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ABSTRACT
◥

Purpose: Endocrine therapy resistance (ETR) remains the
greatest challenge in treating patients with hormone receptor–
positive breast cancer. We set out to identify molecular mechan-
isms underlying ETR through in-depth genomic analysis of
breast tumors.

Experimental Design: We collected pre-treatment and sequen-
tial on-treatment tumor samples from 35 patients with estrogen
receptor–positive breast cancer treated with neoadjuvant then
adjuvant endocrine therapy; 3 had intrinsic resistance, 19 acquired
resistance, and 13 remained sensitive. Response was determined by
changes in tumor volume neoadjuvantly and by monitoring for
adjuvant recurrence. Twelve patients received two or more lines of
endocrine therapy, with subsequent treatment lines being initiated
at the time of development of resistance to the previous endocrine
therapy. DNA whole-exome sequencing and RNA sequencing were
performed on all samples, totalling 169 unique specimens. DNA

mutations, copy-number alterations, and gene expression data were
analyzed through unsupervised and supervised analyses to identify
molecular features related to ETR.

Results:Mutations enriched in ETR included ESR1 and GATA3.
The known ESR1 D538G variant conferring ETR was identified, as
was a rarer E380Q variant that confers endocrine hypersensitivity.
Resistant tumors which acquired resistance had distinct gene
expression profiles comparedwith paired sensitive tumors, showing
elevated pathways including ER, HER2, GATA3, AKT, RAS, and
p63 signaling. Integrated analysis in individual patients highlighted
the diversity of ETR mechanisms.

Conclusions: Themechanisms underlying ETR are multiple and
characterized by diverse changes in both somatic genetic and
transcriptomic profiles; to overcome resistance will require an
individualized approach utilizing genomic and genetic biomarkers
and drugs tailored to each patient.

Introduction
Breast cancer is one of the leading causes of mortality in women.

Over 75% of breast cancers are estrogen receptor–positive (ERþ) and
approximately 65% of these are also progesterone receptor–positive
(PRþ). ERþ and/or PRþ breast cancer is also known as hormone
receptor–positive (HRþ), and has the best prognosis among all
breast cancers, with 5-year relative survival rates estimated to be
around 90% (1). Good outcomes are largely attributed to success in

therapeutically targeting HRs. However, not all HRþ patients respond
to endocrine therapy due to a variety of reasons including molecular
heterogeneity (15%–20%: intrinsic resistance) as well as cellular
phenotypes that develop and evolve during treatment (30%–40%:
acquired resistance; ref. 2). Breast cancers exhibit unique somatic
mutations, copy-number alterations (CNA), and transcriptomic pro-
files, which are particularly frequent among the HRþ subgroup (3–5)
and can contribute to endocrine resistance.

Commonly used endocrine agents in clinical practice that target the
ER include the selective ER modulator tamoxifen and the selective ER
degrader fulvestrant (6). An alternative option is to reduce levels of
circulating estrogen using the aromatase inhibitors (AI: letrozole,
anastrozole, and exemestane); these work by inhibiting aromatase,
and thus blocking estrogen production in postmenopausal women.
They can be used in premenopausal women when combined with
ovarian suppression or ablation. Despite there being a variety of agents
with different modes of action, resistance can develop to each of these
treatments, and is inevitable in the metastatic setting.

Extensive studies have investigated resistance mechanisms
to endocrine therapies (7–9). These fall mainly into the following
categories: changes in the estrogen signaling pathway, activation of
growth factor signaling pathways, and cell-cycle dysregulation.
Changes in the estrogen signaling pathway represent the most com-
mon resistance mechanisms where genetic and/or epigenetic altera-
tions in ER or ER-associated transcription factors and coactivators
have been identified (10–13). Specifically, somatic mutations in ESR1
following AI treatment alter ER signaling and result in endocrine
insensitivity due to constitutive activation (14). Growth factor signal-
ing pathway activation including EGFR/HER2, FGFR, MAPK, and
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PI3K has also been associated with resistance (15–18). Cell cycle
regulator changes including amplification of cyclins, cyclin-
dependent kinases (CDK), MYC, and loss of RB can uncouple the
cell cycle from estrogen-mediated entry into G1/S and represent a
further resistance mechanism (19–21).

Breast cancer is a highly heterogeneous disease and the full range
of mechanisms underlying endocrine resistance has not as yet been
fully characterized. To best identify and characterize known and
postulated resistance mechanisms, studies using patient-derived
materials utilizing comprehensive DNA and RNA sequencing
(RNA-seq) can provide optimal insight, however, there have been
few comprehensive studies addressing this using a multi-omics
approach. Here, we present an integrated analysis of both DNA
sequencing and RNA-seq of a cohort of 35 patients with ERþ breast
cancer treated with primary endocrine therapy, who had tumor
biopsies performed before and during treatment with endocrine
therapy, and at the time of recurrence in those with progressive
disease. Clinical response was defined according to institutional
standards by monitoring changes in tumor volume by 3D ultra-
sound in the neoadjuvant setting and conventional monitoring for
recurrence in the adjuvant setting. Twelve patients received two or
more lines of endocrine therapy agents, with second-line agents
being initiated at the time of development of resistance to first-line
agents.

The aim of this study was to delineate the mechanisms of endocrine
resistance in these patients. We have examined mutation and copy
number landscapes, and transcriptional profiles, and found genetic
and transcriptomic changes specific to resistant tumors. These results
highlight the genetic diversity of the resistance process.

Materials and Methods
Patients, consent, and tissue processing

Tumor tissue was obtained from 35 patients with ERþ breast cancer
who consented to participate in this research study at the Edinburgh
Breast Unit and University of Edinburgh (Edinburgh, UK). Written
informed consent was obtained from all patients. Ethical approval for
the study was granted under the Lothian NRS BioResource approval
number 20/ES/0061 and the study was conducted in accordance with
Scottish Common Law. Patient characteristics are presented inTable 1

and Supplementary Table S1. All patients received neoadjuvant or
primary endocrine therapy, which was continued in the adjuvant
setting for those patients who eventually underwent surgery. In total,
23 patients were treated with a single endocrine agent only, while 12
patients received two or more lines, with second-line agents being
initiated at the time of resistance to first-line agents in those patients
who did not wish surgery or were deemed unfit for surgery at that time.
Neoadjuvant treatment in this cohort ranged from 3.6 months to
61.2months with amedian duration of 7.8months. Of 34 patients who
underwent surgery, 23 had a wide local excision and 11 had mastec-
tomies. Six patients had surgery at the time of cancer recurrence while
receiving adjuvant endocrine therapy with samples at surgery being
obtained for analysis (Fig. 1).

