by the built-in linear displacement transducer of the actuator.

Data and statistical analysis

Cyclic loading data and load-at failure values were recorded in
an electronic data set and analyzed by a biostatistician in using SAS
software (SAS Institute, Cary, NC, USA). Averages and standard
deviations were determinedwith descriptive statistics. Generalized
Linear Models with LSD post hoc testing was used to compare load
to failure and cycle displacement between each construct. Statis-
tical significance was set to P < .05.

Results

Cyclic displacement

When assessing displacement for all 7 cycles, the single screw
and SSBs had comparable displacement at both 0� (SS0 vs. SSB0,
P¼ .470) and 15� (SS15 vs. SSB15, P¼ .428). At 30�, the SS30 construct
had on average 44% less displacement compared to the SSB30
(P ¼ .001). Regarding double constructs, no difference was found
between screws and SBs at any of the 3 angles (P > .05) (Fig. 4).

Load-at-failure

SSB0 constructs had greater load-at-failure values than single
screw constructs.When applied perpendicularly at 0� off-axis, SSB0
were nearly 60% stronger than SS0 constructs (P < .001). Similarly,
SSB15 proved to be 52% stronger than SS15 (P ¼ .004). Both con-
structs become comparable at 30� off axis (SSB30, SS30, P ¼ .180).
Although SSB30 was significantly weaker than SS15 (P ¼ .012), the
SSB15 testing was equivalent to SS0 (P ¼ .310). Table I details the
load-at-failure for each construct at the different angulations.

Compared with double screw constructs, DSB s were 32%
stronger at 0� (DSB0 vs. DS0, P < .001) and 35% stronger at 15�

(DSB15 vs. DS15, P < .001). Both constructs become comparable at
30� off axis (DSB30 vs. DS30, P ¼ .061). Furthermore, the DSB15
testing was equivalent to DS0 (P ¼ .280), and DSB30 was equivalent



Figure 3 Different views of the drill and alignment jigs. (A) The drill jig for the graft is shown with a completed specimen. (B) The drill jigs are shown on a table edge with surgical
bits inserted for demonstration of positioning. (C) The drill jig for the glenoid is shownwith a completed specimen. (D) The Solidworks rendering of the drill jigs and alignment jig is
shown with Sawbones blocks inserted for demonstration of positioning. (E) The alignment jig is shown.

Figure 4 Screw and suture button construct single fixation (Left) and double fixation (Right).
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to DS15 (P ¼ .772). Table I illustrates the load to failure for double
screws as compared to DSBs.

Discussion

A critical portion of glenoid augmentation procedures is the
graft-glenoid interface alignment and construct stability.15,18,24 For
optimal fixation strength, fixation should be placed parallel to the
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glenoid articular surface, and the drilled holes of the glenoid should
be concentric and aligned with those of the graft (ie, at a 0� off-
axis). Nonetheless, it is not uncommon for screws to be inserted
obliquely, resulting in sub-optimal biomechanical strength, inade-
quate compression at the graft-glenoid interface, and ultimately
failed union or construct failure.4,5,15 With the recent advent of SB
fixation, the authors aimed to compare the strength and stability of
traditional screw constructs and SB constructs applied at increasing



Table I
Load at failure.

Construct Mean (N) SD Min Max

Single
Screw
SS 196.8 5.8 187.6 201.8
SS15 146.3 8.2 133.9 152.9
SS30 114.8 7.7 108.1 126.8

Suture button
SSB 313.7 50.7 236.9 359.6
SSB15 223.4 95.5 90.9 345.7
SSB30 80.2 11.5 68.6 99.5

Double
Screw
DS 422.0 25.0 387.3 452.3
DS15 291.5 34.3 252.6 344.5
DS30 250.2 40.6 186.1 285.2

Suture button
DSB 557.2 18.6 535.7 576.6
DSB15 394.2 26.4 362.8 432.9
DSB30 299.0 42.0 260.5 360.1

SD, standard deviation.
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levels of angulation (0�, 15�, and 30�). The results of this study
showed superior biomechanical load at failure strength of SBs with
no angulation (0�) andmoderate graft hole off-axis angulation (15�)
when compared with screws and no difference between constructs
during severe off-axis (30�) hole angulation. Conversely, for single
fixation constructs, cyclic loading was similar between SBs at no
angulation, and moderate angulation (15�). Single screw fixation
was superior to SSB. However, for DSB and double screw constructs,
no notable differences were appreciated for cyclic loading
displacement at any angle (0�, 15�, and 30�).

Precise bone block positioning is another potential benefit of SB
use. Unlike a traditional Latarjet or Bristow with screw placement
from anterior to posterior requiring glenoid drilling from anterior
to posterior, suture button placement permits glenoid drilling from
posterior to anterior. The orientation toward the glenoid from the
posterior facilitates parallel alignment to the glenoid as the anterior
structure of the pectoralis major often interferes with medial
alignment of the drill path. Because of this, the natural anterior
approach is off-axis and requires robust retraction to allow for drill
and screw placement parallel to the glenoid articular surface.
Additionally, precision is required to avoid graft fixation ie, proud or
excessively recessed to the glenoid face. Malpositioning of an
anteriorly drilled glenoid and screw fixed bone block may be up to
50% of cases.14 However, in Boileau’s series, drilling from posterior
to anterior and use of a SB resulted in 95% correct axial alignment
and 93% correct sagittal alignment of the anterior glenoid bone
graft.4 Also, when compared to screw fixation, cortical buttons had
less angulation from the parallel axis to the glenoid, with a mean
angulation of 5.7� compared to 9.7� for open and 15.7� in arthro-
scopic screw placement, respectively.26

