
Citation: Liang, F.-Y.; Gao, F.; Cao, J.;

Law, S.-W.; Liao, W.-H. Gait Synergy

Analysis and Modeling on Amputees

and Stroke Patients for Lower Limb

Assistive Devices. Sensors 2022, 22,

4814. https://doi.org/10.3390/

s22134814

Academic Editor: Marco Iosa

Received: 20 May 2022

Accepted: 23 June 2022

Published: 25 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Gait Synergy Analysis and Modeling on Amputees and Stroke
Patients for Lower Limb Assistive Devices
Feng-Yan Liang 1,2, Fei Gao 3,4, Junyi Cao 5, Sheung-Wai Law 6 and Wei-Hsin Liao 3,*

1 Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China;
fyliang@hainanu.edu.cn

2 Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering,
Hainan University, Haikou 570228, China

3 Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin,
Hong Kong, China; fei.gao@siat.ac.cn

4 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
5 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; caojy@xjtu.edu.cn
6 Tai Po Hospital, Hong Kong, China; lawsw@cuhk.edu.hk
* Correspondence: whliao@cuhk.edu.hk

Abstract: The concept of synergy has drawn attention and been applied to lower limb assistive
devices such as exoskeletons and prostheses for improving human–machine interaction. A better
understanding of the influence of gait kinematics on synergies and a better synergy-modeling method
are important for device design and improvement. To this end, gait data from healthy, amputee,
and stroke subjects were collected. First, continuous relative phase (CRP) was used to quantify their
synergies and explore the influence of kinematics. Second, long short-term memory (LSTM) and
principal component analysis (PCA) were adopted to model interlimb synergy and intralimb synergy,
respectively. The results indicate that the limited hip and knee range of motions (RoMs) in stroke
patients and amputees significantly influence their synergies in different ways. In interlimb synergy
modeling, LSTM (RMSE: 0.798◦ (hip) and 1.963◦ (knee)) has lower errors than PCA (RMSE: 5.050◦

(hip) and 10.353◦ (knee)), which is frequently used in the literature. Further, in intralimb synergy
modeling, LSTM (RMSE: 3.894◦) enables better synergy modeling than PCA (RMSE: 10.312◦). In
conclusion, stroke patients and amputees perform different compensatory mechanisms to adapt
to new interlimb and intralimb synergies different from healthy people. LSTM has better synergy
modeling and shows a promise for generating trajectories in line with the wearer’s motion for lower
limb assistive devices.

Keywords: synergy; gait; stroke; amputee; LSTM; wearable robot

1. Introduction

Nowadays, lower limb assistive devices are designed to help subjects with motor im-
pairments, such as amputees and stroke patients, restore locomotion function. Significant
achievements have been made for lower limb exoskeletons and active prostheses such
as HAL [1], Lokomat [2], powered ankle–foot prostheses [3] and powered transfemoral
prostheses [4]. In our group, we have developed an active lower limb exoskeleton [5],
knee brace [6], and ankle–foot prosthesis [7] to help individuals who have lost mobility
or suffered from pathological gait restore/regain locomotion function. Active assistive
devices were designed to help the injured joints or replace the amputated joints to repro-
duce the required function. To achieve that, these assistive devices need to identify the
intention/locomotion mode of the user and then automatically adjust the controllers to
provide the desired assistance.

The muscle synergy hypothesis [8–12] and the concept of synergy have drawn lots of
concerns and been applied to lower limb assistive devices. In neurology, various human
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motions are considered as combinations of different pairs of joints or synergies that are
controlled by the central nervous system [13–15]. The nervous system is responsible for
coordinating multiple synergies by combining them in a task-specific way. By means of
gait synergy, human body symmetry can be transferred into symmetric, rhythmic, and
synchronized locomotion, thus achieving gait harmony. Gait synergy (joint coordination
during locomotion), including interlimb (between two limbs) and intralimb (within one
limb) synergies, has been studied since the 1990s. First suggested by Daffertshofer et al. [16]
in 2004, principal component analysis (PCA) is the most commonly used tool to model or
derive kinematic synergies [11]. Bockemühl et al. [17] analyzed human catching movement
and extracted the first three principal components (PCs), which account for over 97% of the
variance. However, PCA’s modeling accuracy on synergy is an issue [18–21].