Neoadjuvant clinical response was assessed bymonitoring dynamic
changes in 3D tumor volume, determined by repeat ultrasound
measurements recorded during the neoadjuvant treatment window
and performed by a single sonographer (J.M. Dixon). Clinical response
classification was determined using RECIST 1.1 criteria. All patients
had long-term follow-up and for those who had surgery (n ¼ 34),
adjuvant response was determined by monitoring for cancer recur-
rence. Of the 35 patients, 13 patients remained endocrine therapy
responsive throughout treatment, 3 patients had intrinsic resistance to
neoadjuvant therapy, and 19 patients acquired resistance: 13 during
neoadjuvant therapy and 6 developed a recurrence on adjuvant
endocrine therapy following previous neoadjuvant therapy. Of the 6
who developed a recurrence, 3 went on to develop further recurrences
on subsequent adjuvant endocrine agents: each had surgery followed
by a new adjuvant endocrine therapy agent at the time of each
recurrence. Overall, 13 patients remained sensitive to the first

Table 1. Clinical characteristics of the study population (n ¼ 35).
Pathologic characteristics are from institutional clinical pathologic
assessment without central review.

Age at diagnosis 75 y (mean);
43–95 y (range)

ER status
ERþ (Allred 7) 7
ERþ (Allred 8) 28

HER2 status
HER2þ 3
HER2� 32

Histologic grade
1 2
2 22
3 11

Lymph node status
Positive 14
Negative 20
Unknown (no surgery) 1

Menopausal status
Pre 1
Post 34

Surgery
Wide local excision 23
Mastectomy 11
No surgery 1

Adjuvant therapy
Endocrine therapy 35
Chemotherapy 6
Radiotherapy 17

Abbreviation: y, years.

Translational Relevance

Many patients with estrogen receptor–positive breast cancer
develop drug resistance during endocrine therapy treatment. The
molecular mechanisms underlying endocrine therapy resistance
are not fully understood. We sought to investigate this by utilizing
comprehensive and integrated DNA and RNA analysis of samples
of breast cancers from 35 patients treated over time with endocrine
therapy, whose cancers were responsive, had intrinsic resistance, or
developed acquired resistance. We identified known and novel
mutations enriched in resistant tumors, as well as unique tran-
scriptomic profiles specific to resistant tumors leading to increased
activation of multiple oncogenic signaling pathways. Each patient
displayed distinct molecular profiles, showing a variety of mechan-
isms of resistance, corroborating the highly heterogeneous nature
of endocrine resistance. Improving the treatment of resistant
tumors will require a personalized approach tailored to patient-
specific causes of resistance.
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endocrine agent (Supplementary Table S1). All patients received
clinical follow-up for 10 years from diagnosis or until death. No
responsive patients developed a recurrence in that time, and none
died from breast cancer. For each patient, tumor core biopsies were
taken during the neoadjuvant treatment window using ultrasound-
guided 14-guage needle core biopsy. On average, three sequential
tumor tissue samples were taken from each patient (range 2–8
samples). Biopsies were taken at diagnosis (pretreatment), at 2 to
4 weeks on-treatment, and obtained at progression or every 3 to
6months in those patients who declined orwere not deemed fit enough
for surgery at the time and were instead managed by longer-term
primary endocrine therapy. A relative increase in tumor volume of
20% or greater prompted surgery or rebiopsy and initiation of a
second- or third-line endocrine agent. Tumor tissue was collected at
surgery and when recurrence developed. All surgeries were performed
to clear margins by a single surgeon (J.M. Dixon). Wherever feasible,
multiple tumor samples were taken from each recurrence. In total,
sufficient RNA and DNA was successfully extracted from 32 primary
tumors and 137 tumor specimens during treatment and was used for
DNA whole-exome sequencing (WES) and RNA-seq.

For 17 patients, fresh-frozen tissue was available. Core biopsy
and surgical tissues were snap-frozen in liquid nitrogen immedi-
ately after the procedure. For the remaining 18 patients, formalin-
fixed, paraffin-embedded (FFPE) tissues were analyzed. For fresh-
frozen tissues, DNA and RNA were isolated using QIAGEN
RNAeasy and DNAeasy kits, respectively, according to the manu-
facturer’s protocols. For FFPE tissues, RNA and DNA were isolated
with QIAGEN AllPrep FFPE Kit, according to the manufacturer’s
protocols. RNA quality was assessed with an Agilent BioAnalyzer
RNA 6000 Nano Kit.

DNA WES
DNA was prepared for sequencing using the Agilent Technologies

SureSelect XT library protocol. Fresh-frozen tumors were processed
according to the manufacturer’s protocol for 3 mg input, while FFPE
tumors were processed with the low-volume input according to the
manufacturer’s protocol for 200 ng input. DNA libraries were captured
and amplified with Agilent Technologies SureSelect Human All Exon,
version 5 for fresh-frozen tissues or version 6 for FFPE tissues,
according to the manufacturer’s protocol. The quality of both the
DNA libraries and DNA exome capture and concentration were
quantified with Agilent TapeStation DNA 1000 and High Sensitivity
D1000, respectively. Paired-end sequence data (2 � 100 bp) were
generated using the Illumina HiSeq 2500 for each tumor or normal
sample, with three samples per lane. Illumina readsweremapped to the
hg19 reference sequence with Burrows-Wheeler Aligner (BWA) 0.7.9a
(22), realigned with ABRA, version 0.96 (23), and processed by
biobambam2 (24). Viral alignments were counted with Samtools (25)
and BEDTools-Version- 2.15.0. Picard 1.92 (26) was used to calculate
sequencing metrics. ISAAC (27) and Freebayes were used to call
germline mutations with quality scores above 30. SnpSIFT, version
1.3.4, band SnpEFF (28) was used to annotate alterations with pop-
ulation-level frequencies. CADABRA SomaticLocusCaller was used
for further filtration. Somatic variants were called with STRELKA (29)
using strelka_config_bwa_default.ini.

Minor allele frequencies of highly variable SNPs called by Freebayes
in the general population were used for sample identity. All tumor
normal pairs had an expected 89% to 100% identity from the same
patient.

DNA CNAs were identified with SynthEx (30) using 50,000-bp–
sized bins and K-nearest neighbors (KNN) ¼ 4 from the pool of 31

Figure 1.

Patient scheme. Swimmer plot indicating timing of endocrine therapy treatment and tumor tissue sampling for each patient stratified by patient response to
endocrine therapy. For each tumor sample, response to treatment defined by assessment of tumor volume change and number of biological replicates were
indicated. Clinically HER2þ patients with positive IHC staining were highlighted in pink box.
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available normal tissues. Briefly, the ratio of on-target and off-target
exome reads of the tumor were compared with a normal tissue selected
from the dataset by the highest degree of similarity by KNN based on
library size and fold enrichment. Segment-level ratios were calculated
and log2-transformed. Copy number levels greater than 0.25 were
considered gains, and levels below –0.2 were considered losses. Using
Ensemble hg19 gene annotations, genes were mapped to segments
in each sample and a gene by sample copy number matrix was
constructed. Specifically, a gene that totally falls into a segment was
assigned the copy number of that segment.

