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Abstract
Background and Objective  More than half of all drugs are still prescribed off-label to children. Pharmacokinetic (PK) data are 
needed to support off-label dosing, however for many drugs such data are either sparse or not representative. Physiologically-
based pharmacokinetic (PBPK) models are increasingly used to study PK and guide dosing decisions. Building compound 
models to study PK requires expertise and is time-consuming. Therefore, in this paper, we studied the feasibility of predict-
ing pediatric exposure by pragmatically combining existing compound models, developed e.g. for studies in adults, with a 
pediatric and preterm physiology model.
Methods  Seven drugs, with various PK characteristics, were selected (meropenem, ceftazidime, azithromycin, propofol, 
midazolam, lorazepam, and caffeine) as a proof of concept. Simcyp® v20 was used to predict exposure in adults, children, 
and (pre)term neonates, by combining an existing compound model with relevant virtual physiology models. Predictive 
performance was evaluated by calculating the ratios of predicted-to-observed PK parameter values (0.5- to 2-fold acceptance 
range) and by visual predictive checks with prediction error values.
Results  Overall, model predicted PK in infants, children and adolescents capture clinical data. Confidence in PBPK model 
performance was therefore considered high. Predictive performance tends to decrease when predicting PK in the (pre)term 
neonatal population.
Conclusion  Pragmatic PBPK modeling in pediatrics, based on compound models verified with adult data, is feasible. A 
thorough understanding of the model assumptions and limitations is required, before model-informed doses can be recom-
mended for clinical use.
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1  Introduction

Children are often excluded from clinical trials due to ethi-
cal and logistical reasons, resulting in little to no dosing 
information for pediatrics after market authorization. Many 

Key Points 

Pediatric physiologically-based pharmacokinetic (PBPK) 
physiology models are scientifically well-founded 
with increasing information regarding developmental 
changes, while most published PBPK compound models 
have been created and verified to predict pharmacokinet-
ics (PK) in adults.

We describe a pragmatic modeling approach to predict 
PK in infants, children, and adolescents, based on com-
bining existing compound models with pediatric physiol-
ogy models in Simcyp®.

Model-predicted PK captured clinical data for several 
drugs with diverse disposition pathways for most of the 
pediatric age groups. Predictive performance tends to 
decrease when predicting PK in the (pre)term neonatal 
population.
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guidelines until the drug was found to be ineffective in late 
2020 [18].

Confidence in model performance increases with increas-
ing knowledge of drug PK properties and age-dependent 
developmental changes [19]. However, using pediatric 
PBPK models in cases where PK data are limited to verify 
the model, requires strong confidence in the predictive per-
formance of the pediatric and preterm physiology models. 
The objective of the present work is therefore to evaluate the 
feasibility of such a pragmatic PBPK modeling approach in 
which existing compound models are combined with exist-
ing pediatric physiology models, in order to predict PK in 
pediatric subjects and ultimately inform dosing. We do so by 
investigating model performance for predicting PK across 
the pediatric age range, for intravenous and oral administra-
tion routes, at several dose levels for a selected set of drugs 
that represent different elimination pathways.

2 � Methods

In general, in this study, proof-of-concept drugs were identi-
fied by checking for relevance in pediatrics, the presence of 
existing compound models, and the availability of pediat-
ric PK data in scientific literature. Following the pragmatic 
approach, the existing compound models were verified with 
published PK data against the adult, pediatric, and preterm 
neonatal physiology models in Simcyp®, consecutively. In 
this process, the compound model remained unchanged 
regardless of previous model performance in one of the 
age categories. This way, we were able to evaluate if our 
proposed pragmatic approach is feasible. A more detailed 
outline of the method is discussed in the following sections.

2.1 � Drug Selection

We selected proof-of-concept drugs as follows. First, the 
Model List of Essential Medicines for Children of the World 
Health Organization was screened [20]. Next, drugs were 
only selected if they were listed in the Dutch Pediatric For-
mulary [21], if a Simcyp® PBPK compound model was 
available, and if PK data in children was available. Then, 
drugs were selected which reflect different excretion path-
ways, such as renal clearance, cytochrome P450 (CYP)- and/
or UDP-glucuronosyltransferase (UGT)-mediated metabo-
lism, and biliary clearance.