Scientists have applied the concept of synergy to the control of assistive devices such
as exoskeletons and prostheses [22]. The general idea is to generate appropriate gait
trajectories for the affected part from the sound part for different patients based on the
synergy. Wearable sensors need to be added to the device or worn by the patient to measure
the motion of the sound part. The generated trajectories are in line with the patient’s motion
and thus improve human–machine interaction. What’s more, the patient’s motion intention
can be deduced from the kinematics of the sound part or residual limb. This idea was
first proposed by Vallery et al. and was named complementary limb motion estimation
(CLME). Vallery et al. employed PCA to model healthy subjects’ synergy and subsequently
generate trajectories for a rehabilitative exoskeleton [18] and an active prosthesis [19].
Their experiments on healthy subjects showed that this method causes less interference
on the wearers and encourages participation. However, their estimation results for knee
angle were poor. In their later research [20], they proved that BLUE (best linear unbiased
estimation) can better model synergy than PCA. Hassan et al. [21] employed PCA and
applied synergy to their exoskeleton. Clinical trials on three stroke subjects validated the
feasibility of the synergy-based trajectory generation approach. Eslamy et al. [23] also
proposed a synergy-based approach for the control of an active knee prosthesis. Gaussian
Process Regression was employed to map the input (thigh kinematics) to the output (knee
angle). In an intersubject test, average RMSE of 6.36◦, MAE of 5.28◦, and R2 of 0.89 were
obtained. Herein, we tried to use a new method (LSTM), other than PCA, to model synergies
to reduce the prediction error and improve the results for the control of assistive devices.

On the other hand, disturbed gait synergy is one of the important motor impairments
in stroke patients and amputees [24–26]. A deeper analysis of patients’ synergies can offer
implications for their rehabilitation and assistive device improvement. Continuous relative
phase (CRP) is a common mathematical indicator for synergy analysis and quantifying
the synergy [27–30]. Robbins et al. [31] used CRP to examine intralimb synergy in patients
with Ehlers Danlos syndrome. Chiu et al. [24] conducted gait experiments on 10 young and
10 elderly subjects to analyze gait synergy; the results indicated that walking speed signifi-
cantly influenced the CRP results. Combs et al. [32] computed the CRP of groups of stroke
subjects before and after locomotion training provided with a weight-supported exoskele-
ton. However, there are few studies quantifying disturbed synergies in stroke patients and
amputees as well as determining the gait kinematics that most affect their synergies.

In this study, we firstly adopted CRP to analyze the synergies in healthy, stroke,
and amputee subjects. Their relationship with gait kinematics was explored by stepwise
multiple linear regression. Secondly, as a new aspect, we used a long short-term memory
neural network (LSTM) to model interlimb and intralimb synergies and compared the
results with the simulations by PCA, which is commonly used in the literature. We proposed
to model healthy people’s synergy by a better method for generating desired trajectories in
line with the wearer’s motion for lower limb assistive devices such as exoskeletons and
active prostheses for stroke patients and amputees.
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2. Materials and Methods
2.1. Gait Data Acquisition

The research subjects of this study are healthy people, stroke survivors, and amputees.
To analyze and model their gait synergy, the first step is to obtain sufficient gait data. We
collected gait data from healthy, amputee and stroke subjects (listed in Table 1). During the
experiments, written consent was obtained from each subject.

Table 1. Subject information of stroke, amputee, and healthy groups.