RNA-seq
Fresh-frozen RNA ribo-zero libraries were prepared with rRNA

removed from total RNA using Epicentre’s Ribo-Zero rRNA
Removal kit (catalog no. RZH11042). Thirty to 100 ng Ribo-
Zero RNA was used for the construction of the library using the
Illumina TruSeq RNA Sample Prep Kit (catalog no. RS-122–2001)
and followed the manufacturer’s instruction, except for omitting
the purification step before fragmentation. FFPE RNA was prepared
with the Illumina TruSeq FFPE RiboZero Gold protocol according
to the manufacturer’s instructions. RNA libraries were sequenced as
2 � 50 bp paired-end reads with two samples per lane on Illumina
HiSeq 2500 sequencers. Reads were aligned with STAR2.4.2a (31),
and gene values were quantitated with Salmon (32). Raw gene
counts were upper quartile normalized, filtered to genes that present
in over 70% of samples, and log2-transformed. To correct the batch
effect between fresh frozen and FFPE samples, log2-transformed
gene expression values for fresh-frozen and FFPE sample sets were
separately median centered and column standardized, then merged
to a uniform dataset for downstream analysis (33, 34).

PAM50 subtyping was implemented as described in Fernandez-
Martinez and colleagues (35). Briefly, batch-corrected gene expression
data were normalized to ERþ samples in the PAM50 training set (36).
Correlation to each subtype centroids was calculated, and subtypes
were called according to the nearest centroid.

Computational and statistical analysis
Gene expression signatures

Apanel of 654 previously published gene expression signatureswere
used to fully characterize cancer expression phenotypes (Supplemen-
tary Table S2). These 654 signatures were obtained from multiple
publications or gene set enrichment analysis (GSEA; ref. 37) and were
summarized in Xia and colleagues (26). Signature scores were calcu-
lated in away consistent to how theywere derived, noting that the large
majority were median expression of a predetermined set of genes (38).

Linear mixed model of CNA, gene expression, and gene
signatures

To identify differential CNAs, gene expressions, and gene sig-
natures, biological replicates in CNA data, batch corrected gene
expression, data, or gene signatures data were first collapsed into
pseudo-samples by taking the mean value of multiple biological
replicates (for example, sample 020–4-1A, 020–4-1B, 020–4-1C,
020–4-1D, and 020–4-2A were collapsed into 020–4 by averaging
each CNA/gene/gene signature values). Patients were then filtered
to those with documented acquired resistance and those that had at
least one sensitive tumor and at least one resistant tumor, resulting
in N ¼ 13 patients with 38 samples for CNA analysis and N ¼ 17
with 53 samples for gene expression, and gene signature analysis.
For gene expression, genes were further filtered to those with Entrez
ID. Each CNA, gene, or signature was then tested for differential

expression in the resistant tumors versus sensitive tumors, with the
patient taken into account as a confounding variable using lme4
package in R (39): lmer[value � sensitive/resistant þ (1|patient)].
Permutation-based FDR was calculated by permuting the tumor
sensitive/resistant labels 100 times.

Hierarchical clustering of gene expression, and gene signatures
For gene expression, hierarchical clustering was done using corre-

lation distance metric and complete linkage. Clustering for gene
signatures was done using Euclidean distance metric and complete
linkage. All clustering was done using R package pheatmap.

Computational reinterrogation of somatic mutations in related
tumors

Low read coverage or low tumor cell purity can cause the rigorous
somatic mutation caller to miss mutations (23–40). Thus, all of the
high-confidence somatic mutations from every tumor taken from 1
patient were reinterrogated within the same tumors from that same
patient. First, all of the somatic mutations from the tumors within a
patient were collapsed into one file, excluding any guanine-to-adenine
or cytosine-to-thymine mutations from FFPE samples. For each
mutation from a single patient, we then counted the mutant and
reference alleles at that position from the original BAM file of each
tumor from that patient. Variant allele frequencies (VAF; alternate
counts/total read counts) were recalculated from the new calls. All
mutations from the data set were interrogated in the normal sequence
for all tumors in this data set to account for false-positives. Mutations
with VAFs of greater than 20% in at least two normal tissues from
unrelated patients were excluded from future analyses.

Count table for mutations
We filtered patients to those with acquired resistance and 12

patients had at least one sensitive and one resistant tumor sample
with successful DNA sequencing. For each gene in the Pan-Cancer 299
significantly mutated genes, we divided the 12 patients into the
following four categories according to mutation status of the gene:
(i) patients with mutation present in both sensitive and resistant
tumors, (ii) patients with mutation present in resistant tumors only,
(iii) patients with mutation present in sensitive tumors only, and (iv)
patients withmutation present in neither sensitive or resistant tumors.
All sensitive tumors and all resistant tumors from each patient were
considered as a whole.

Mutational signatures
Mutational signatures were calculated using R package Decon-

structSigs v1.8.0 to determine the weights of known mutational
processes (COSMIC mutational signatures v2 – March 2015:
https://cancer.sanger.ac.uk/signatures/signatures_v2/) in each tumor
sample. We then focused on four signatures that are known to be
important in breast cancer including Signature 1: age-related; Signature
2: and Signature 13: apobec-related; and Signature 3: homology directed
repair (HDR)-related.

R version
All statistical analyses were performed using R v. 3.5.2 in RStudio.

Data availability
DNA WES data are available at the EMBL-EBI ArrayExpress

database under the accession number E-MTAB-10080. RNA-seq data
are available at the EMBL-EBI ArrayExpress database under the
accession number E-MTAB-9917.
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Results
Patient characteristics