2.2 � PK Verification Data

To verify model predictions, for each drug PK data were 
retrieved from PubMed. Two standardized search queries 

initiatives, such as the Best Pharmaceuticals for Children 
Act (BPCA), the Pediatric Research Equity Act (PREA), 
and the European Paediatric Regulation have resulted in 
expanded drug labeling information on pediatric dosing 
through collection of pharmacokinetic (PK), pharmaco-
dynamic (PD), and safety data in pediatric patients [1, 2]. 
Despite these efforts, so called ‘off-label’ drug use remains 
common practice in pediatrics, especially in very young 
children, for drugs whose pediatric absorption, distribution, 
metabolism, or excretion (ADME) data is lacking or non-
representative for a broader pediatric population [3, 4]. Lack 
of PK and PK/PD knowledge puts children at increased risks 
of adverse events and therapeutic failure [5–7].

When clinical PK or PK/PD data are limited, modeling 
and simulation, especially physiologically-based pharma-
cokinetic (PBPK) modeling, may be helpful to support 
decision making with respect to dosing both in pediatric 
drug development as well as for dosing recommendations in 
clinical care. PBPK models are multi-compartmental math-
ematical models that incorporate systems data (e.g. popula-
tion demographic information, anatomical and physiological 
parameters) as well as drug-specific data (e.g. physicochemi-
cal properties) [8]. Their mechanistic nature provides the 
possibility to conduct mechanism-based modeling. When 
simulating PK in pediatrics, age-related developmental 
changes such as organ maturation and the ontogeny profile 
of drug metabolizing enzymes can be included. Currently, 
pediatric PBPK models are scientifically well-founded and 
incorporate an increasing amount of information regard-
ing these developmental changes [9–14]. Modeling results 
have been used in regulatory applications and by academic 
investigators to, for example, determine effects of non-mat-
urational factors (e.g. disease) [10, 15].

Building PBPK models from scratch requires many dif-
ferent types of detailed data and knowledge and can be very 
time consuming. However, several PBPK software develop-
ers have constructed PBPK platforms incorporating physi-
ological models representing a variety of populations of 
interest, including those describing pediatric physiology. 
Meanwhile, many PBPK compound models that have been 
used in conjunction with adult physiological parameters to 
predict PK in mature subjects have been published and are 
available in databases [16]. Due to the mechanistic nature of 
PBPK modeling, it is possible to combine any drug model 
with any defined virtual physiology model, and therefore 
also models that describe pediatric physiology. An interest-
ing case example that used this pragmatic approach to sup-
port clinical implementation of an off-label drug dose is on 
chloroquine, which was indicated for pediatric COVID-19 at 
the beginning of the pandemic in the Netherlands [17]. The 
model-informed ‘off-label’ dosing was included in national 
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were used, one to search for adult PK data and one for pedi-
atric PK data (see section 1 of the electronic supplementary 
material [ESM]). Titles and abstracts of all search results 
were screened to check if actual PK data were provided in 
the publication. To extend our search strategy, the ‘Similar 
articles’ overview and references were checked to identify 
relevant articles that were missed with the initial search 
queries.

2.3 � Model Verification

We used Simcyp® as it is one of the most frequently used 
PBPK modeling platforms with an easy-to-use user inter-
face [16]. All simulations were conducted in Simcyp® v20 
(Certara UK Limited, Simcyp Division, Sheffield, UK). 
Compound models were obtained from the Simcyp® soft-
ware, the Simcyp® repository, or were described in scientific 
literature. Compound input parameters (e.g. Log PO:W and 
B/P) were checked prior to PBPK modeling but were left 
unchanged. Default physiology models of Simcyp® were 
used, namely ‘Sim-healthy volunteers’, ‘Sim-paediatric’ 
[22], and ‘Sim-preterm’ [23].

Our workflow for PBPK model validation is shown in 
Fig. 1. First, drug PBPK models were verified in the adult 
population to demonstrate adequate predictive performance 
in adults. This step was taken to avoid  that compound mod-
els with poor predictive value in adults would impact the 
subsequent predictions in pediatric populations [24]. For 
simulations of adult PK, PK data upon single- and multi-
dose intravenous (IV) administration were compared with 
published PK data. If the drug is administered orally in the 
clinical setting, and if PK data upon oral administration is 
available for this population, this step was followed by simu-
lations of adult PK upon oral administration. After accept-
ance of adult model performance, simulations of pediatric 
single- and multidose IV and oral administration were con-
ducted for age ranges and administration routes for which 
pediatric PK data were available.

