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Abstract: As the coronavirus disease 2019 (COVID-19) pandemic is ongoing, and new variants
of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) are emerging, vaccines are
needed to protect individuals at high risk of complications and to potentially control disease outbreaks
by herd immunity. After SARS-CoV-2 vaccination, antineutrophil cytoplasmic antibody (ANCA)-
associated vasculitis (AAV) presenting with a pulmonary hemorrhage has been described. Previous
studies suggested that monocytes upregulate major histocompatibility complex (MHC) II cell surface
receptor human leukocyte antigen receptor (HLA-DR) molecules in granulomatosis with polyangiitis
(GPA) patients with proteinase 3 (PR3)- and myeloperoxidase (MPO)-ANCA seropositivity. Here,
we present a case of new-onset AAV after booster vaccination with the Pfizer-BioNTech SARS-
CoV-2 mRNA vaccine. Moreover, we provide evidence that the majority of monocytes express
HLA-DR in AAV after SARS-CoV-2 booster vaccination. It is possible that the enhanced immune
response after booster vaccination and presence of HLA-DR+ monocytes could be responsible for
triggering the production of the observed MPO- and PR3-ANCA autoantibodies. Additionally,
we conducted a systematic review of de novo AAV after SARS-CoV-2 vaccination describing their
clinical manifestations in temporal association with SARS-CoV-2 vaccination, ANCA subtype, and
treatment regimens. In light of a hundred million individuals being booster vaccinated for SARS-
CoV-2 worldwide, a potential causal association with AAV may result in a considerable subset of
cases with potential severe complications.

Keywords: booster vaccination; SARS-CoV-2; systemic vasculitis; ANCA-associated vasculitis;
pulmonary hemorrhage

1. Introduction

As the coronavirus disease 2019 (COVID-19) pandemic is ongoing, and new variants of
severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) are emerging, vaccines
are needed to protect individuals at high risk of complications and to potentially control
disease outbreaks by herd immunity [1]. SARS-CoV-2 has a relatively large genome in com-
parison with other RNA viruses such as HIV-1 and influenza virus [2,3]. Since the initial
SARS-CoV-2 outbreak in Wuhan, the virus has acquired several mutations that affected its
infectivity and immunogenicity [4,5]. SARS-CoV-2 variants have been the focus of extensive
research due to their rapid spread and high infectivity [6,7]. These include the Alpha vari-
ant (B.1.1.7/501Y.V1), the Beta variant (B.1.351/501Y.V2), the Gamma variant (P.1), and the
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Delta variant (B.1.617.2) [8]. As SARS-CoV-2 vaccines are deployed globally, large clinical
trials showed that the SARS-CoV-2 vaccines are safe and effective [9]. Surveillance of rare
safety issues related to these vaccines is progressing, since more granular data emerged
regarding adverse events due to SARS-CoV-2 vaccines during post-marketing surveil-
lance [1]. Due to the enhancement of the immune response by SARS-CoV-2 vaccination,
rare and serious adverse effects have also been reported. These include vaccine-induced
immune thrombocytopenia and thrombosis (VITT) and immune-mediated myocarditis in
association with the use of viral vector vaccines and mRNA vaccines [10–12]. In addition,
the new onset of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV)
is increasingly recognized in association with SARS-CoV-2 vaccines [13]. However, the
molecular mechanisms contributing to AAV onset remain elusive. Previous studies sug-
gested that monocytes upregulate major histocompatibility complex (MHC) II cell surface
receptor human leukocyte antigen receptor (HLA-DR) molecules in granulomatosis with
polyangiitis (GPA) patients with proteinase 3 (PR3-) and myeloperoxidase (MPO-) ANCA
seropositivity [14]. It has also been known for a long time that ANCA autoantibodies can
target the PR3 and MPO present in the lysosomes of monocytes [15]. These antigens are
expressed on the cell surface of cultured monocytes upon activation and can be recognized
by the antigen-binding sites of ANCA [16,17]. While insightful about the specific role of
monocytes in the pathophysiology of AAV, monocytes seem crucial in the initiation of
vascular inflammation and damage [18]. Peripheral blood monocytes are an important
source for local macrophage accumulation in parenchymal organs, as evidenced by their
presence in early lesions in ANCA-associated glomerulonephritis (GN) [19,20]. Therefore,
peripheral monocytes and local macrophages may have an important contribution in the
pathophysiology of AAV by modulating inflammation and organ injury. Here, we present
a case of new-onset AAV after booster vaccination with the Pfizer-BioNTech SARS-CoV-2
messenger RNA (mRNA) vaccine. Moreover, we provide evidence that the majority of
monocytes express HLA-DR in AAV after SARS-CoV-2 booster vaccination.