Stroke

Subject Age (years) Height (cm) Weight (kg) Onset time (months) Paretic side
1 35 165 73 48 R
2 52 159 70 48 R
3 39 164 85 54 R
4 55 170 63 5 R
5 57 155 115 2 L
6 44 168 85 3 L
7 53 156 58 9 R
8 44 170 66 3 R
9 63 175 69 2 L

10 57 165 68 4 L
11 50 175 66 1 R

Amputee

Subject Age (years) Height (cm) Weight (kg) Amputation time (years) Amputated side
1 23 168 60 13 L
2 30 174 54 1.5 R
3 24 188 69 18 R
4 27 169 66 5 L
5 48 185 82 17 L
6 32 172 80 7 R
7 32 170 72 15 L
8 27 175 78 5 R

Healthy

Subject Age (years) Height (cm) Weight (kg) BMI (kg/m2)
A 26 177 62 19.8
B 30 165 55 20.2
C 26 180 60 18.5
D 29 170 69 23.9
E 28 175 66 21.6
F 31 163 54 20.3
G 29 181 64 19.5
H 28 174 63 20.8

First, 8 male able-bodied subjects without gait pathology (height: 1.73 ± 0.07 m, weight:
61.6 ± 5.2 kg) were recruited in the healthy group. All subjects wore an IMU-based wearable
motion capture system (Perception Neuron, 1.0, Noitom, Beijing, China). The IMU-based
system can measure joint angle for gait analysis [33–35]. The wearable motion capture
system is convenient, with acceptable accuracy as compared to the traditional optical
motion capture system [36,37]. Multiple cycles of gait data can be recorded continuously.
Seven inertial measurement unit (IMU) nodes were placed on the wearer’s lower limbs by
tight straps with Velcro. The acceleration, angular velocity, and quaternion of the lower
limb parts and angle of different joints could be obtained from the wearable system. Gait
experiments were conducted on level ground (a 19 m walkway). Subjects were instructed
to walk at their self-selected speeds. Enough rest was given between two trials. There are
20 trials for each subject.

Second, 12 stroke subjects were recruited from a hospital (Figure 1) based on the
criteria: (1) left or right hemiparesis; (2) over 2 months since onset; and (3) able to walk 12 m
without help from others. Similarly, all subjects were asked to walk on a 6 m walkway with
the same wearable motion capture system (Noitom® Perception Neuron, 1.0). Considering
their leg weakness, they walked 5 trials at their self-selected speeds and enough rest was
given between each trial. All of them were informed that they are allowed to leave the
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walking test any time they wanted. There were 11 subjects (height: 1.66 ± 0.07 m; weight:
49.9 ± 8.5 kg; onset time: 16.3 ± 21.8 mo) who completed the test, since 1 subject quit after
the first trial.
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Finally, we obtained amputee gait data from 8 unilateral transfemoral amputee subjects
(height: 1.75 ± 0.07 m; weight: 70.3 ± 9.1 kg; time since amputation: 10.2 ± 6.3y) from [38].
They all had worn prostheses for over six months. No gait-related diseases were reported
by them. Each subject walked on a 10 m path at a self-selected speed.

2.2. Synergy Analysis

CRP is adopted to quantify the disturbed interlimb and intralimb synergies of the
stroke patients and amputees and then explore the influence of kinematics on the dis-
turbed synergies.

2.2.1. Continuous Relative Phase

CRP is adopted to quantify the disturbed interlimb and intralimb synergies of the
stroke patients and amputees and then explore the influence of kinematics on the disturbed
synergies. In this study, we use a Hilbert transform to calculate the CRP. The Hilbert
transform was suggested by Peters et al. [28] to analyze interlimb and intralimb gait
synergies. First, phase angles are calculated based on a measured signal x(t) and its Hilbert
transform H(t) = H(x(t)):

H(x(t)) =
1
π

P.V.
∫ ∞

−∞

x(τ)
t − τ

dτ (1)

Here, P.V. means that the integral is based on the Cauchy principal value. Then the
phase angle can be calculated by:

ϕ(ti) = arctan(
H(ti)

x(ti)
) (2)

The CRP at time t CRPt between the two signals x1(t) and x2(t) can be calculated by:

CRP(ti) = ϕ1(ti)−ϕ2(ti) (3)
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A self-written program based on MATLAB (The Mathworks Inc., Natick, MA, USA)
was used for synergy analysis on the data from the able-bodied, stroke and amputated
subjects. One representative gait cycle’s joint angles were randomly selected for each
subject’s limbs in each trial. Then, the joint angles of one gait cycle were interpolated to
100% for convenience. The data were then curve fitted by the sum of sinusoid functions
using the curve-fitting tool in MATLAB. The riding waves and uneven data were eliminated.