Predictive performance of PBPK models was evaluated 
by 1) calculating the ratio of predicted-to-observed PK 
parameters, and 2) a visual predictive check. Ratios within 
0.5- to 2-fold range were considered acceptable as it is the 
most applied criterion [25]. For a visual check, observed 
plasma concentration–time profiles were extracted from lit-
erature, digitalized with WebPlotDigitizer v4.5, and com-
pared with predicted plasma concentration–time curves. 
For each drug, visual predictive checks that represented 
the overall simulation results best, for each administration 
route and each age group, are shown in the manuscript. 

All other visual predictive checks are provided in the ESM 
(Fig. S1–8). To give an indication of overall model perfor-
mance (i.e. multiple verification simulations were conducted 
per drug and per age group), prediction errors (PE) were 
calculated as described previously [26, 27], following the 
equation:

where Yobs,i is the ith observed plasma concentration in the 
clinical studies at a specific point in time and Ypred,i is the ith 
mean predicted plasma concentration for the same point in 
time. Variability between subjects and studies was expected 
to cancel out in the analysis; therefore, the median PE ide-
ally equals zero. A median PE of ± 0.22, ± 0.40, ± 0.67, and 
± 1.00 refers to 1.25-, 1.5-, 2-, and 3-fold median differences 
between observed and predicted values, respectively.

PE =
Yobs,i − Ypred,i

(Yobs,i + Ypred,i)∕2

Fig. 1   Workflow of pragmatic pediatric PBPK modeling. Drug-spe-
cific physicochemical properties are defined in a compound model 
and age-dependent physiological parameters in distinct physiol-
ogy models. The simulation trial design includes, amongst others, a 
description of the dosing schedule and the age of virtual subjects. The 
trial design is matched as closely as possible with the study design of 
reported PK studies (indicated with the dashed borders)
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3 � Results

3.1 � Drug Selection and Collection of PK Studies

To assess the feasibility of the pragmatic PBPK modeling 
approach, seven drugs were selected: meropenem, ceftazi-
dime, azithromycin, propofol, midazolam, lorazepam, and 
caffeine. The selected drugs with their elimination pathways 
and the source of compound models are shown in the ESM 
(section 3), as well as the adult and pediatric PK studies 
used for model verification and drug-dependent model input 
parameters (ESM sections 4 and 5, respectively).

3.2 � PBPK Modeling

For every drug, simulations were conducted to match avail-
able clinical datasets for the different age categories: adults, 
adolescents, children, infants, and (pre)term neonates. Age 
ranges are defined in the ESM, section 2. Model perfor-
mance, assessed by predicted-to-observed PK parameter 
ratios and visual checks, is shown in Figs. 2 and 3 and ESM 
section 6. Box–whisker plots for the PEs across all seven 
drugs for three age categories (adults, combined pediatric 
age groups, and [pre]term neonates) and per dosing route are 
provided in Fig. 4. Here, for the sake of concise presentation, 
PE values are shown irrespective of time, as also described 
earlier by Yamamoto et al. [27]. Full plots of PE values over 
time can be found in Fig. S9 of the ESM.

3.2.1 � Meropenem

In adults, children, infants and (pre)term neonates, the max-
imum concentration (Cmax) and area under the curve (AUC) 
predicted-to-observed ratios fall within 2-fold (Fig. 2). 
Also, the volume of distribution (Vd), clearance (CL), and 
half-life (t½) ratios fall within the 2-fold range for adults, 
children, and infants (Figs. 2, 3). Only in (pre)term neonates 
there is a tendency for Vd and t½ to be underpredicted and 
CL to be overpredicted (Figs. 2, 3). Evaluation of median 

PE (Fig. 4) and distribution of PEs over time (Fig. S9, see 
ESM) support this.

3.2.2 � Ceftazidime

All predicted PK values fall within a 2-fold range of that 
observed for adults, adolescents, children, and infants, 
except for Vd which is underpredicted in the pediatric age 
groups (Fig. 2). In (pre)term neonates, Cmax is overpredicted 
and t½ is underpredicted when compared with several clini-
cal studies (Fig. 2). These inaccuracies are reflected in the 
observed and predicted plasma concentration–time profile in 
(pre)term neonates (Fig. 3). Note that the median PE (Fig. 4) 
is close to 0 in all age groups. However, closer inspection 
of the PE values over time in Fig. S9 (see ESM) shows that 
this is the result of an initial overprediction of Cmax and a 
subsequent underprediction of t½ in children and (pre)term 
neonates. Inspecting the predictions for Vd and CL that drive 
the PBPK estimations of AUC and t½, it can be seen that pre-
dicted Vd and CL in (pre)term neonates generally falls within 
the 2-fold range, though a tendency to under- and overpre-
dict can be observed, respectively (Fig. 2). Across the other 
pediatric age groups, clinical studies only sparsely reported 
Vd. For studies which reported Vd values, the predicted-to-
observed ratios are bordering the 0.5-fold threshold (Fig. 2).

