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Prostate cancer (PCa) is the most common cancer in men in
Europe. When detected early, and when the disease is local-
ized to the prostate gland, the 5-year survival rate is nearly
100 %. However, once the cancer has spread beyond the
prostate, survival rates fall dramatically [1]. In recent years
there has been a significant decrease in mortality mainly due
to early detection. However, this early detection has led to
overdiagnosis and overtreatment with resultant impact on
the quality of life of men with PCa [2]. These problems are
due to the variability of the clinical course of the disease and
the high prevalence of microscopic disease [3, 4]. Therefore,
a risk-adapted strategy is needed to choose among a wide
variety of treatment options, from active surveillance to
aggressive treatment. In the face of such broadly differing
options that impact survival and quality of life it follows that
patient-specific staging is essential for optimizing individual
outcomes. Patient-specific staging drives the demand for
sensitive and specific imaging of PCa including
intraprostatic disease as well as local and distant metastases.
Furthermore, as active surveillance becomes a more widely
considered management option in low-grade disease, a sen-
sitive method for monitoring changes in tumour volume and
location would potentially eliminate the need for repetitive
biopsies and enable a more advanced temporal evaluation.

Evaluation of PSA kinetics is useful in assessing risk in
those with first-line treatment failure, but is known to be

unreliable for active surveillance [5]. A stable PSA level
during the first 2 years after diagnosis does not preclude the
possibility of lethal cancer [6–8]. Repeat biopsies which
give information about tumour presence, size and grade
may be performed to decide if and when therapy is needed,
but it is uncertain what tumour size and grade thresholds
should be used to instigate therapy. In other words, it is
unclear how big a tumour or how high the Gleason score has
to be to justify treatment. Furthermore, biopsy is associated
with risks of bleeding and infection and patients undergoing
multiple prostate biopsies are more likely to be diagnosed
with clinically insignificant PCa than those who only un-
dergo one biopsy [9].

Since molecular alterations in these tumours are respon-
sible for their biological behaviour, efforts are underway to
develop and validate markers that identify patients at risk.
Genomics data may lead to a more accurate prediction of
individual tumour behaviour, but still have not achieved
widespread acceptance [4]. In addition these data are also
based on biopsy results. In contrast, a noninvasive method
of imaging PCa offers the possibility to perform repeated
measurements of the volume and biological properties of a
tumour which can be used for the specific staging of an
individual man and guide the timing and selection of the
most appropriate treatment. In essence, monitoring changes
in disease burden anywhere it is found in the body may offer
the best means of patient management.

There are several biological characteristics making
prostate-specific membrane antigen (PSMA) an outstanding
target for nuclear medicine. As a type II transmembrane
protein with glutamate-carboxypeptidase activity and a
known substrate, PSMA is an ideal target for developing
small-molecule radiopharmaceuticals which typically show
fast blood clearance and low background activity.
Furthermore, upon ligand binding, PSMA is internalized
via clathrin-coated pits and subsequent endocytosis [10]
resulting in an effective transportation of the bound mole-
cule into the cells. Since internalization leads to enhanced
tumour uptake and retention, targeting PSMA is expected to

M. Eder :M. Eisenhut
Radiopharmaceutical Chemistry, German Cancer Research Center,
Im Neuenheimer Feld 280,
Heidelberg 69120, Germany

J. Babich
Molecular Insight Pharmaceuticals, Inc., 160 Second Street,
Cambridge, MA 02142, USA

U. Haberkorn (*)
Department of Nuclear Medicine, University of Heidelberg,
Im Neuenheimer Feld 400,
Heidelberg 69120, Germany
e-mail: Uwe.Haberkorn@med.uni-heidelberg.de

Eur J Nucl Med Mol Imaging (2013) 40:819–823
DOI 10.1007/s00259-013-2374-2



result in high image quality. Finally, PSMA is a cell-surface
protein that shows a significant over-expression on prostatic
cancer cells and especially in advanced stage prostate carci-
nomas with low expression in normal human tissue [11, 12].
There are several corroborating studies showing that PSMA
expression levels increase according to the stage and grade
of the tumour [12–14]. Moreover, in nearly all adenocarci-
nomas of the prostate the majority of primary and metastatic
lesions show PSMA expression [14, 15]. Interestingly,
PSMA expression has also been reported in carcinomas of
the colon and breast, and in those of renal origin in newly
formed blood vessels [12, 16], which might affect the ther-
apeutic potential of PSMA-targeting molecules. Taking the-
se findings together, PSMA seems to be an ideal target for
high-contrast nuclear (PET/CT and SPECT/CT) imaging,
and therefore has high potential to improve patient manage-
ment at every stage of the disease.