2. Case Description

A 57-year-old Caucasian female with a smoking history of 40 pack-years, no med-
ical history of disease, and no documented history of COVID-19 received two doses of
Pfizer-BioNTech SARS-CoV-2 vaccines and a recent Pfizer-BioNTech SARS-CoV-2 mRNA
booster vaccination. The day thereafter, she developed a pulmonary hemorrhage requiring
admission to our emergency department 5 days after booster vaccination (Figure 1A).
The vital parameters were stable, and the physical examination was unremarkable. The
patient had no allergies and denied illicit drug use. A reverse transcription polymerase
chain reaction (RT-PCR) test for SARS-CoV-2 from nasopharyngeal swabs was negative.
Laboratory assessments at admission showed only mild leukocytosis of 11,100/µL (refer-
ence: 4000–11,000/µL), while the remaining complete blood count, coagulation parameters,
C-reactive protein (CRP) serum levels, erythrocyte sedimentation rate (ESR), and urine anal-
ysis including microscopy were normal. Due to progressive pulmonary hemorrhage and
respiratory failure, the patient was admitted to the intensive care unit (ICU), requiring inva-
sive blood gas monitoring. Chest computed tomography (CT) scans showed ground glass
attenuation, consolidation, and thickening of the bronchovascular bundles (Figure 1B,C).
A bronchoscopy revealed a hemorrhage localized to the right upper lobe with neutrophilic
inflammation in the bronchoalveolar lavage fluid (BALF). Serological testing confirmed the
AAV double positive diagnosis for MPO-ANCA (9.9 IU/mL, reference: <3.5 IU/mL) and
PR3-ANCA (6.7 IU/mL, reference: <2 IU/mL), while the anti-glomerular basement mem-
brane (anti-GBM) and other ANCA autoantibodies against lactoferrin, elastase, cathepsin
G, and bactericidal permeability-increasing protein (BPI) were negative (Table 1). Flow
cytometry revealed that the majority of the monocytes expressed HLA-DR on the surface
(CD14+ HLA-DR+: 251 cells/µL, 84.1% of the CD14+ population; Table 1). Based on the
diagnosis of new-onset AAV presenting with a pulmonary hemorrhage, the patient received
a steroid pulse with intravenous methylprednisolone for 3 days (1000 mg per day), oral
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prednisone daily thereafter (1 mg/kg, 60 mg per day), and a total number of 7 sessions
of daily plasma exchange (PEX) with fresh frozen plasma (replacement solution volume:
3000 mL; Figure 1A). Thereafter, the pulmonary hemorrhage improved, and the patient
received oral prednisone at 1 mg/kg daily on a tapering regimen until being discharged.

Table 1. Key laboratory parameters at admission.

Parameter Value Normal Range

Chlamydia pneumoniae IgM (S/CO) 0.02 <0.5
Chlamydia pneumoniae IgA (EIU) 16.01 <8
Chlamydia pneumoniae IgG (EIU) 153.27 <30

Chlamydia psittaci IgM (titer) <1:12 <1:12
Chlamydia psittaci IgG (titer) <1:64 <1:64

Chlamydia trachomatis IgA (S/CO) 0.32 <1
Chlamydia trachomatis IgG (S/CO) 0.13 <1

Legionella pneumophila serovar 1–6 IgG (titer) <1:64 <1:64
Legionella pneumophila serovar 7–14 IgG (titer) <1:64 <1:64

HIV Ag/Ab (titer) Neg Neg
HBs Ag (titer) Neg Neg

Anti-HCV (titer) Neg Neg
C-reactive protein (mg/L) 3.0 <5.0

Rheumatoid factor (IU/mL) <10.0 <15.9
Complement C3c (g/L) 1.07 0.82–1.93
Complement C4 (g/L) 0.3 0.15–0.57

ANA IIF (titer) 1:320 <1:100
PR3-ANCA (IU/mL) 6.7 <2.0

MPO-ANCA (IU/mL) 9.9 <3.5
ENA screen (IU/mL) 0.1 <0.7
Anti-GBM (IU/mL) <0.8 <7.0
LF-lactoferrin (titer) Neg Neg