3.2.3 � Azithromycin

Predicted Cmax for adults, adolescents, children, and infants 
generally fall within the 2-fold range (Fig. 2). This is also 
the case for prediction of the AUC, with the exception of 
two studies (one in adults and one in a combined population 
including both infants and children). When looking more 
closely at the predicted-to-observed ratios, it seems that 
the model has difficulty in capturing the clinical variabil-
ity in exposure, as ratios spread widely within the accept-
ance interval for Cmax and beyond for AUC. This is further 
illustrated when evaluating predictions for Vd, CL and t½, 
where the acceptance interval thresholds are also violated 
in several cases (Fig. 2). Diving deeper into the differences 
between administration routes, predicted plasma concentra-
tion–time profiles after IV administration correspond well 
with observed profiles in adults, adolescents, children, and 
infants (Fig. 3 and ESM Fig. S9). In contrast, after oral 
administration, exposure is generally overpredicted in chil-
dren, particularly in the absorption phase (Fig. 3 and ESM 
Fig. S9). This occurs in conjunction with predicted tmax 
values (time to maximum plasma concentration; Fig. S3, 
see ESM), which are generally lower than those clinically 
observed.

Note that exposure of azithromycin (IV) is highly under-
predicted in preterm neonates. This cannot be taken from 

Fig. 2   Predicted-to-observed ratios of the maximum concentra-
tion (Cmax), area under the curve (AUC), volume of distribution 
(Vd), clearance (CL), and half-life (t½), per drug, per age group (age 
ranges are defined in the electronic supplementary material, sec-
tion  2). Single symbols represent a predicted-to-observed ratio of a 
single pharmacokinetic (PK) study. However, in case the age range of 
the simulated PK study covered more than one age group, the ratio is 
presented for each age group. ‘Neonates’ can refer to preterm and/or 
term neonates. The black lines represent the 2-fold range, the dashed 
lines the 1.5-fold range, the gray shaded area represents the 1.25-fold 
range and the gray line represents the unity line. Six ratios (i.e. PK 
parameter ratios of six simulated PK studies) fall outside the 0.2- to 
5-fold range and are indicated with an asterisk

◂
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Fig. 3   Prediction of drug plasma concentration-time profiles in the 
adult, pediatric and neonatal population. Meropenem (adults: Har-
rison et  al., pediatrics: Blumer et  al., and neonates: van den Anker 
et  al.), ceftazidime (adults: Paradis et  al., pediatrics: Bradley et  al., 
and neonates: Mulhall & De Louvois), azithromycin (adults IV: Rod-
vold et al., adults PO: Barve et al., pediatrics IV: Jacobs et al., pedi-
atrics PO: Stevens et al., neonates IV: Hassan et al.), propofol (adults: 
Knibbe et  al. 1999, pediatrics: Jones et  al., and neonates: Allegaert 
et  al.), midazolam (adults IV: Smith et  al., adults PO: Greenblatt 
et al., pediatrics IV: Reed et al., pediatrics PO: Reed et al., and neo-

nates: Lee et al.), lorazepam (adults IV: Greenblatt et al. 1979a, adults 
PO: Friedman et al., and pediatrics IV: Chamberlain et al.), and caf-
feine (adults IV: Kennedy et al., adults PO: Thai et al., pediatrics PO: 
Akinyinka et al., neonates IV: Aranda et al., and neonates PO: Aranda 
et al.). References are provided in the electronic supplementary mate-
rial. The solid line is the predicted mean and the shaded area repre-
sents the 5th and 95th percentile interval of the predicted plasma con-
centrations in the virtual population. Circles are the observed data. 
Insets depict log-transformed plasma concentration–time data
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Fig. 3   (continued)
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Fig. 2, since no clinical PK parameter values were available 
for comparison. Fig. 3 (as well as Fig. S3R and S3W in 
the ESM), does show that the reported plasma concentra-
tion–time curves were not captured by the model, which 
is further indicated in Fig. 4, where the median PE clearly 
deviates from 0.