The root mean square error (RMSE) and Pearson correlation coefficient (PCC) were
used to measure the similarities and correlations of the two CRPs, respectively. The RMSE
denotes the deviations or closeness between two curves. The following equation calculates
the RMSE between the two CRP values CRP1 and CRP2:

RMSE =

√
∑n

i=1(CRP1(ti)− CRP2(ti))
2

n
(4)

PCC measures the matching degree between two groups of values.

PCC =
∑n

i=1 (CRP1(ti)− CRP1(t))(CRP2(ti)− CRP2(t))√
∑n

i=1 (CRP1(ti)− CRP1(t))
2
(CRP2(ti)− CRP2(t))

2
(5)

2.2.2. Decomposition Index

To better analyze interlimb and intralimb synergies, we also adopt the concept of
the decomposition index (DI), which is a scale proposed by Bastian et al. [39] to quantify
decomposition movements. A decomposition movement occurs when two adjacent or
related joints have different movements (one moves while the other pauses). The DI is the
percentage of the time of decomposition movement in a gait cycle:

DI =
Tdec
TGait

(6)

In the above equation, Tdec is the duration of decomposition movement in a gait cycle.
TGait refers to the duration of a gait cycle. By definition, when the angular velocity of
a joint is less than 5◦/s, it is regarded as paused. However, when the angular velocity
is higher than 5◦/s, it is considered to be moving. For the lower limbs, there are three
pairs of joints (hip–knee, knee–ankle and hip–ankle) that have DIs. In this study, the DI of
the hip–knee joint is considered to help analyze interlimb and intralimb synergies. Then,
the relationships between the DI and different kinds of CRPs were analyzed. Note that
the decomposition movement is not considered a physical defect but a compensatory
movement for the gait. The changes in the DI reflect subjects’ motion adjustments. It is
thus interesting to explore the decomposition movements and DI in both stroke patients
and amputees.

2.3. Stepwise Regression

Here, we explore the relationship between gait kinematics and synergies in stroke
patients and amputees. Stepwise multiple linear regression was performed to identify
the determinants of interlimb and intralimb synergies (CRPs). Stepwise regression is a
step-by-step process to select independent variables to build a regression model. In each
step, a variable is considered to be added or removed from the variables based on the
defined criterion. After each iteration, statistical significance was tested. Before stepwise
regression, the collinearities among independent variables were diagnosed. The analysis
was performed on SPSS v19 from IBM, with a significance level of 0.1. For example, when
analyzing gait data of the affected sides of stroke patients, DIsw, DIsta, percentage, ROMhip,
ROMknee, and speed were selected for collinearity diagnostics.
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2.4. Synergy Modeling

LSTM was adopted to model the interlimb and intralimb synergies of able-bodied
subjects, respectively. Then, we also used PCA, which is commonly used in the literature to
model healthy subjects’ different synergies. At last, comparisons were made between the
experimental results of LSTM and PCA on the modeling of interlimb and intralimb synergies.

2.4.1. Long Short-Term Memory Neural Network

LSTM networks are commonly used recurrent neural networks. LSTM is popular in
recent years for its ability to regain long-term information. For example, LSTM can be em-
ployed to classify human activity [40], forecast PM 2.5 [41], and monitor machine health [42].
The following equations give the algorithm for an LSTM model with forget gates:

f (t) = σ(W f
1 x(t) + W f

2 h(t−1) + b f ) (7)

s(t) = g(t) � i(t) + s(t−1) � f (t) (8)

i(t) = σ(Wi
1x(t) + Wi

2h(t−1) + bi) (9)

o(t) = σ(Wo
1 x(t) + Wo

2 h(t−1) + bo) (10)

h(t) = tanh(s(t))� o(t) (11)

where the internal state s(t) is influenced by the forget gate f (t), and where (σ) stands for
sigmoid functions. The internal state s(t) is influenced by the forget gate f. W1, W2 and
b stand for the corresponding weight matrices and bias parameters, respectively. All the
parameters in Equations (7)–(10) are determined during multiple training runs.