Currently, a radiolabelled anti-PSMA antibody
(ProstaScint, capromab pendetide; EUSA Pharma,
Langhorne, PA) is approved in the USA for the detection
of soft-tissue metastasis and recurrence of PCa. However,
this antibody targets the intracellular domain of PSMA,
limiting its utility [17]. Clinical trial results with the anti-
PSMA monoclonal antibody J591 have shown improved
targeting of PCa [18, 19]. Although antibodies offer poten-
tial for tumour targeting, their effectiveness as diagnostic
radiopharmaceuticals is limited by a long circulating half-
life and poor tumour penetrability, particularly for bone
metastases. There are promising approaches that may over-
come these limitations, such as combining antibodies with
longer-lived PET radioisotopes such as 89Zr and 64Cu [20,
21] or using smaller variants such as single chain fragments.
Apart from diagnosis, however, antibodies directed against
PSMA may have an adjuvant therapeutic impact as they are
able to recruit cells of the immune system.

Early work on the development of inhibitors of the enzyme
N-acetylaspartylglutamate peptidase or NAAALDASE, a glu-
tamate carboxypeptidase II enzyme, identified a number of
small molecule inhibitors of this enzyme such as those de-
scribed by Jackson et al. [22, 23]. Ultimately, the identification
of the structural [24] and functional [25] homology between
NAALADASE and PSMA opened the possibility of using
these small molecules in the targeted treatment and imaging of
PCa. The “active substrate recognition site” of PSMA is
composed of two structural motifs, one recognizing the
glutarate moiety of glutamic acid inherent in NAAG while
the other, a more promiscuous site lined with basic amino
acids, allows binding to the free carboxylate of aspartate and
can accommodate more bulky structural moieties [26].
Molecules lacking one of these interactions have shown re-
duced binding and internalization rates [27]. As a conse-
quence, the design of functionally active molecules is
complex, especially when a bulky chelator has to be

introduced to incorporate radiometals. Subsequent to these
reports several groups have reported on the development of
small-molecule inhibitors of PSMA labelled with 123I
[28–30], 99mTc [31, 32], 18F [33], 111In [34] and 68Ga [35]
based on the structural motifs of various NAALADASE
inhibitors.

The first high-affinity small-molecule inhibitors of
PSMA, 123I-MIP-1072 and 123I-MIP-1095, were introduced
into the clinic in 2008. In men with metastatic PCa,
SPECT/CT using these molecules demonstrated the ability
to rapidly detect lesions in soft tissue, bone and the prostate
gland as early as 1–4 h after injection [36]. 123I-MIP-1072
was subsequently evaluated in a chemotherapy model of
PCa and clearly demonstrated that tumour uptake is directly
proportional to viable tumour mass providing the potential
to track changes in response to therapy. Hence this imaging
approach may satisfy a critical unmet need in the evaluation
of PCa [37]. The results of the initial clinical investigation
also led to the evaluation of these iodine-containing ligands
as potential PSMA-targeted radiotherapeutics when labelled
with 131I [38, 39]. The growth of spheroids of human PCa
LNCaP cells and LNCaP tumour xenografts has been shown
to be inhibited in a dose-dependent manner by treatment
with 131I-labelled analogues of these compounds,
suggesting the potential for a unique therapeutic approach
with these small molecules. PET studies with 124I-MIP-1095
have shown high accumulation in tumour lesions, excellent
contrast (Fig. 1a) and favourable dosimetry. The first thera-
peutic use in patients showed long-lasting tracer accumula-
tion in tumour lesions (Fig. 1b) and a response with respect
to PSA values and pain symptoms in most patients (data not
shown).