3.2.4 � Propofol

We could not assess the prediction accuracy of Cmax and 
AUC values, as these parameters were not reported in litera-
ture. However, predicted plasma concentration–time profiles 
in adults, adolescents, children, and infants were found to 
correspond well with observed profiles (Fig. 3 and Fig. S4 
in the ESM). This is also reflected by the median PE (Fig. 4). 
Interestingly, Vd ratios vary widely from 0.53 to 6.12 in 
adults (and in children from 0.55 to 4.56; Fig. 2), due to a 
large variability in observed Vd values (Fig. S5, see ESM). 
Almost all CL and t½ ratios are within 2-fold range, the CL 
ratio in (pre)term neonates is 0.07 (not shown in Fig. 2). 
In addition, a large interindividual variability in observed 
plasma concentrations is seen compared to the predicted 5th 
and 95th percentile range in (pre)term neonates (Fig. 3).

3.2.5 � Midazolam

Calculated Cmax and AUC ratios are almost all within the 
2-fold range for all age groups (Fig. 2), with the exception 
of those after oral administration in adolescents, children, 
and infants (Fig. 2). The plasma concentration–time curves 
also indicate that after oral administration exposure is over-
predicted in the pediatric age groups (Fig. 3 and Fig. S9 in 
the ESM). Furthermore, Vd tends to be underpredicted in 
adolescents, children, and infants, though not in (pre)term 
neonates, with an underprediction of CL in children and 

infants, while t½ tends to be overpredicted in all age groups 
except for adolescents (Fig. 2). Nevertheless, the observed 
plasma concentration–time profiles are captured adequately 
(Figs. 3, 4).

3.2.6 � Lorazepam

In adults, almost all ratios for the different PK parameters are 
within 2-fold (Fig. 2), predicted plasma concentration–time 
curves correspond well with observed profiles, and PE 
values are acceptable (Figs. 3, 4). In contrast, in children, 
infants, and term neonates, AUC and Cmax tend to be over-
predicted, while Vd and CL tend to be underpredicted (also 
in adolescents, Fig. 2). Nevertheless, the majority of the 
predicted-to-observed ratios remain within 2-fold. A visual 
check of predicted and observed plasma concentration–time 
profiles and corresponding median PE values (Figs. 3, 4) of 
adolescents, children, and infants supports adequate model 
performance. It is of note that the observed bodyweight-
based CL (L/h/kg) decreases from infants to adolescents, 
while predicted CL values (L/h/kg) increase with increasing 
age.

3.2.7 � Caffeine

In general, for all age groups Cmax, AUC, and t½ ratios fall 
within the 2-fold range (Fig. 2), which is in line with the 
visual checks (Fig. 3). Only for preterm neonates, exposure 
after oral administration is overpredicted. This statement is 
based on the degree to which the plasma concentration–time 
curves were captured by the model, as exposure estimates 
were not reported in the clinical paper (Figs. 3, 4). In pre-
term neonates, CL is predicted accurately, as all ratios are 
within 2-fold (Fig. 2). Vd tends to be underpredicted in 
preterm neonates; most ratios in Fig. 2 are bordering the 

Fig. 4   Box–whisker plots for the prediction errors (PEs) describing 
observed vs predicted plasma concentrations. Data are shown per age 
group and per dosing route. PE values for all observations (i.e. seven 
drugs, all studies, all time points) are presented as gray dots, irre-
spectively of time in the whisker plots. The box whiskers indicate the 

quartiles with the median and the minimum and maximum PE value. 
Note that positive values indicate an underprediction and negative 
values an overprediction by the model. Full plots of PE values over 
time can be found in the electronic supplementary material, section 6
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0.5-fold threshold. Looking more closely, especially with 
a multidose strategy, the Vd was underpredicted in preterm 
neonates (Fig. S8P, Q and R, see ESM). This was also the 
case for multidose simulations in adults (Fig. S8G in the 
ESM).

4 � Discussion

We have shown the feasibility of using existing compound 
models and pediatric models to simulate pediatric PK, thus 
negating the need to build compound and physiology models 
from scratch. Generally, model predictions in adolescents, 
children, and infants were able to capture clinical observed 
PK data according to pre-defined criteria (Figs. 2, 4), and 
confidence in PBPK model performance was therefore con-
sidered high. In (pre)term neonates, predictive performance 
was generally lower. During our study, we identified under-
lying reasons for suboptimal model performance. A good 
understanding of these issues is imperative to improve per-
formance and facilitates implementation of this pragmatic 
PBPK modeling approach.