Interlimb and intralimb synergies, the relationships among the kinematics in the
same or different leg, can be regarded as time-series models, thus LSTM is employed to
model them.

2.4.2. Interlimb Synergy Modeling

LSTM is employed to model interlimb synergy, the relationship among the kinematics
of the two lower limbs. Thus, an LSTM model is built where the angular velocities and
angle data of one side’s limb are set as the input and the angle data (knee or hip joint) of
the other side’s limb are the output. Inter-subject simulation is conducted to investigate the
universality of the modeled “healthy” interlimb synergy. Specifically, for motion data of
any randomly selected subject from the 8 healthy subjects, we estimate one side’s knee and
hip angles using the contralateral motion data (angles and angular velocities) based on the
interlimb synergy modeled from the other 7 subjects. Then, the estimated knee and hip
angles of one side are compared with the original data (ground truth). There are 8 turns
where each subject’s data become the testing data and the LSTM model is trained by the
data of the other 7 subjects. The RMSE, Pearson correlation, R2, and Mean Absolute Error
(MAE) are adopted to quantify the estimation performance.

To have a fair comparison, we also employ PCA-based linear regression to perform
simulations following the steps in [19,43] based on the above-mentioned protocols. Note
that we can finally obtain the linear equations (i.e., the interlimb synergy) for each subject’s
data between one side’s hip or knee angle and the contralateral motion data. Estimation
errors during the 8 turns of the simulations were calculated.

2.4.3. Intralimb Synergy Modeling

LSTM is also employed to model intralimb synergy, the relationship among the kine-
matics of two joints in the same leg. Previously, Hernandez et al. [44] also used artificial
neural networks to model intralimb synergy and then estimated knee angle. However,
5 IMUs were used. In [45], we compared our LSTM-based method with other existing
methods that used different types or numbers of sensors and proved to have better esti-
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mation performance. Again, we also employed PCA-based linear regression and calculate
simulation errors to have a fair comparison.

In LSTM modeling, the original output of one IMU on the wearer’s thigh (angular
velocities and accelerations) is set as the input while the wearer’s knee angle data (measured
by two IMUs) are the output. Inter-subject simulation is also conducted. We estimate each
subject’s knee angle based on the intralimb synergy modeled from the other 7 subjects.
Then, the estimated knee angle is compared with the measured knee angle to quantify the
estimation performance. Again, there are 8 turns in total.

3. Results
3.1. Summary of Gait Data

As afore-mentioned, we obtained gait kinematics from stroke, able-bodied, and am-
putee subjects. Table 2 lists all gait parameters involved in this research (all values are
means). There are interlimb and intralimb CRPs quantifying the interlimb and intralimb
synergies of three groups of participants. Here, the RMSEs of the CRP values are all marked
as CRP for convenience. Note that there are sound sides and affected sides for both the
stroke and amputee groups. Interlimb CRP is marked as CRP(inter). The CRP in the stance
phase (CRPst) and the swing phase (CRPsw) are both considered. The percentage stands for
the swing phase percentage, the percentage of swing phase of a whole gait cycle.

Table 2. Summary of gait data of different subjects.

Stroke–Sound Stroke–Affected Healthy Amputee–Sound Amputee–Affected

CRP 61.64 95.44 15.10 23.97 14.17
CRPst 66.42 58.20 14.15 18.58 13.28

CRPsw 33.33 83.35 15.47 21.63 14.10
CRP (inter) 37.34 37.34 / 17.38 17.38

CRPst (inter) 38.76 38.76 / 18.39 18.39
CRPsw (inter) 32.19 32.19 / 14.13 14.13
Speed (m/s) 0.18 0.18 0.92 / /

DIst 0.40 0.47 0.21 0.20 0.65
DIsw 0.26 0.34 0.08 0.09 0.21

ROMknee (◦) 39.37 35.92 44.38 43.09 42.80
ROMhip (◦) 48.72 41.42 62.33 59.52 55.65
Percentage 0.70 0.57 0.53 0.57 0.54