We examined the clinical features andmolecular subtypes of all 169
samples, representing 35 patients (Supplementary Table S3). This
cohort had a median age of 75 years at the diagnosis of breast cancer
and a median follow-up of 4 years (Table 1). Responses to endocrine
therapy were categorized as intrinsic resistance (nonresponse, n ¼ 3),
acquired resistance (initial response followed by tumor regrowth, n¼
19), or ongoing sensitivity (initial response that was maintained or no
evidence of recurrence, n¼ 13; Fig. 1; Supplementary Fig. S1). Thirty-
three patients received letrozole as initial neoadjuvant therapy, 1
received anastrozole, and 1 received 2 weeks of fulvestrant prior to
surgery and subsequent adjuvant tamoxifen, as part of a clinical study.
Of the 33who received primary letrozole, 3were changed to alternative
endocrine therapies (2 received tamoxifen and 1 received anastrozole)
due to side-effects with letrozole. All patients had ERþ tumors (Allred
score 7–8; Table 1) by clinical pathologic report and 3 had HER2þ

tumors by IHC 3þ; Fig. 1). We applied the PAM50 subtype predictor
to determine their intrinsic molecular subtype (35, 36). Of 32 primary
tumors with successful RNA-seq, 14 were Luminal A (LumA); 14 were
Luminal B (LumB), 3 were HER2-enriched, and 1 was Normal-like.
Among the three HER2-enriched primary tumors, 2 were HER2þ by
IHC and 1wasHER2� by IHC.Of note, the three intrinsically resistant
primary tumors had subtypes of LumA, LumB, and Normal-like. This
Normal-like primary tumor had very close correlation to LumA
centroid and to the Normal-like centroid, which is not uncommon
formany low cellularity LumA tumors (4). Of all 167 tumor specimens
subtyped including the primary tumors, 79 were LumA, 50 were
LumB, 17 were HER2-enriched, 1 was Basal-like, and 20 were Nor-
mal-like. Only 8 patients had consistent subtypes across all samples
from that patient, and therewere cases when even two specimens of the
same tumor showed different subtypes, indicating that spatial and
temporal tumor heterogeneity does occur.

Genomic landscape of endocrine resistance
WES revealed many somatic mutations and especially many CNAs.

Previous work has shown that low-frequency subclones present at 1%
to 5% in the primary tumor can be enriched to greater than 40% in
related metastases (41). Despite this some have used cutoffs of VAF to
exclude low-frequency variants (42, 43). To minimize false-positives
while maintaining high sensitivity, we followed a computational
reinterrogation approach described by our group previously (34).
Briefly, high-quality somatic variants called from the multiple samples
of the same patient were combined into a single file per patient. The
combined file containing all variants from the same patient were then
reinterrogated across all samples from that patient. This method
greatly improved detection of variants of low VAF and increased the
percentage of shared variants across samples from each patient
(Supplementary Fig. S2). Using the reinterrogated variants set, we
explored the somatic mutation landscapes (Supplementary Table S4).

Genes previously shown to be recurrently altered in breast cancers
were prevalent in this cohort. PIK3CA had the highest mutation rate
with occurrence in 15 out of 35 patients. The other frequently mutated
genes in our set included GATA3, CDH1, TP53, and ESR1, with
mutation occurrences over 7 patients. The frequency in gene altera-
tions reflected the multiple timepoints for a patient and/or multiple
biopsies at a given timepoint (Fig. 2A). Of note, PIK3CA hotspot
mutations were observed recurrently in all 3 patients that had de novo
endocrine resistance, providing supporting evidence for previous
findings that demonstrate hyperactivation of the PI3K pathway can

promote endocrine therapy resistance (ETR; Supplementary Fig. S3;
ref. 44). Mutations in the ESR1 gene have been extensively linked to
ETR with the missense mutation D538G being the most preva-
lent (45, 46); this mutation confers ligand-independent constitutive
activation. Consistent with previous findings, ESR1 D538G had the
highest frequency in our cohort, showing a pattern of enrichment in
resistant tumors (Fig. 2B). It was observed in none of the intrinsic
resistant patients and in 5 acquired resistance patients during treat-
ment with aromatase inhibition. Of these, 1 patient had the variant in
the primary tumor with a very low VAF which increased in frequency
in the subsequent endocrine-resistant tumor; 1 patient did not have the
variant in primary tumor and acquired the variant in the subsequent
resistant tumor; and the remaining 3 patients had the variant in
resistant tumors with unknown status in primary tumors (DNA
sequencing not available). Interestingly, we also found an ESR1
E380Q variant present at diagnosis in 1 responsive patient with
ongoing response to letrozole. The VAFs gradually decreased in
subsequent samples, in line with this mutants’ estradiol hypersensi-
tivity nature (47).GATA3was the second highest mutated gene, with a
range of detected variants (Fig. 2C). GATA3 is an ESR1-cooperating
transcription factor with frame-shift mutations beingmost commonly
reported, however, there have been few studies of its potential role in
endocrine resistance (48, 49). Recently Takaku and colleagues dem-
onstrated that a specific type of GATA3mutations in the second zinc-
finger region reprogrammed progesterone receptor signaling (50).
Accordingly, we saw mostly frame-shift mutations in our cohort, with
four variants residing in the second zinc finger region and two acquired
in resistant tumors (Fig. 2C).

To identify genes enriched in resistant tumors genome wide, we
focused on the patients with DNA sequencing matched pre- and on-
treatment samples who acquired resistance in the neoadjuvant setting
(N¼ 12) and performed amatched mutation analysis (i.e., primary vs.
matched later resistant samples per patient). We constructed count
tables for each gene summarizing its mutation status in any of the
sensitive and resistant tumors for each patient. Using a previously
identified Pan-Cancer significantly mutated gene list (51), we found a
variety of driver genes that were acquired in resistance in at least 1
patient (Supplementary Table S2). ESR1 appeared at the top of the list
with 2 patients having the mutation acquired in resistant tumors. We
identified 38 such genes including GATA3.

DNA CNAs including chromosome arm and subarm level changes
were called using SynthEx (Supplementary Table S5; refs. 30). The
copy number gain and loss frequencies were comparable with The
Cancer Genome Atlas (TCGA) ERþ cohort (4). For example, we saw
frequent 1q gain and 16q loss, noting that 16q loss is specific to
luminal/ERþ breast cancers (Fig. 2D). Across the whole dataset, there
were some differences between copy number landscapes of sensitive
and resistant tumors, however, using a linear mixed model comparing
copy number values between sensitive (N ¼ 18 from 13 patients) and
resistant tumors (N¼ 20 from 13 patients, seeMethods for detail), and
accounting for patients in the acquired resistance patient group, no
significant regions of loss or gain were identified. This may be due to
our small sample size.

We calculated the weights of known DNA mutational signatures
(COSMIC v2) for each sample using DeconstructSigs. We then
investigated both known DNA copy number changes that confer
endocrine resistance, i.e., ERBB2 and FGFR1, and mutational signa-
tures that are important in breast cancer, i.e., age-, apobec-, and HDR-
related signatures in each patient that acquired endocrine resistance
(Supplementary Fig. S4). Results demonstrated that few patients
showed potential resistance mechanisms related to investigated CNA
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Figure 2.