4.1 � Model Verification with Dissimilar Populations

While ceftazidime CL is predicted well for adults and chil-
dren, Vd is generally underpredicted in children and (pre)
term neonates. One explanation for these suboptimal pre-
dictions may be the impact of critical illness. For all adult 
PBPK model simulations, only PK studies including healthy 
volunteers are used for verification. In case of pediatrics, 
however, only PK data from pediatric patients are available 
for verification, while PK is predicted for healthy pediatric 
virtual subjects. Vd of many cephalosporins, including cef-
tazidime, is often increased in critical illness [28, 29], which 
is not considered in the physiology models used for the pre-
dictions. Ideally, a critically ill pediatric physiology model 
should be developed by adapting physiological parameters 
in the model which are influenced by severe infection. An 
adult critically ill septic population has been developed pre-
viously that included changes related to protein binding and 
body composition [30]. A similar pediatric model has not yet 
been developed, as the required pediatric-specific informa-
tion is still unknown. Until sufficient physiological data are 
available to adjust the model mechanistically, adjusting the 
model in a non-mechanistic manner might be the best strat-
egy, for instance, by optimizing the Vd by adjusting tissue-
to-plasma partition coefficients or by using a higher fixed 
(user-defined) input parameter value for Vd.

4.2 � Large Clinical Variability in PK

Predictions of propofol PK for adults and the distinct pedi-
atric groups are accurate. However, Vd in adults exhibits 
a large variability (from 77.6 to 922.4 L), while predicted 
Vd values are much less variable (from 426.3 to 504.27 L; 
Fig. S5 in the ESM). This results in a large range of pre-
dicted-to-observed Vd ratios (Fig. 2). PK studies for model 
verification included healthy volunteers, but also ASA PS 
(American Society of Anesthesiologist Physical Status) 
classification grade 1 or 2 patients undergoing surgery 
(Table S5, see ESM). Grade 2 indicates a patient with mild 
systemic disease including, for example, current smokers 
or well-controlled diabetes mellitus, but it also includes 
obesity (30 < BMI < 40) [31]. There is, however, no clear 
correlation between the type of population studied (healthy 
volunteer, ASA 1 or 2-graded patient population) and size 
of the Vd. Also, no BMI range or individual age, weight, and 
height characteristics were provided in the studies, therefore, 
it is impossible to check if a large subgroup of patients with 
obesity might explain observed variability. The large clini-
cal variability thus remains inexplicable. Still, the predicted 
values do fall within the observed range. In general, it should 
be noted that in case there are only a few PK studies avail-
able that report Vd, the chance of falsely claiming an over- or 
underprediction of Vd is high. This complicates the model 
verification process.

4.3 � Missing or Incorrect Relevant ADME Processes

Azithromycin plasma exposure is predicted accurately 
in adults and pediatrics after IV administration, however, 
simulations of pediatric PK after oral administration show 
a discrepancy between observed and predicted plasma con-
centrations in the absorption phase (overpredicted Cmax and 
a shorter tmax). According to the compound summary docu-
ment, available from the Simcyp® repository, the fraction 
available from dosage form (fa) and the first-order absorp-
tion rate constant (ka) are fitted to observed values. This is 
reasonable considering that the model is developed to be 
a fit-for-purpose model (i.e. as a CYP3A4 inhibitor model 
compound). Nonetheless, it is not specified which clinical 
study was used for parameter fitting. This is important as 
the input parameters for the compound model are dependent 
on the clinical study used. Hence, in case of high interindi-
vidual variability in the population, deriving input data from 
a small number of subjects can result in input parameter val-
ues that are biased. This may be the case for azithromycin, as 
substantial variability in pediatrics is observed in the clinic 
regarding both absorption and clearance [32].
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A similar phenomenon may also be applicable to merope-
nem CL. Surprisingly, when we verified model performance 
in adults (the population for which the model was devel-
oped), this parameter tended to be underpredicted. This may 
be explained by the fact that we verified the model against 
a much wider array of published PK studies compared with 
the number of PK studies initially used for model develop-
ment [33]. This may indicate that model parameterization of 
clearance may have been biased. In such cases, optimizing 
model parameterization to better reflect adult PK first could 
be considered in order to provide a better basis for extrapola-
tion to pediatrics.