First, from Table 2 and Figure 2, we can find that the RMSEs of the interlimb and
intralimb CRPs (synergies) of the stroke group are larger than those of amputee group. The
RMSEs of the CRPs in the amputee group are larger than those in the healthy group. Second,
the stroke group’s DI is larger than the amputee group’s, while the amputee group’s DI is
larger than that of the healthy group. For both the stroke and amputee groups, the DI of
the affected or amputated side is larger than the DI of the sound side. Furthermore, both
stroke and amputee groups exhibit limited knee and hip range of motions (RoMs). The
RoMs of the affected or amputated sides in both stroke and amputee groups are smaller
than the sound side.

3.2. Synergy Analysis on Stroke and Amputee Subjects

Stepwise multiple linear regression is performed to explore the relationships among
gait kinematics and synergies (including interlimb and intralimb synergies) in stroke
patients and amputees. Note that only the model with the best regression performance is
chosen and shown for each group. Thus, we summarize the factors that have significant
influences on interlimb and intralimb synergies (CRPs) of the stroke, healthy, and amputee
subjects in Table 3.
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Figure 2. RMSEs of the interlimb and intralimb CRPs of different subjects.

Table 3. Stepwise regression results.

Subjects CRP Phase Factors *

Stroke

sound side
whole speed
stance DIsta
swing speed

interlimb

whole speed
stance DIsta
swing speed

ROMknee

affected side

whole /
stance ROMknee
swing percentage

ROMhip
DIsw

Amputee

sound-side
whole percentage
stance ROMknee
swing percentage

interlimb

whole /
stance /
swing ROMhip

DIsw

amputated side

whole /
stance DIsta
swing ROMknee

ROMhip
percentage

Healthy intralimb

whole percentage
DIsta

stance percentage
DIsta

swing percentage
Factors *: factors that have the most significant influence.

First, DIsta is the DI in the stance phase. DIsta is strongly related to the intralimb syn-
ergies of the stroke subject’s sound side in the stance phase, those of amputee’s amputated
side, and those of healthy subjects. Further, it is strongly related to the interlimb synergy
of stroke subjects in the stance phase. On the other hand, DIsw is a determinant of the
intralimb synergy of stroke patients’ affected sides and the interlimb synergy of amputees
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in the swing phase. Compared with healthy subjects, both limbs of the stroke patients and
the amputated limbs of the amputees exhibit higher degrees of decomposition movements.
This higher decomposition movement significantly influences their interlimb and intralimb
synergies. However, amputee’s sound side does not show strong decomposition move-
ment. This may be because amputees and stroke patients perform different compensatory
mechanisms to adapt to new interlimb and intralimb synergies, unlike healthy people.

Second, stroke patients and amputees exhibit limited RoMs in hip and knee joints,
compared with healthy subjects. ROMknee is a determinant of the stroke patients’ interlimb
synergy and intralimb synergy in the stance phase. ROMhip has a strong correlation with
the stroke patients’ intralimb synergy in the swing phase. This may be because the stroke
patients’ sound-side legs make compensations in the push-off and swing phases [46], so as
to restrict the movement of the inverted-pendulum swing. As a result, disturbed synergy
was caused. For amputees, the RoMs of the hip and knee have significant impacts on
the intralimb synergy of the amputated limb. Thus, we can conclude that limited RoMs
in the hip and knee joints in stroke patients and amputees significantly influence their
interlimb and intralimb synergies. However, this influence is different in the two groups.
For example, stroke patients’ interlimb synergy is mainly influenced by ROMknee, while
ROMhip influences amputees’ interlimb synergy.

Furthermore, walking speed is a determinant of the intralimb synergy of the sound side
and the interlimb synergy for stroke groups. Patients with better CRPs may have greater
walking speeds in the tests. This result shows that speed is important in rehabilitation
training design for stroke groups.

The above findings can provide useful guidance in rehabilitation training design and
assistive device improvement for stroke patients and amputees.