Genomic characteristics.A, The pattern, frequency, and type of genomic alterations of key breast cancer genes across patients. Sampleswere ordered by patient and
response to endocrine therapy treatment. The type of variants detected shown in lollipopplotwith labeling color indicating variants observed in sensitive tumors only
(cyan), that observed in resistant tumors only (orange and boxed), and that observed in both sensitive and resistant tumors (orange) for ESR1 (N¼ 8 patientswith 23
samples;B) andGATA3 (N¼ 13 patientwith 31 sampels;C).D,Copynumber frequency landscapeplots showing copy number–altered genes in sensitive and resistant
tumors respectively. For each patient, copy number values were averaged among all sensitive samples and resistant samples from that patient, resulting in 23
sensitive tumors and 21 resistant tumors. Copy number gains are plotted above the x-axis in red and copy number losses are plotted below the x-axis in green. The
frequency of alterations is indicated on the y-axis from 0% to 100%.

Drivers of Endocrine Therapy Resistance in Breast Cancer

AACRJournals.org Clin Cancer Res; 28(16) August 15, 2022 3623



and mutational signatures. For example, patient 020 showed acquired
ERBB2 amplification in resistant samples and patient 022 showed
acquired FGFR1 amplification in one of the resistant samples. These
selected genetic features also showed the vast genetic heterogeneity
among patients and spatial biological replicates.

Differential transcriptional program in endocrine-resistant
tumors compared with paired sensitive tumors

To identify genes differentially expressed in resistant versus sensi-
tive tumors, we used linear mixed models to compare matched
sensitive tumors with resistant tumors accounting for patients using
the RNA-seq data. Briefly, biological replicates of the same tissue were
first collapsed to construct a pseudo-sample by takingmean expression
values across samples for each gene. We used RNA-seq data from 19
patients with acquired resistance and did matched comparisons of the
untreated primary and the same tumor after acquisition of resistance.

The t-statistic derived from the linear mixed model defines how
consistently a gene is altered comparing resistant and sensitive tumors
from each patient. The labels indicating treatment response were
randomized 100 times to calculate FDRs.

We found 316 upregulated genes and 123 downregulated genes in
resistant tumors that have FDR < 5% and fold change > 4 (for
upregulated genes) or< 0.25 (for downregulated genes; Supplementary
Table S6).Hierarchical clustering of these significantly expressed genes
across the whole dataset encompassing all patients and samples largely
separated sensitive and resistant tumors (Fig. 3A; Supplementary
Table S7). Primary tumors and biopsy samples from tumors that
retained endocrine sensitivity clustered together and resistant tumors
also clustered together. Gene ontology (GO) analysis revealed that the
upregulated genes in acquired resistant tumors were associated with
cell proliferation, with GO terms chromatin assembly, nucleosome
assembly, and DNA packaging (Fig. 3B). We then checked a known

Figure 3.

Differential gene expression, in resistant tumors. A, Hierarchical clustering of batch corrected RNA gene expression of significantly differentially expressed genes in
resistant tumors (N¼ 24 from 17 patients) comparedwithmatched sensitive tumors (N¼ 29 from 17 patients) using linearmixedmodels.B,GO terms associatedwith
upregulated genes in resistant tumors. C, Box plot indicating median score and interquartile range of proliferation scores in resistant and sensitive tumors.
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proliferation score and it was higher in resistant tumors among the 19
patients (Fig. 3C; ref. 52).

To fully characterize tumor transcriptional portraits, we used a
panel of 654 previously published gene expression signatures mea-
suring a variety of tumor phenotypes including amplicon signatures,
oncogenic pathways, proliferation, and the tumor microenvironment
(Supplementary Table S2; ref. 26). We calculated gene expression
signature scores for each tumor and performed similar differential
expression analysis using these signatures features. Among the
acquired resistance tumors compared with their matched untreated
primary, we found 37 upregulated gene signatureswith FDR< 0.01 and
fold change >1.15, and 3 downregulated gene signatures with FDR <
0.05 and fold change < 1 (Supplementary Table S8). Hierarchical
clustering of differentially expressed signature scores again separated

resistant and sensitive tumors (Fig. 4A; Supplementary Table S9). In
particular, PAM50 subtype correlation to LumA centroids signature
was one of the 3 downregulated signatures, concordant with the fact
that resistant tumors were enriched with HER2-enriched and LumB
subtypes. Among the upregulated signatures include two amplicon
signatures, i.e., 16q23 and 8q, hypoxia, and several oncogenic pathway
signatures; both estrogen and HER2 signaling pathways were also
upregulated. A signature composed of GATA3-induced genes was also
upregulated in resistant samples. In addition, AKT, RAS, and p63
pathways showed higher expression in resistant tumors, consistent
with previous findings that growth factor signaling pathways play
important roles in endocrine resistance (Fig. 4B; ref. 53). These results
demonstrate resistant tumors harbor many transcriptional program
changes compared with sensitive tumors.

Figure 4.

Differential expression of gene signatures in resistant tumors. A, Hierarchical clustering of significantly differentially expressed gene signatures in resistant
tumors (N ¼ 24 from 17 patients) compared with matched sensitive tumors (N ¼ 29 from 17 patients) identified through linear mixed models. B, Box plots
indicating median score and interquartile range of significant signatures showing elevated signaling pathways in resistant tumors.
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Molecular portraits of selected patients
Finally, we sought to integrate our DNA and RNA analysis for each

patient to identify the mechanisms of resistance in individual patients.
Patient 006 was responsive to letrozole treatment, and the tumor
volume changes clearly showed a good response to treatment (Sup-
plementary Fig. S5A). VAF plots showed a decreased number of
variants and lower VAF likely due to low tumor purity, although
cancer cell cellularity remained high as assessed by a pathologist
(Supplementary Fig. S5B). This patient had ESR1 E380Q hypersen-
sitivity variant in the primary tumor and the following two samples
had a lower VAF in later tumor specimens, suggesting selective death
of these endocrine-sensitive cells (Supplementary Fig. S5C). E380Q is
characterized as hypersensitive to estrogen ligand, which likely con-
tributed to this tumor’s responsiveness. Accordingly, proliferation rate
was initially high in the primary tumor, which subtyped as LumB, and
decreased in subsequent LumA tumor specimens from this patient
(Supplementary Fig. S5D).

Patient 020 acquired resistance and had only received letrozole
treatment (Fig. 5A). The primary tumor and the second specimen
were taken while the patient was responding, while the third and the
fourth specimenswere collectedwhen the cancerwas growing and thus
was resistant. A number of somatic mutations were detected (Fig. 5B),
and there was a clear clonal shift from the second sensitive specimen to
the fourth resistant specimen, from which there were five biological
replicates (Fig. 5C). This patient gained both ESR1 and GATA3
mutations along with many other mutations including CHD4, CDH1,
and PIK3R1. Gene expression showed a decreased proliferation rate in
the second sensitive tumor that increased in the subsequent resistant
tumors. Molecular subtype switched from primary tumor of LumB to

LumA and back to LumB (Fig. 5D). Copy number landscapes showed
increased genome instabilities in resistant specimens as well (Fig. 5E).