Another theoretical benefit of a SB construct is the ability for
standardized tensioning. Unless a torque limiter screwdriver is
used, traditional teaching endorses the “two finger tightening” for
screws despite this yielding varied torque values applied, which at
the extremes can either fracture the graft or leave a graft not
securely fixed to the glenoid.1,37 While it has been noted that
subsequent years of training increase not only the overall forces
used when placing a screw, as well as an ability to reproduce the
process more consistently, there remains a wide variation from
surgeon to surgeon.1,37 This theoretical weakness with screw fixa-
tion has not been previously reported, as there was no alternative
prior to SB fixation with a recommended standardized tension
value, and requires additional investigation to identify ideal
construct tension settings to facilitate stability and healing.
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Our current findings are concordant with Frank et al who
determined that in a modeled Latarjet procedure, screws inserted
perpendicularly at 0� yielded higher failure loads than those
inserted at 15� off-axis.9 The results of the present study demon-
strate a similar pattern for screws and suggest that the same
principle applies to SBs despite the ability for SBs to have nonlinear
fixation. As constructs are inserted more parallel to the glenoid, the
biomechanical stability and load-at-failure properties of the as-
sembly increase accordingly. Screws inserted at off angles will
likely increase the compression on the acute side of the angled
construct, with lower compression values on the obtuse side. The
effect of the suture may be to better distributes the compression
across the glenoid as the suture experiences tensile forces
perpendicular to the glenoid surface, permissive of angulation, and
potentially without sacrificing stability.

When comparing the biomechanical strength of SB fixation and
traditional screw constructs in the Latarjet procedure, Provencher
et al report that despite the DSB construct yielding higher load-to-
failure and higher strain-at-failure than traditional double screw
fixation, the difference was not statistically significant (P values of
0.26 and 0.06, respectively).28 Other studies have found similar
favorable results for the use of SBs,2,39 while others demonstrated
worse performance or no difference when compared to screw fix-
ation.19,23,28,31 The present study demonstrated no difference in
cyclic displacement between double screw and DSB constructs. In
addition, DSB s demonstrated higher load-at-failure at no angula-
tion (0�) and moderate angulation (15�). Further, this construct also
demonstrated similar loads-at-failure at mild and greater angula-
tion (DSB15 and DSB30) compared to screw fixation with no
angulation and mild angulation (DS0 and DS15), respectively. The
finding that SBs may be biomechanically stronger than screws,
even when angulated may suggest SBs are more forgiving than
screws, having equivalent construct stability even with mild off
angulation compared to a perfectly aligned screw construct. These
biomechanical results appear to be supported by the clinical find-
ings of a 91% bone block healing rate on computed tomography
imaging 6 months following with the additional benefit of no
neurologic or hardware complications at 14 months follow-up.28

These biomechanical results add to the growing body of clinical
literature supporting use of SB fixation in glenoid augmentation
procedures. A clinical alternative to screw fixationwas first pursued
by Taverna et al to mitigate hardware complications inherent to the
screw fixation construct.34 This concern is supported by the litera-
ture with the most frequent complication in Latarjet/Brostow pro-
cedures being related tohardware,withup to6.5% of cases involving
hardware failure (screw bending/breakage, loosening, or malposi-
tion) and irritation (humeral head or soft tissue impingement)7,12

Roughly 35% of cases requiring reoperation are for symptomatic
hardware screw removal.5,12 Several SB graft fixation series have
been reported with favorable results, the largest being Boileau’s
cohort of 121 patients and continued positive clinical outcomes,
with 95%of patients experiencingbonyunionof the coracoidgraft to
the glenoid rim, a 4% redislocation rate, and a 70% rate of return to
sport at the same or higher level within 1 year of surgery.4,5,22

Limitations

This study has several limitations. Firstly, this is an in vitro model
utilizing Sawbone foam blocks without a synthetic cortex, rather than
more biologically representative cadaveric tissue. However, the choice
of foam block specimens has the benefit of specimen uniformity,
reducing the effect of bone density variation on testing outcomes.9 By
extension, our force testing modules were unable to recreate addi-
tional in vivo forces such as tension from the conjoined tendon on the
coracoid process, rotational forces, strain, or differences in loading
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capacity secondary to bone healing.5,9,28 However, the benefits of a
consistent testing protocol allowed assessment of a single variable in a
reproducible fashion that may not have been economically feasible
with cadavers of varying ages, genders and resultant bone densities.
Other limitations of this study are a small sample size, potential for
human error during assembly, and the external validity of synthetic
constructs,which is true ofmanybiomechanical studies. An additional
limitation is that biomechanical testing only provides a time zero
assessment of construct stability. How construct stability is impacted
with healing is not addressedwith this analysis. Lastly, our study does
not investigate mode of failure of the grafts, an important clinical
question that can be addressed in future cadaveric studies. These
findings are sound biomechanically, but will need to be validated
in vivo by examining bone healing and incorporation rates using these
various fixation techniques. Although, there have been promising
clinical outcomes reported in the early postoperative setting, there still
remains work to be done investigating outcomes at long term follow-
up in order to confirm findings from biomechanical studies.

Conclusion

SBs are biomechanically stronger than screws in glenoid
augmentation procedures at 0� and 15�. Off axis angulation of 15�

with a SB construct provided equivalent strength to a 0� screw
fixation construct.
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