3.3. Interlimb Synergy Modeling
3.3.1. Experimental Results of LSTM

LSTM maps the input (kinematics of one side) continuously to the output (contralateral
knee and hip angle) based on the interlimb synergy. The model is implemented in Python
with 50 training epochs. There are 50 neurons in the hidden layer and one neuron in the
output layer.

The orange lines in Figure 3 show the estimated knee and hip angles by PCA-based
regression in one subject. In each simulation session (eight in total), the RMSE, Pearson
correlation, R2, and Mean Absolute Error (MAE) are adopted to quantify the estimation
performance (average results are given in Table 3). The RMSEs in each session are plotted
in Figure 4a. Note that, in each session, one subject’s knee and hip angles are estimated
based on the interlimb synergy modeled from the other seven subjects.

The Experimental results in Table 4 indicate that the LSTM model has good estimation
performance and modeling on intralimb synergy. The mean RMSE for all simulation
sessions is 0.796◦ and 1.963◦ for the hip and knee, respectively.

Table 4. Experimental results of LSTM and PCA based on interlimb and intralimb synergies.

Interlimb synergy

Method LSTM (hip) PCA (hip) LSTM (knee) PCA (knee)
RMSE (◦) 0.796 5.050 1.963 10.353

Pearson (◦) 0.998 0.901 0.996 0.868
R2 0.996 0.812 0.993 0.761

MAE(◦) 0.632 4.109 1.412 8.331

Intralimb synergy

Method LSTM (knee) PCA (knee)
RMSE (◦) 3.894 10.312

Pearson (◦) 0.981 0.835
R2 0.963 0.701

MAE (◦) 2.193 8.448
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The mean MAEs are 0.632◦ (hip) and 1.412◦ (knee). The mean Pearson correlations
(0.998 and 0.996) and R2 (0.996 and 0.993) are all very close to 1. In Figure 4a, we can find
that the RMSEs of different simulation sessions (when one subject’s joint angles are the
testing data while the synergy is modeled from the other seven subjects’ data) of the hip
and knee angles are close. In addition, the other three scales in all simulation sessions are
very close. It can be concluded that the LSTM-based intralimb synergy model has good
universality on different subjects.

3.3.2. Experimental Results of PCA

The blue lines in Figure 3 show the estimated knee and hip angles by PCA-based
regression in one subject. Note that the interlimb synergy is modeled from the other
7 subjects by PCA. The deviations between the PCA-estimated and original knee and
hip trajectories are larger than those between the LSTM-estimated and original ones. For
the RMSE, the RMSEs of 5.050◦ (hip) and 10.353◦ (knee) by PCA are larger than those
of 0.796◦ (hip) and 1.963◦ (knee) by the LSTM, respectively (listed in Table 4). Moreover,
compared with the results by PCA, the Pearson correlation and R2 in simulations by LSTM
are much closer to one. It can be concluded that LSTM has better extraction and modeling
on interlimb synergy over PCA.
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Figure 3. Estimated hip (thicker curves) and knee angles (thinner curves) by PCA (orange curves)
and LSTM (blue curves) based on interlimb synergy.

3.4. Intralimb Synergy Modeling

LSTM is also adopted to model intralimb synergy. The input of the LSTM model is the
thigh kinematics (acceleration and angular velocity) while the output is knee angle. Other
LSTM model setting are similar to the interlimb synergy LSTM model.

In the simulation, the RMSE, Pearson correlation, R2. and MAE are calculated. The
RMSE in each session (when one subject’s knee angles are the testing data while the synergy
is modeled from the other seven subjects’ data) is plotted in Figure 4b. In intralimb synergy
modeling, the mean RMSE is 3.894◦ and the mean MAE is 2.193◦. The mean Pearson
correlation and R2 are 0.981 and 0.961, respectively. Compared with the results by PCA
(RMSE: 10.312◦ and MAE: 8.448◦, listed in Table 4), the RMSE and MAE results by LSTM
are smaller. Additionally, the Pearson correlation and R2 in simulations by LSTM are
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much closer to one. Therefore, the simulation results over the eight subjects’ data indicate
that LSTM has smaller simulation errors. Additionally, the Pearson correlation and R2 in
simulations by LSTM are much closer to one. Therefore, the simulation results over the eight
subjects’ data indicate that the intralimb synergy model by LSTM has good universality
over different subjects and has better modeling on interlimb synergy over PCA.
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Figure 4. (a) RMSE of simulations of hip and knee angles by interlimb LSTM models; (b) RMSE
of simulations of knee angles by intralimb LSTM models. There is one simulation session for each
subject’s data. For example, when estimating subject A’s joint angles, the synergy (interlimb and
intralimb) is modeled from the other 7 subjects’ data. “Mean” is the average RMSE of different
simulation sessions.