Elastase (titer) Neg Neg
Catepsin G (titer) Neg Neg

BPI (titer) Neg Neg
Anti-ds-DNA (IU/mL) 5.3 <15.0

DSF70 (IU/mL) <0.6 <7.0
Leukocytes (1000/µL) 11.2 4.0–11.0

Lymphocytes (%) 31.9 20–45
Monocytes (%) 5.1 3–13
Eosinophils (%) 2.5 ≤8
Basophils (%) 0.4 ≤2

Neutrophils (%) 60.1 40–76
CD14+ HLA-DR+ (%) 84.1

CD14+ HLA-DR+ (cells/µL) 251.0
Abbreviations: ANA = antinuclear antibody; ANCA = anti-neutrophil cytoplasmic antibody; anti-GBM = anti-
glomerular basement membrane; BPI = bactericidal permeability-increasing protein; CD14+ = cluster of differenti-
ation 14 positive; ds-DNA = double-stranded-DNA; DSF70 = dense fine-speckled 70; ENA = extractable nuclear
antigen; HBsAg = hepatitis B surface antigen; HCV = hepatitis C virus; HIV = human immunodeficiency virus;
HLA-DR = human leukocyte antigen DR isotype; IIF = indirect immunofluorescence; MPO = myeloperoxidase;
Neg = negative; PR3 = proteinase 3.
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Figure 1. Time course of the case and radiographic findings. (A) Time course of booster vaccination,
admission, performance of bronchoscopy, chest CT scan, and treatment regimen. (B,C) Computed
tomography of the chest at the time of admission in axial and coronal reformation. At the time of
admission, a CT scan confirmed a focal pulmonary hemorrhage in the right upper lobe with focal
consolidation (arrowheads) and surrounding ground glass opacities. Furthermore, CT scans revealed
subtle ground glass opacities in the anterior upper lobes. Abbreviations: ANCA = antineutrophil
cytoplasmic antibody; CT = computed tomography, ELISA = enzyme-linked immunosorbent assay;
ICU = intensive care unit; PEX = plasma exchange.

3. Systematic Review of the Literature

We conducted a case-based search in PubMed, with the following search (COVID-19
vaccine OR COVID-19 OR COVID-19 vaccination OR SARS-CoV-2 vaccine OR SARS-CoV-2
OR Oxford AstraZeneca OR Moderna OR Pfizer-BioNTech OR Sputnik OR Sinopharm
OR BBV152/Covaxin OR Janssen OR CoronaVac OR Novavax) AND (ANCA OR ANCA-
associated glomerulonephritis OR ANCA-associated vasculitis OR glomerulonephritis OR
MPO-ANCA OR PR3-ANCA OR pauci-immune glomerulonephritis OR de novo vasculitis
OR anti-neutrophil cytoplasmic antibody OR antineutrophil cytoplasmic antibody OR
myeloperoxidase OR proteinase 3) from 1 January 2020 to 20 April 2022. We included all the
case reports published in the English literature of AAV in patients aged ≥ 18 years. Cases
were excluded if the AAV developed after SARS-CoV-2 infection, or disease manifestations
without ANCA positivity, or if the ANCA status was not reported or untested. The title,
abstracts and the full texts of the case reports were individually checked by two authors
(E.B. and B.T.) and considered for evaluation if both agreed. Our literature review for
articles in English identified 22 articles including 27 cases fulfilling the criteria for de novo
AAV reported in temporal association with SARS-CoV-2 vaccination (Figure 2).
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Figure 2. PRISMA flow diagram of the systematic review of the literature.

Among the cases with de novo AAV, 21 cases received SARS-CoV-2 mRNA vaccination,
3 cases received a viral vector-based vaccine, and 3 cases an inactivated SARS-CoV-2 vaccine
(Table 2). AAV was precipitated in 12 patients after the first vaccine dose, and in 15 patients
after the second vaccine dose (Table 2). Regarding clinical symptoms, 5 cases presented a
hemoptysis, 6 cases presented neurologic symptoms (such as headache, dizziness, blurred
vision, or paresthesia), 7 cases presented fever and flu-like symptoms, 6 cases presented
fatigue and weakness, 3 presented gastrointestinal symptoms, and 1 case presented cuta-
neous manifestation (Table 2). Except for 5 patients, all remaining cases presented acute
kidney injury (AKI), hematuria, and proteinuria (Table 2). Symptoms developed within one
week in 9 cases, and 12 cases developed symptoms within two weeks after SARS-CoV-2
vaccination (Table 2). All AAV cases except of 1 patient were treated with steroid therapy,
5 patients with additional therapeutic plasma exchange (PEX), and 9 patients were further
treated with cyclophosphamide, 10 with rituximab, and 2 with both (Table 2). Among
the reported cases with de novo AAV after SARS-CoV-2 vaccination, 11 were positive
for MPO-ANCA, 7 cases showed PR3-ANCA positivity, 1 case was AAV dual-positive
for MPO- and PR3-ANCA, and 2 cases concurrent anti-glomerular basement membrane
(anti-GBM) antibodies (Table 2).
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Table 2. Reported cases of de novo AAV after SARS-CoV-2 vaccination.