Finally, patient 028 had high ERBB2 mRNA expression and had a
HER2-enriched gene expression subtype but lacked clinical HER2
status. This patient had multiple lines of endocrine therapy including
fulvestrant, tamoxifen, and letrozole. Detected somatic variants
showed clear clonal shifts (Fig. 6A and B), and acquired mutations
included FGFR3 andGABRA6. There was also expansion of an existing
clone in primary tumor containing mutations of PTEN, PIK3R1, and
TP53, which are all recurrent variants. In terms of gene expression, all
samples were classified as HER2-enriched subtype, with high ERBB2
and FGFR4mRNAexpression. Recently Garcia and colleagues showed
that high FGFR4 expression plays an important role inHER2-enriched
breast cancers and was associated with disease progression (54).
Proliferation was lowest in the primary tumor and increased in later
resistant tumors (Fig. 6C). The resistant tumor samples showed higher
levels of copy number gains and losses (Fig. 6D).

Discussion
ETR remains the biggest barrier to prolonged survival and cure for

patients with ERþ breast cancer. There have been many studies
investigating mechanisms of resistance and several have been defined,
including acquired ESR1 mutations (14, 53). Here we sought to
understand more about the development of endocrine resistance in
a series of ERþ patients during hormonal therapy treatment utilizing
integrated DNA sequencing and RNA-seq. We identified mutations
that were enriched in resistant tumors, and we identified transcrip-
tional profiles specific to tumor resistance, thus providing a molecular

Figure 5.

Molecular portraits of a luminal patient with acquired endocrine resistance A, Line plot showing tumor volume change indicating resistance to endocrine therapy
acquired for the last two samples. Red dots, Timing for tissue sampling. B, Box plots indicating median score and interquartile range of VAF of detected variants
stratified by synonymous and nonsynonymous variants. C, Heatmap showing VAF of nonsynonymous variants of Pan-Cancer drivers. D, Heatmap showing gene
expression of hormone receptors and key signaling pathways. E, Heatmap showing copy number landscapes of all tumors from the patient.
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mechanism of resistance for some patients. This study is unique in its
ability, through repeated and serial tissue acquisition during different
phases of endocrine sensitivity within individual patients, to examine
real-time alterations contributing to endocrine resistance.

Our work confirmed previous findings related to endocrine
resistance mechanisms. Mutations enriched in resistant tumors
include ESR1, GATA3, and FGFR3. Multiple signaling pathways
were activated in resistant tumors including HER2, AKT, and RAS
signaling, leading to increased proliferation rates within resistant
specimens. Due to our sample size, larger cohort studies are needed
to confirm mutations we identified that were only acquired by 1
patient, and increased power may allow detection of recurrent copy
number changes.

Studies of sensitive breast cancers showed that clones that are
sensitive to endocrine therapy can disappear under selective drug
pressure. This was clearly seen in the patient with a sensitizing ESR1
E380Q variant that was present in the primary tumor and gradually
disappeared in later samples. The genomic complexity seemed to
reduce in sensitive cancers during treatment with a possible explana-
tion being reduced cancer cellularity although the samples analyzed
contained significant amounts of tumor on histological assessment. It
is well known that multiple clones can exist within a primary cancer.
Our observations show some clones are eliminated or reduced while
others present at a low VAF at diagnosis increase and new clones with
new mutations not detectable evolve possibly under the pressure of
drug treatment.

A powerful aspect of this study is our unique series of patients that
included patients who remained sensitive during treatment, and others
with acquired resistance, with serial sampling over time from the same

tumor in vivo. This study shows very clearly that there is no one
mechanism that explains resistance in even amajority of patients. Each
patient was unique in genetic and transcriptomic profiles. The most
common ESR1 mutation only accounts for the resistance mechanism
for 2 out of the 19 patients with acquired resistance by paired sensitive/
resistant tumor analysis, and suggests that, although an important
mechanism of resistance, it accounted for only a small number of
resistant tumors in this study.

We collected multiple biological replicate samples from the same
resistant tissue to assess tumor spatial heterogeneity. We observed
clear heterogeneity between biological replicates in genetic and
transcriptomic features. The biological replicates had both shared
and unique mutations (Figs. 5C and 6C). As we used computational
reinterrogation to recover low-frequency variants in related speci-
mens, the unique mutations specific to each replicate are likely truly
unique clones. Overall, gene expression profiles were highly cor-
related, and hierarchical clustering showed that replicates tended to
cluster together (Fig. 3A). Subtle differences in gene expression
were observed (Fig. 5D), with these findings suggesting that spatial
heterogeneity (i.e., intratumor heterogeneity) could play a role in
resistance to endocrine therapy. This study has confirmed some
known mechanisms of resistance and identified some novel
mechanisms. Most importantly it has highlighted the heterogeneity
that underlies breast tumor biology and shows that endocrine
resistance is complex and that more studies of patient-derived
breast cancers are required. Taken together, it is clear that multiple
molecular mechanisms underlying ETR exist and there is a need to
understand the mechanism in individual patients to effectively
combat resistance in each patient.

Figure 6.

Molecular portraits of a HER2-enriched patient with acquired endocrine resistance. A, Box plots indicating median score and interquartile range of VAF of
detected variants stratified by synonymous and nonsynonymous variants. B, Heatmap showing VAF of nonsynonymous variants of Pan-Cancer drivers. C,
Heatmap showing gene expression of hormone receptors and key signaling pathways. D, Heatmap showing copy number landscapes of all tumors from the
patient.

Drivers of Endocrine Therapy Resistance in Breast Cancer

AACRJournals.org Clin Cancer Res; 28(16) August 15, 2022 3627



Authors’ Disclosures
C. Martinez-Perez reports grants from Breast Cancer Now during the conduct of

the study. J.S. Parker reports other support from Reveal Genomics outside the
submitted work; in addition, J.S. Parker has a patent for PAM50 with royalties paid
from Veracyte. C.M. Perou reports grants from Breast Cancer Research Foundation
during the conduct of the study, as well as personal fees fromBioclassifier LLC outside
the submitted work; in addition, C.M. Perou has a patent for U.S. Patent No.
12,995,459 issued, licensed, and with royalties paid from Bioclassifier. A. Turnbull
reports grants from Breast Cancer Now and Lyda Henderson Fund at the Edinburgh
Lothians Health Foundation during the conduct of the study. No disclosures were
reported by the other authors.