4. Discussions

In the first study, CRP is used to quantify interlimb and intralimb synergies in stroke
patients and amputees. Both stroke patients and amputees have one impaired limb. The
impaired limb shows limited hip and knee RoMs. They adopt different interlimb and
intralimb synergies or gait patterns, different from healthy people, to compensate for the
impaired function of one side. This compensation mechanism adapts them to a higher
degree of decomposition movement. Additionally, the limited hip and knee RoMs signifi-
cantly influence their synergy, but the influence is different in stroke patients and amputees.
Stroke patients’ interlimb synergy is mainly influenced by knee ROM while that of the hip
influences amputees’ interlimb synergy. This gives us an in-depth view of the motion of
stroke patients and amputees. These findings can provide useful guidance in rehabilitation
training design and assistive device improvement for stroke patients and amputees.

Second, we tried to find a better method to model synergy. LSTM is adopted to model
the interlimb and intralimb synergies of able-bodied subjects. We modeled synergy from
able-bodied subjects because we want to use “healthy” synergy in the control of lower limb
assistive devices to guide the patients who have disturbed synergy. However, this “healthy”
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synergy needs to have universality over various subjects. Experiments were conducted for
modeling interlimb and intralimb synergy.

In the experiments of interlimb synergy modeling, we also adopt PCA-based regres-
sion to model synergy from the same data and then compare the results by LSTM to have
a comparison. Experimental results on data from eight subjects indicate that LSTM has
better extraction and modeling on interlimb synergy over PCA, and the LSTM model has
universality over different subjects. This idea can be applied to the trajectory generation
for lower limb exoskeletons that are designed for stroke patients. In future applications,
we can first model interlimb synergy from a large group of able-bodied subjects. Then, the
trajectory of the rehabilitative exoskeleton (on the paretic side of the wearer) is generated
online based on the wearer’s motion data for the sound side and the trained synergy (LSTM
model) to encourage the wearer’s active engagement and provide advisable therapeutic
effects. This trajectory is adaptive to different wearers and to one wearer’s different gait.
This idea is promising for further exploration since engagement is an important factor in
stroke rehabilitation.

In the experiments on intralimb synergy modeling, the results indicate that the intral-
imb synergy model by LSTM has good universality over different subjects. This method
can be used to estimate knee angle based on the kinematics of the thigh (on the same side).
Additionally, the kinematics of the thigh are measured by only a single IMU. Our results are
also compared with those by PCA and prove to enable better synergy modeling over PCA.
The intralimb synergy LSTM model can also be applied in lower limb assistive devices,
such as transfemoral prostheses. It can help generate a harmonious knee trajectory in line
with the amputee’s residual limb’s motion to improve human–machine interaction [18,19].
Moreover, the motion intention of the wearer can be deduced by the residual limb.

5. Conclusions

In this study, we analyzed disturbed synergies in stroke patients and amputees for
lower limb assistive devices. CRP and LSTM are used to quantify and model interlimb and
intralimb synergies, respectively. The relationship among gait kinematics and synergies in
stroke patients and amputees has been revealed. First, they perform different compensatory
mechanisms to adapt to new interlimb and intralimb synergies, altered from healthy
people. The limited hip and knee RoMs significantly influence their different synergies in
different ways. Second, LSTM enables better interlimb and intralimb synergy modeling and
shows promise for generating trajectories in line with the wearer’s motion and improving
human–machine interaction for lower limb assistive devices such as exoskeletons and
active prostheses.
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