Gender Age SARS-CoV-2
Vaccine

Onset of
Symptoms

Clinical
Manifestation

ANCA
Positivity Treatment Ref.

Female 78 Pfizer-BioNTech
(First dose) 16 days

Nausea
Vomiting
Diarrhoea

AKI

MPO-ANCA Steroids
RTX [21]

Female 79 Pfizer-BioNTech
(Second dose) 2 weeks

Weakness
Upper thigh pain

AKI
MPO-ANCA Steroids

CYC [22]

Female 29 Pfizer-BioNTech
(Second dose) 16 days AKI MPO-ANCA

Steroids
RTX
CYC

[23]

Female 75 Pfizer-BioNTech
(First dose) 4 days Blurred vision MPO-ANCA Steroids [24]

Male 52 Moderna
(Second dose) 2 weeks

Headache
Weakness

AKI
PR3-ANCA Steroids

CYC [25]

Male 81 Moderna
(Second dose)

Not
described

Flu-like symptoms
AKI PR3-ANCA

Steroids
CYC
PEX

[26]

Female 54 Pfizer-BioNTech
(Second dose) 2 weeks

Weakness
Dizziness

Appetite loss
AKI

MPO-ANCA Steroids
RTX [27]

Female 60 Moderna
(First dose) 1 day

Fatigue
Weight loss

Flu-like symptoms
PR3-ANCA Steroids

RTX [28]

Female 70 Moderna
(First dose) 1 week

Dizziness
Headache

AKI
Hemoptysis

MPO-ANCA
Steroids

PEX
RTX

[29]

Male 58 Moderna
(Second dose) 4 days

Nausea
Vomiting

Weight loss
AKI

Hemoptysis

PR3-ANCA

Steroids
PEX
CYC
RTX

[30]

Female 37 Pfizer-BioNTech
(First dose) 12 days Erythema

Fever
MPO-ANCA
PR3-ANCA Steroids [31]

Male 63
Oxford

AstraZeneca
(First dose)

7 days AKI
Hemoptysis MPO-ANCA Steroids

CYC [32]

Male 76 Pfizer-BioNTech
(Second dose) 11 days AKI No subtype Steroids

RTX [33]

Female 81 Pfizer-BioNTech
(Second dose) 2 days AKI No subtype RTX [33]

Female 76 Moderna
(First dose) 5 days AKI No subtype Steroids

RTX [33]

Female 71 Moderna
(Second dose) 2 weeks AKI No subtype Steroids

RTX [33]
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Table 2. Cont.

Gender Age SARS-CoV-2
Vaccine

Onset of
Symptoms

Clinical
Manifestation

ANCA
Positivity Treatment Ref.

Female 65 Pfizer-BioNTech
(Second dose) 2 weeks AKI No subtype Steroids

CYC [33]

Male 84 Pfizer-BioNTech
(Second dose) 1 day

Headache
Fever
AKI

MPO-ANCA Steroids [34]

Male 51
Oxford

AstraZeneca
(First dose)

15 days
Fever

Polyarthritis
AKI

PR3-ANCA Steroids
RTX [35]

Male 23 Moderna
(Second dose) 2 weeks

Weakness
Fatigue

Weight loss
AKI

MPO-ANCA
Anti-GBM

Not
described [36]

Female 82 Moderna
(Second dose) 4 weeks AKI MPO-ANCA Steroids

RTX [37]

Male 58 BBV152/Covaxin
(Second dose) 14 days

Hemoptysis
Breathlessness

AKI

c-ANCA
Anti-GBM

Steroids
PEX
CYC

[38]

Male 45 BBV152/Covaxin
(First dose) 12 days

Generalized
edema

Oliguria
Hemoptysis

Breathlessness
AKI

MPO-ANCA
Steroids

PEX
CYC

[38]

