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Background: The efficiency of immune checkpoint inhibitors (ICIs) in bladder cancer 
(BLCA) treatment has been widely validated; however, the tumor response to ICIs was 
generally low. It is critical and urgent to find biomarkers that can predict tumor response 
to ICIs. The tumor microenvironment (TME), which may play important roles to either 
dampen or enhance immune responses, has been widely concerned.

Methods: The cancer genome atlas BLCA (TCGA-BLCA) cohort (n = 400) was used in 
this study. Based on the proportions of 22 types of immune cells calculated by CIBERSORT, 
TME was classified by K-means Clustering and differentially expressed genes (DEGs) 
were determined. Based on DEGs, patients were classified into three groups, and cluster 
signature genes were identified after reducing redundant genes. Then TMEscore was 
calculated based on cluster signature genes, and the samples were classified to two 
subtypes. We performed somatic mutation and copy number variation analysis to identify 
the genetic characteristics of the two subtypes. Correlation analysis was performed to 
explore the correlation between TMEscore and the tumor response to ICIs as well as the 
prognosis of BLCA.

Results: According to the proportions of immune cells, two TME clusters were determined, 
and 1,144 DEGs and 138 cluster signature genes were identified. Based on cluster 
signature genes, samples were classified into TMEscore-high (n = 199) and TMEscore-low 
(n = 201) subtypes. Survival analysis showed patients with TMEscore-high phenotype 
had better prognosis. Among the 45 differentially expressed micro-RNAs (miRNAs) and 
1,033 differentially expressed messenger RNAs (mRNAs) between the two subtypes, 16 
miRNAs and 287 mRNAs had statistically significant impact on the prognosis of BLCA. 
Furthermore, there were 94 genes with significant differences between the two subtypes, 
and they were enriched in RTK-RAS, NOTCH, WNT, Hippo, and PI3K pathways. The 
Tumor Immune Dysfunction and Exclusion (TIDE) score of TMEscore-high BLCA was 
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INTRODUCTION

Bladder cancer (BLCA) is the tenth most common form of 
cancer worldwide, with an estimated 549,000 new cases and 
200,000 deaths according to global cancer statistics in 2018 (Bray 
et  al., 2018). BLCAs are biologically heterogeneous, and have 
different clinical outcomes and therapeutic responses (Knowles 
and Hurst, 2015). Molecular stratification of BLCAs may stratify 
patients for prognosis or response to treatment. Several  
molecular classifications of BLCAs have been reported, which 
have improved the clinical management of BLCA (Choi et  al., 
2014; Damrauer et  al., 2014; Rebouissou et  al., 2014; Lerner 
and Robertson, 2016; Hurst et  al., 2017; Robertson et  al., 2017; 
Marzouka et  al., 2018; Mo et  al., 2018; Kamoun et  al., 2020).

At present, radical resection remains the mainstay treatment 
for localized BLCA, followed by intravesical chemotherapy or 
immunotherapy. However, the 5-year recurrence rate for 
non-muscle-invasive BLCA ranged from 50 to 70%, and that 
for muscle-invasive BLCA was around 50% (Cambier et al., 2016; 
Kamat et al., 2016; Babjuk et al., 2017). After trimodality therapy, 
the 5-year survival rate for muscle-invasive BLCA was 65–70% 
(Kamat et al., 2016; Mitin et al., 2016; Zhan et al., 2018). Immune 
checkpoint inhibitors (ICIs), owing to their marvelous and durable 
anti-tumor activity, have changed the treatment scenario of 
metastatic cancer. The efficiency of ICIs in BLCA treatment has 
been widely validated (Balar, 2017; Brower, 2017; Feld et  al., 
2019), however, the tumor response to ICIs was generally low 
(Zou et  al., 2016; Sonpavde et  al., 2018). Therefore, it is critical 
and urgent to find biomarkers that can predict tumor response 
to ICIs (Sonpavde et  al., 2018). Programmed cell death protein 
ligand 1 (PD-L1) is a commonly used biomarker to predict the 
tumor response to ICIs treatment (Liu et  al., 2018). However, 
the specificity of PD-L1 expression level in predicting ICI efficiency 
has been challenged (Munari et  al., 2018). Another significant 
issue related to PD-L1 that remains to be  addressed is the 
definition of a proper cutoff value (Zou et  al., 2016). Tumor 
mutation burden (TMB) is an emerging biomarker to evaluate 
the efficacy of ICIs since it is correlated to neoantigens (Das, 
2018; Hellmann et  al., 2019). Similar to PD-L1, the breakpoint 
between TMB-high and TMB-low remains to be defined (Samstein 
et al., 2019). Microsatellite instability (MSI) is another biomarker 
of the efficiency of ICIs (Overman et  al., 2018), but it is only 
applicable to a few types of tumors, such as colorectal cancer 
(Overman et  al., 2017). Thus, a single biomarker may not 
be  sufficient to predict the efficacy of immunotherapy.