Authors’ Contributions
Y. Xia: Formal analysis, investigation, visualization, methodology, writing–

original draft, writing–review and editing. X. He: Methodology, writing–review
and editing. L. Renshaw: Resources, data curation, writing–review and editing.
C. Martinez-Perez: Data curation, methodology, writing–review and editing.
C. Kay: Methodology, writing–review and editing. M. Gray: Methodology,
writing–review and editing. J. Meehan:Methodology, writing–review and editing.
J.S. Parker: Formal analysis, investigation, visualization, methodology, writing–
review and editing. C.M. Perou: Conceptualization, resources, supervision,
funding acquisition, writing–original draft, writing–review and editing. L.A. Carey:
Conceptualization, resources, supervision, funding acquisition,writing–original draft,
writing–review and editing. J.M. Dixon: Conceptualization, resources, data curation,
supervision, funding acquisition, writing–original draft, writing–review and editing.

A. Turnbull: Conceptualization, formal analysis, supervision, investigation, visual-
ization, methodology, writing–original draft, writing–review and editing.

Acknowledgments
We would like to acknowledge the contribution and support of our friend and

colleague Dr. Andrew Sims, University of Edinburgh, who sadly passed away prior to
submission of this journal article. We are deeply grateful to the patients who allowed
us to sample and use their tumor samples for this study. Thanks to Breast Cancer Now
who funded the Translational Oncology Research Group at the Edinburgh Cancer
Research Centre (J.M. Dixon, A. Turnbull). Funds from a generous grant from the
Lyda Henderson Fund held at the Edinburgh and Lothians Health Foundation also
supported this research. Funds from a generous grant from the Chewning Family to
L.A. Carey also supported this research. This work was also supported by Breast
Cancer Research Foundation (C. Martinez-Perez, L.A. Carey). Samples were collated
and identified with help from the Edinburgh Breast Unit team and Cancer Research
UK who fund the Edinburgh Tissue Group.

The publication costs of this article were defrayed in part by the payment of
publication fees. Therefore, and solely to indicate this fact, this article is hereby
marked “advertisement” in accordance with 18 USC section 1734.

Note
Supplementary data for this article are available at Clinical Cancer Research Online
(http://clincancerres.aacrjournals.org/).

Received September 2, 2021; revised March 4, 2022; accepted May 31, 2022;
published first June 2, 2022.

References
1. American Cancer Society. Cancer Facts & Figures 2020. Available from:

https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/
cancer-facts-figures-2020.html.

2. Lei JT, Anurag M, Haricharan S, Gou X, Ellis MJ. Endocrine therapy resistance:
new insights. Breast 2019;48:S26–30.

3. PerouCM, Sorlie T, EisenMB, van de RijnM, Jeffrey SS, ReesCA, et al.Molecular
portraits of human breast tumours. Nature 2000;406:747–52.

4. The Cancer Genome Atlas Network. Comprehensive molecular portraits of
human breast tumours. Nature 2012;490:61–70.

5. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al.
Comprehensive molecular portraits of invasive lobular breast cancer. Cell 2015;
163:506–19.

6. Carlson RW. The history and mechanism of action of fulvestrant. Clin Breast
Cancer 2005;6:S5–8.

7. NormannoN,DiMaioM,DeMaio E,De LucaA, deMatteis A,GiordanoA, et al.
Mechanisms of endocrine resistance and novel therapeutic strategies in breast
cancer. Endocr Relat Cancer 2005;12:721–47.

8. Ma CX, Reinert T, Chmielewska I, Ellis MJ. Mechanisms of aromatase inhibitor
resistance. Nat Rev Cancer 2015;15:261–75.

9. Rani A, Stebbing J, Giamas G, Murphy J. Endocrine resistance in hormone
receptor positive breast cancer—from mechanism to therapy. Front Endocrinol
2019;10:245.

10. Clarke R, LiuMC, Bouker KB, Gu Z, Lee RY, ZhuY, et al. Antiestrogen resistance
in breast cancer and the role of estrogen receptor signaling. Oncogene 2003;22:
7316–39.

11. Shi L, Dong B, Li Z, Lu Y, Ouyang T, Li J, et al. Expression of ER-{alpha}36, a
novel variant of estrogen receptor {alpha}, and resistance to tamoxifen treatment
in breast cancer. J Clin Oncol 2009;27:3423–9.

12. Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua
SA, et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and
HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst
2003;95:353–61.

13. Redmond AM, Bane FT, Stafford AT, McIlroy M, Dillon MF, Crotty TB, et al.
Coassociation of estrogen receptor and p160 proteins predicts resistance to
endocrine treatment; SRC-1 is an independent predictor of breast cancer
recurrence. Clin Cancer Res 2009;15:2098–106.

14. Li S, ShenD, Shao J, Crowder R, LiuW, Prat A, et al. Endocrine-therapy-resistant
ESR1 variants revealed by genomic characterization of breast-cancer-derived
xenografts. Cell Rep 2013;4:1116–30.

15. Arpino G, Green SJ, Allred DC, Lew D, Martino S, Osborne CK, et al. HER-2
amplification, HER-1 expression, and tamoxifen response in estrogen receptor–

positivemetastatic breast cancer: a southwest oncology group study. Clin Cancer
Res 2004;10:5670–6.

16. Bergqvist J, Elmberger G, Ohd J, Linderholm B, Bjohle J, Hellborg H, et al.
Activated ERK1/2 and phosphorylated oestrogen receptor alpha are associated
with improved breast cancer survival in women treated with tamoxifen. Eur J
Cancer 2006;42:1104–12.

17. Tokunaga E, KimuraY,MashinoK,Oki E, KataokaA,Ohno S, et al. Activation of
PI3K/Akt signaling and hormone resistance in breast cancer. Breast Cancer
2006;13:137–44.

18. Shoman N, Klassen S, McFadden A, Bickis MG, Torlakovic E, Chibbar R.
Reduced PTEN expression predicts relapse in patients with breast carcinoma
treated by tamoxifen. Mod Pathol 2005;18:250–9.

19. Butt AJ, McNeil CM, Musgrove EA, Sutherland RL. Downstream targets of
growth factor and oestrogen signalling and endocrine resistance: the potential
roles of c-Myc, cyclin D1 and cyclin E. Endocr Relat Cancer 2005;12:S47–59.

20. Perez-Tenorio G, Berglund F, Esguerra Merca A, Nordenskjold B, Rutqvist LE,
Skoog L, et al. Cytoplasmic p21WAF1/CIP1 correlates with Akt activation and
poor response to tamoxifen in breast cancer. Int J Oncol 2006;28:1031–42.

21. Bosco EE, Wang Y, Xu H, Zilfou JT, Knudsen KE, Aronow BJ, et al. The
retinoblastoma tumor suppressor modifies the therapeutic response of breast
cancer. J Clin Invest 2007;117:218–28.

22. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 2009;25:1754–60.

23. Mose LE, Wilkerson MD, Hayes DN, Perou CM, Parker JS. ABRA: improved
coding indel detection via assembly-based realignment. Bioinformatics 2014;30:
2813–5.