Female 79
Oxford

AstraZeneca
(First dose)

35 days AKI No subtype
Steroids

CYC
RTX

[39]

Female 63 Pfizer-BioNTech
(First dose) 3 days

Mild fever
Right aural

fullness
Nasal congestion

PR3-ANCA Steroids
CYC [40]

Female 79 Moderna
(Second dose) <14 days

Back pain
Weakness

Paresthesia
MPO-ANCA Steroids [41]

Female 78 CoronaVac
(First dose) 2 weeks

Asthenia
Mild fever

Mild dry cough
AKI

PR3-ANCA Steroids
CYC [42]

Abbreviations: AKI = acute kidney injury; ANCA = anti-neutrophil cytoplasmic antibody; Anti-GBM = anti-
glomerular basement membrane antibody; c-ANCA = cytoplasmic anti-neutrophil cytoplasmic antibody;
CYC = cyclophosphamide; MPO = myeloperoxidase; PEX = therapeutic plasma exchange; PR3 = proteinase 3;
Ref. = reference; RTX = rituximab.

4. Discussion

As of yet, our systematic review of the literature revealed 27 published cases of de
novo AAV in temporal association with SARS-CoV-2 vaccination. Here, we presented an
additional case of a pulmonary hemorrhage due to new-onset AAV that occurred in tem-
poral association with booster vaccination with the Pfizer-BioNTech SARS-CoV-2 mRNA
vaccine. Dual-positivity for MPO- and PR3-ANCA has been previously associated with
drug-induced AAV, particularly hydralazine, propylthiouracil, and levamisole (typically
when in adulterated cocaine) [31,43–45]. However, none of these drugs were relevant in the
present case. In addition, testing for atypical ANCA autoantigens revealed negative results.
In our case, the temporal association between the SARS-CoV-2 booster vaccination and
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the new onset of dual-positive AAV suggests an immune response to the mRNA vaccine
as a potential trigger. Previous studies suggested that monocytes upregulate MHC II cell
surface receptor HLA-DR in AAV patients [14]. Moreover, increased HLA-DR+ monocytes
have already been described in response to influenza vaccination and might be a potential
trigger for AAV onset [46]. This is supported by our observation that HLA-DR is present on
the surface of most monocytes in this case of AAV in temporal association with SARS-CoV-2
booster vaccination. HLA-DRs are highly efficient molecules which present antigens and
initiate immune responses. HLA-DRs are present on B cells, activated T lymphocytes,
monocytes or macrophages, dendritic cells, and other non-professional antigen-presenting
cells (APCs). In conjunction with the cluster of differentiation 3/T cell receptor (CD3/TCR)
complex and CD4 molecules, HLA-DRs are critical for efficient peptide presentation to
CD4+ T lymphocytes [47]. It is possible that the enhanced immune response after booster
vaccination and the presence of HLA-DR+ monocytes could be responsible for triggering
the production of observed MPO- and PR3-ANCA autoantibodies. Anticipating a hundred
million individuals to be booster vaccinated for SARS-CoV-2, a potential causal association
with AAV may result in a considerable subset of cases with potential severe complications.
Fortunately, treatment of AAV is possible, and insights into the molecular mechanisms
underlying the onset of AAV after SARS-CoV-2 (booster) vaccination must be provided by
ongoing studies that further enable possible recommendations of early testing if the clinical
symptoms are compatible with AAV.

5. Conclusions

In summary, we presented here a case of new-onset AAV after booster vaccination with
the Pfizer-BioNTech SARS-CoV-2 mRNA vaccine. Moreover, we provided evidence that the
majority of monocytes express HLA-DR in AAV after SARS-CoV-2 booster vaccination. It
is possible that the enhanced immune response after booster vaccination and the presence
of HLA-DR+ monocytes could be responsible for triggering the production of the observed
MPO- and PR3-ANCA autoantibodies. In light of huge booster vaccination programs for
SARS-CoV-2 worldwide, a potential causal association with AAV may result in a consid-
erable subset of cases with potential severe complications. The detection and transparent
communication of any adverse events, including rare complications, is important. This is
especially relevant since these unusual but severe complications require a specific diagnos-
tic work-up and treatment. Our report aims to sensitize clinicians in the field to this rare
but potentially severe complication to encourage the prompt recognition and diagnosis of
de novo AAV in timely association with SARS-CoV-2 vaccination, a thorough investigation
of possible concurrent triggers, as well as timely treatment once found.
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