However, the answer to the principle question as to
whether there is a clinical demand for PSMA-directed im-
aging depends on how such imaging compares with sub-
stances and techniques already in clinical use. Since a large
group of patients show biochemical relapse after radical
prostatectomy, one major indication for imaging of PCa is
the localization of recurrent disease. The early differentia-
tion between local disease and distant metastasis is of high
importance for patient management and the therapeutic pro-
cedure. At PSA levels higher than 2 ng/mL, salvage radia-
tion therapy is almost ineffective after prostatectomy. Thus,
radiotracers able to image lesions at low PSA levels are of
particular clinical interest. 18F-Labelled choline is
established in many clinical institutions as it is able to
distinguish PCa lesions with moderate to good sensitivity
in a large group of patients [40, 41]. However, the value of
choline for the detection of recurrent PCa is limited in
patients with PSA levels <2.5 ng/mL [40, 41]. In patients
with a PSA level less than 1 ng/mL the probability of
positive PET findings using choline is only 19 % as reported
by Giovacchini et al. [40]. Similarly, 11C-acetate shows a
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poor detection rate in patients with low PSA levels [42].
Considering that biochemical relapse is already expected in
those with a PSA level of 0.2 ng/mL, there is a high demand
for more sensitive compounds.

The first clinical results using a 68Ga-labelled small
molecule targeting PSMA [35, 43, 45] suggest a high
potential for the detection of small recurrent PCa lesions
in patients presenting with low PSA values. As expected
from the biological characteristics including the expres-
sion pattern and the potential to internalize upon bind-
ing PCa cells, the 68Ga-labelled PSMA inhibitor Glu-
NH-CO-NH-Lys(Ahx)-HBED-CC shows high accumula-
tion in small metastases and is cleared rapidly from
background tissue. In direct comparison to 18F-labelled
choline, our first results suggest that PSMA-targeted
imaging is able to detect lesions much earlier in patients
with low PSA values and shows a reduced background
activity in healthy tissue (Fig. 2). Considering the grow-
ing accessibility of 68Ga from a generator and the ease
of labelling, 68Ga PSMA-targeted imaging has high
potential to become a valuable diagnostic agent in re-
current PCa and therapy monitoring. MIP-1404, a
99mTc-labelled small molecule inhibitor of PSMA also
shows high potential for the detection of tumour lesions
and offers even more widespread use in clinical practice
(Fig. 3).

In the context of primary diagnosis the value of PSMA-
targeted imaging has to be assessed in studies with histo-
logical backup because PSMA is expressed to a moderate
level in normal prostate cells. Currently, 99mTc-MIP-1404 is
under evaluation in an international phase 2 study in men
scheduled for radical prostatectomy at high risk of lymph
node involvement. The study will evaluate the ability of

MIP-1404 to detect disease using histopathology as the gold
standard (ClinicalTrials.gov Identifier NCT01667536).
Furthermore, many promising efforts such as magnetic res-
onance tomography to improve primary diagnosis are ongo-
ing. Further studies are required to determine if PSMA-
targeted imaging is able to supplement these modalities.

Thus we can address the question as to the clinical need
for PSMA-targeted imaging. In an editorial comment Scher
and Seitz wrote in 2008: “The crux of the matter is that,
regarding further therapeutic options, the patient group
[with low PSA levels] would presumably benefit the most
from early identification of the site of recurrence” [44].
Since choline PET/CT is not able to image PCa recurrence
at these low PSA levels, a more sensitive compound based
on PSMA-targeted imaging is needed to become the new
clinical standard.

Fig. 1 a Maximum intensity projection image of a PET scan
performed on day 5 after administration of 124I-MIP-1095 shows
multiple lesions in bones and lymph nodes, and also accumulation in
the salivary and lacrimal glands. b Whole-body scan 7 days after
administration of 5 GBq 131I-MIP-1466 in the same patient

Fig. 2 PET images in the same patient using the 68Ga-labelled PSMA
inhibitor Glu-NH-CO-NH-Lys(Ahx)-HBED-CC (a) and 18F-
fluoroethylcholine (b). The scan with the PSMA ligand shows signif-
icantly more lesions than the fluoroethylcholine scan in which only one
metastasis is seen

Fig. 3 SPECT/CT fusion images in a patient with biopsy-proven PCa
and a PSA level of 8.5 ng/mL. The images were acquired 2 weeks prior
to surgery. The scan was performed 4 h after injection of 740 MBq
99mTc-MIP-1404. Bilateral disease is visualized and was confirmed on
pathology with one lesion showing a Gleason score of 7 (green arrow)
and the other a Gleason score of 6 (red arrow)
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