24. German Tischler SL. biobambam: tools for read pair collation based algorithms
on BAM files. Source Code Biol Med 2014;9:13.

25. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence
alignment/Map format and SAMtools. Bioinformatics 2009;25:2078–9.

26. Xia Y, Fan C, Hoadley KA, Parker JS, Perou CM. Genetic determinants of the
molecular portraits of epithelial cancers. Nat Commun 2019;10:5666.

27. Baier H, Schultz J. ISAAC - InterSpecies analysing application using containers.
BMC Bioinf 2014;15:18.

28. Cingolani P, Platts A, Wang le L, CoonM, Nguyen T,Wang LL, et al. A program
for annotating and predicting the effects of single nucleotide polymorphisms,
SnpEff: SNPs in the genome ofDrosophilamelanogaster strain w1118; iso-2; iso-
3. Fly (Austin) 2012;6:80–92.

29. Saunders CT, Wong WS, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka:
accurate somatic small-variant calling from sequenced tumor-normal sample
pairs. Bioinformatics 2012;28:1811–7.

Xia et al.

Clin Cancer Res; 28(16) August 15, 2022 CLINICAL CANCER RESEARCH3628

https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2020.html
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2020.html
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2020.html
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2020.html


30. Silva GO, Siegel MB, Mose LE, Parker JS, Sun W, Perou CM, et al. SynthEx: a
synthetic-normal-based DNA sequencing tool for copy number alteration
detection and tumor heterogeneity profiling. Genome Biol 2017;18:66.

31. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15–21.

32. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and
bias-aware quantification of transcript expression. Nat Methods 2017;14:417–9.

33. Zhao W, He X, Hoadley KA, Parker JS, Hayes DN, Perou CM. Comparison of
RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray
for expression profiling. BMC Genomics 2014;15:419.

34. Siegel MB, He X, Hoadley KA, Hoyle A, Pearce JB, Garrett AL, et al. Integrated
RNA and DNA sequencing reveals early drivers of metastatic breast cancer.
J Clin Invest 2018;128:1371–83.

35. Fernandez-Martinez AA-O, Krop IA-O, Hillman DA-O, Polley MA-O, Parker
JS, Huebner LA-O, et al. Survival, pathologic response, and genomics in CALGB
40601 (Alliance), a neoadjuvant phase III trial of paclitaxel-trastuzumab with or
without lapatinib inHER2-positive breast cancer. J ClinOncol 2020;38:4184–93.

36. Parker JS,MullinsM,CheangMC, Leung S, VoducD,Vickery T, et al. Supervised
risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 2009;27:
1160–7.

37. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:
15545–50.

38. FanC, Prat A, Parker JS, Liu Y, Carey LA, TroesterMA, et al. Building prognostic
models for breast cancer patients using clinical variables and hundreds of gene
expression signatures. BMC Med Genomics 2011;4:3.

39. Bates D, Machler M, Bolker B, Walker S. Fitting linear mixed-effects models
using lme4. Journal of Statistical Software 2015;67:48.

40. Wilkerson MD, Cabanski CR, Sun W, Hoadley KA, Walter V, Mose LE, et al.
Integrated RNA and DNA sequencing improves mutation detection in low
purity tumors. Nucleic Acids Res 2014;42:e107.

41. Hoadley KA, Siegel MB, Kanchi KL, Miller CA, Ding L, Zhao W, et al. Tumor
evolution in two patients with basal-like breast cancer: A retrospective genomics
study of multiple metastases. PLoS Med 2016;13:e1002174.

42. Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-Weiner A, Jones RT,
et al. Genomic characterization of brain metastases reveals branched evolution
and potential therapeutic targets. Cancer Discov 2015;5:1164–77.

43. Savas P, Teo ZL, Lefevre C, Flensburg C, Caramia F, Alsop K, et al. The
subclonal architecture of metastatic breast cancer: results from a prospective
community-based rapid autopsy program “CASCADE”. PLoS Med 2016;13:
e1002204.

44. Miller TW, Balko JM, Arteaga CL. Phosphatidylinositol 3-kinase and anties-
trogen resistance in breast cancer. J Clin Oncol 2011;29:4452–61.

45. Reinert T, Saad ED, Barrios CH, Bines J. Clinical implications of ESR1mutations
in hormone receptor-positive advanced breast cancer. Front Oncol 2017;
7:26.

46. Merenbakh-Lamin K, Ben-Baruch N, Yeheskel A, Dvir A, Soussan-Gutman L,
Jeselsohn R, et al. D538G mutation in estrogen receptor-alpha: A novel mech-
anism for acquired endocrine resistance in breast cancer. Cancer Res 2013;73:
6856–64.

47. Pakdel F, Reese JC, Katzenellenbogen BS. Identification of charged residues in an
N-terminal portion of the hormone-binding domain of the human estrogen
receptor important in transcriptional activity of the receptor. Mol Endocrinol
1993;7:1408–17.

48. Theodorou V, Stark R, Menon S, Carroll JS. GATA3 acts upstream of FOXA1 in
mediating ESR1 binding by shaping enhancer accessibility. GenomeRes 2013;23:
12–22.

49. Cottu P, Bieche I, Assayag F, El Botty R, Chateau-Joubert S, Thuleau A, et al.
Acquired resistance to endocrine treatments is associated with tumor-specific
molecular changes in patient-derived luminal breast cancer xenografts.
Clin Cancer Res 2014;20:4314–25.

50. Takaku M, Grimm SA, Roberts JD, Chrysovergis K, Bennett BD, Myers P, et al.
GATA3 zinc finger 2 mutations reprogram the breast cancer transcriptional
network. Nat Commun 2018;9:1059.

51. BaileyMH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D,Weerasinghe A,
et al. Comprehensive characterization of cancer driver genes andmutations. Cell
2018;173:371–85.

52. Wallden B, Storhoff J, Nielsen T, Dowidar N, Schaper C, Ferree S, et al.
Development and verification of the PAM50-based Prosigna breast cancer gene
signature assay. BMC Med Genomics 2015;8:54.

53. Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in
breast cancer. Nat Rev Cancer 2009;9:631–43.

54. Garcia-Recio S, Thennavan A, East MP, Parker JS, Cejalvo JM, Garay JP, et al.
FGFR4 regulates tumor subtype differentiation in luminal breast cancer and
metastatic disease. J Clin Invest 2020;130;4871–7.

AACRJournals.org Clin Cancer Res; 28(16) August 15, 2022 3629

Drivers of Endocrine Therapy Resistance in Breast Cancer



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 0
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides true
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        18
        18
        18
        18
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 18
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [792.000 1224.000]
>> setpagedevice