In contrast to the tendency to underpredict meropenem 
CL in adults and children, CL tends to be overpredicted in 
the (pre)term neonatal population. This overprediction is 
presumably caused by inaccurate mechanistic parameteri-
zation of the model. Meropenem is mainly cleared renally 
via glomerular filtration and to a large extent via tubular 
secretion by organic anion transporters 1 and 3 (OAT1 and 
OAT3) [34, 35]. However, in the current model, elimina-
tion is defined as total renal clearance with an additional 
systemic clearance component (Table S9, see ESM) and 
total renal clearance is based on maturation of glomerular 
filtration rate, solely. OAT1 and OAT3 protein abundance 
are significantly lower in term neonates and infants com-
pared with older age groups [36]. A more recently published 
PBPK model of Ganguly and colleagues, which more accu-
rately predicted PK in (pre)term neonates compared with 
our predictions, included OAT3 in a mechanistic manner, 
by including OAT3 ontogeny as well as Michaelis constant 
(Km) and maximum velocity (Vmax) values [37]. Moreover, 
renal meropenem metabolism by dehydropeptidase-I (DHP-
1) is included in their model instead of using a general, non-
specific, additional systemic clearance component. However, 
DHP-1 ontogeny is unknown and the authors therefore 
incorporated a theoretical function of age-based maturation 
of kidney weight to reflect DHP-1 ontogeny. No substantial 
difference is expected when including an additional systemic 
clearance compared with including DHP-1 metabolism, as 
additional systemic clearance is allometrically scaled (i.e. 
allometric scaling and kidney weight maturation functions 
are alike). Better performance of the model of Ganguly and 
colleagues can therefore primarily be assigned to the addi-
tion of OAT3-mediated tubular secretion, in a mechanistic 
manner.

Finally, midazolam PBPK modeling illustrates an exam-
ple in which missing mechanistic ADME data impacts 
simulation accuracy. The model tends to underpredict Vd in 
adolescents, children, and infants (Fig. 3). Looking closer, it 
appeared that this finding is not surprising, since the mida-
zolam model in Simcyp® consists of a minimal distribution 
model with a fixed value for Vd (i.e. 0.88 L/kg). This means 
that the Vd is fixed for all pediatric age groups and hence 

age-dependent changes in body composition are not taken 
into consideration. However, from clinical measurements of 
the Vd of midazolam, it is known that Vd is higher in children 
(i.e. 1.7 L/kg) [38] and in preterm neonates (i.e. 1.1 L/kg) 
[39] compared with adults. It is therefore logical that the 
simulated Vd values do not correspond to the clinical data. 
Still, the impact of Vd parameterization on the predicted 
exposure profiles is limited.

4.4 � Inadequate Ontogeny Patterns

Propofol CL is predicted accurately in adults and children, 
but not in (pre)term neonates. A closer look at the com-
pound model and Simcyp® settings revealed that while 
both CYP2B6 and UGT1A9 intrinsic clearance values were 
included in the model, the ontogeny profile of CYP2B6 was 
not. Simcyp’s default expression level of CYP2B6 in pre-
term neonates is set to zero while Upreti and Wahlstrom 
reported that CYP2B6 activity in this age group is compa-
rable to adult activity [40]. Absent CYP2B6 activity in this 
age group naturally results in the underpredicted CL by our 
model, underlining the importance of incorporating appro-
priate ontogeny profiles. Aside from CYP2B6, the UGT1A9 
ontogeny profile in Simcyp® corresponds with literature, 
indicating no activity at birth [41, 42]. Propofol is to a lesser 
extent also hydroxylated by CYP2C9 (Table S1, see ESM), 
but this was also not included in the tested compound model. 
Adding this would presumably contribute to better predic-
tions as Michelet et al. showed that another propofol com-
pound model, incorporating CYP2C9 and CYP2B6 activity, 
did result in accurate predictions in (pre)term neonates [43]. 
Of note, Michelet et al. calculated activity adjustment factors 
for CYP2B6 and CYP2C9 (with data from in vitro experi-
ments with probe substrates), while intrinsic clearance val-
ues in the models used in this study were empirically scaled 
based on propofol data only [44] in order to correct for 
observed differences between in vitro and in vivo activity.

While lorazepam model performance in adults is accu-
rate, in pediatrics and term neonates CL is underpredicted. 
Lorazepam is, like propofol, mainly metabolized by glu-
curonidation. The UGT enzymes UGT2B4, UGT2B7, and 
UGT2B15 are involved in lorazepam metabolism (Table S1, 
see ESM). According to the compound model, total liver 
clearance has been held responsible for approximately 95% 
of the total excretion (human liver microsomal data) with 
the remaining 5% attributable to renal clearance. In the 
Simcyp® preterm physiology model, activity of UGT2B7 
and UGT2B15 is set to zero. However, it has been reported 
that hepatic UGT2B7 and UGT2B15 protein abundance in 
neonates is 13 and 38.6% of adult values, respectively [42]. 
This suggests their contribution to clearance is not negli-
gible. Omitting UGT2B7 and UGT2B15 ontogeny might 
explain the large underprediction of CL in term neonates. 



Feasibility of a Pragmatic PBPK Modeling Approach…

Furthermore, according to Bhatt et al. [42], 50% of liver pro-
tein abundance for UGT2B7 in adults was reached at the age 
of 2.6 years. In contrast, in the model used by us, UGT2B7 
abundance at this age was only around 20%. This discrep-
ancy may explain the underpredicted CL, also in infants.

4.5 � Different Contribution of ADME Pathways 
in Preterm Neonates Compared with Adults

Beforehand, we recognized that the contribution of eliminat-
ing pathways to total predicted caffeine clearance in preterm 
neonates deviates from what has been reported in scientific 
literature. Determination of caffeine and its metabolites in 
urine and enzyme expression and activity data showed that 
caffeine metabolism in preterm neonates is negligible [13, 
45]. However, in the virtual physiology model, CYP1A2 
activity increases from 1.8 to 23.5% (fraction of adult activ-
ity) in preterm neonates with a postmenstrual age (PMA) 
of 25 and 41 weeks, respectively. When conducting simula-
tions, CYP1A2-mediated metabolism was predicted to be 
responsible for 91.5 to 97.4% of total caffeine clearance in 
preterm neonates (PMA of 25 and 39 weeks, respectively). 
This contrasts with the clinical PK data and highlights that 
an adequate simulation of total body clearance does not 
necessarily imply a correct mechanistic parameterization of 
clearance.

4.6 � General Limitations

Our paper comes with some limitations. First, we only 
focused on Simcyp® for the pragmatic approach and did not 
include other PBPK software programs such as PK-Sim or 
GastroPlus. Although the general principle of the approach 
outlined in the present work should be applicable to other 
platforms as well, thorough assessment of model perfor-
mance in these platforms is required to be able to conclude 
that the proposed pragmatic modeling approach is indeed 
feasible across the different platforms. Several underly-
ing reasons for suboptimal performance identified here 
may be relevant for other software platforms as well, such 
as the large clinical variability in PK. On the other hand, 
suboptimal model performance due to, for example, inad-
equate ontogeny patterns can be highly platform-depend-
ent, depending to what extent physiological data has been 
included in the physiology models these platforms employ.

For the predicted-to-observed ratios in our analysis, we 
have mainly focused on the 2-fold acceptance range. How-
ever, it is under debate if this criterion is stringent enough 
[46], e.g. for drugs with a small therapeutic window. More 
stringent ranges for predicted-to-observed ratios could thus 
be considered as well (e.g. 1.5- or 1.25-fold ranges), which 
are indicated in Fig. 2.  85.4% of all ratios fall within the 

2-fold range, while 62.7% and 41.4% fall within the 1.5-fold 
and 1.25-fold range, respectively.

Finally, it should be noted that no plasma concentra-
tion–time profiles were available for lorazepam and no PK 
parameter values were reported for azithromycin in (pre)
term neonates. When such clinical PK data are missing from 
the literature, model verification is less thorough.

5 � Conclusion

PK of various drugs with distinct characteristics in adult and 
pediatric age groups were modeled via a pragmatic approach 
by combining existing compound models with existing pedi-
atric physiology models. In most cases, this approach was 
successful, supporting the off-the-shelf use of PBPK models 
for dose selections in the pediatric and preterm population 
when PK data is absent or sparse. PBPK modeling can thus 
be a quick, ethical, and relevant approach to generate digital 
pieces of evidence that can help guide drug dosing in this 
special patient population. Still, the identified underlying 
reasons resulting in suboptimal model performance need to 
be considered when applying the pragmatic approach and 
a modeling workflow that tackles these challenges is key 
to move forward. The method should be combined with a 
decision framework that considers all clinical benefits, risks, 
and uncertainties of the model-recommended dose, in order 
to implement the pragmatic PBPK modeling approach into 
clinical practice.
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