The tumor microenvironment (TME) is the battlefield where 
tumor cells confront host immune system directly. Several 
studies have explored the relationship between TME subtypes 
and tumor response to ICIs, and the role of tumor-infiltrating 
lymphocytes (TILs) and cytokines in immunotherapy has been 
demonstrated in a variety of tumors (Zeng et  al., 2019). 
Nevertheless, the effect of TME on the tumor response to 
immunotherapy in BLCA is still under-investigated. Recently, 
Pfannstiel et  al. (2019) published a comprehensive report on 
the role of stromal TILs in the prognosis of 542 cases with 
muscle-invasive BLCA, but immunocytes other than TILs were 
not included, which are also important for the formation of TME.

The purpose of this study was to identify the TME subtypes 
of BLCA with different biological behaviors. We also investigated 
the correlation between the TME subtypes and tumor response 
to immunotherapy in BLCA as well as the clinical outcome 
of BLCA.

MATERIALS AND METHODS

Study Cohort
The Cancer Genome Atlas bladder cancer (BLCA) cohort 
(TCGA-BLCA) was used in this study, including 430 samples 
with RNA-seq data, 411 samples with single nucleotide variant 
(SNV) data, 413 samples with copy number variant (CNV) 
data, and 429 samples with micro-RNA (miRNA) data. BLCA 
samples (n  =  400) with both RNA-seq data and clinical 
information were used for further analysis, including patients 
with Stage I  (n  =  2), Stage II (n  =  128), Stage III (n  =  138), 
and Stage IV (n  =  130). Data sets GSE48276 (n  =  73) and 
GSE31684 (n  =  93) downloaded from GEO were used as 
validation sets. The information of data sets was summarized 
in Supplementary Table 1. The flowchart of this study was 
shown in Figure  1.

TME Analysis
Based on the RNA-seq data of 400 BLCA samples, the proportions 
of 22 types of immune cells were calculated by the CIBERSORT 
algorithm (Newman et  al., 2015). Unsupervised hierarchical 
clustering of immune cells was performed to define cell clusters 
based on the proportions, and the correlation of each immune 
cell with other immune cells as well as the correlation with 
survival was analyzed. The TME cell network was plotted by 
Cytoscape (Shannon et al., 2003). According to the proportions of 

statistically lower than that of TMEscore-low BLCA. Receiver operating characteristic 
(ROC) curve analysis showed that the area under the curve (AUC) of TMEscore and tumor 
mutation burden (TMB) is 0.6918 and 0.5374, respectively.

Conclusion: We developed a method to classify BLCA patients to two TME subtypes, 
TMEscore-high and TMEscore-low, and we found TMEscore-high subtype of BLCA had 
a good prognosis and a good response to ICIs.

Keywords: tumor microenvironment, immune cells, bladder cancer, differentially expressed genes, somatic mutation, 
copy number variation, immune checkpoint inhibitors, overall survival

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhang et al. TME Subtypes of BLCA

Frontiers in Genetics | www.frontiersin.org 3 March 2021 | Volume 12 | Article 551605

immune cells, BLCA samples were grouped using different 
methods (elbow method or consensus clustering) and the 
optimum K was determined. Then, TME patterns were identified 
by K-means clustering and patients were classified. Differentially 
expressed genes (DEGs) among these classes were determined 
using limma R package at thresholds of adjusted value p < 0.05 
and |log2FC|  >  log2(1.5) (Ritchie et  al., 2015). Subsequently, 
based on the DEGs, patients were clustered using the 
ConsensusClusterPlus R package, and the clusters were obtained 
by K-means clustering. Finally, the cluster signature genes were 
obtained after reducing redundant genes by random forest 
method using randomForest R package (Kursa and Rudnicki, 
2010), and the enrichment analysis was performed on the 
cluster signature genes using the clusterProfiler R package.

Based on cox regression model, the cluster signature genes 
were classified into two categories according to cox coefficient 
(positive or negative; Sotiriou et  al., 2006). TMEscore was 
calculated as follows:

 
TMEscore X Y=∑ +( )−∑ +( )log log2 21 1

X represents the expression value of cluster signature genes 
with a positive cox coefficient, and Y represents the expression 
value of cluster signature genes with a negative cox coefficient.

The maxstat R package was used to define the optimal 
breakpoint for TMEscore, thus samples can be  classified to 
TMEscore-high and TMEscore-low subtypes.

Survival Analysis and Correlation Analysis
Survival R package was used for survival analysis to analyze 
the correlation between TMEscore subtypes and clinical outcomes. 
Survival curves were plotted using survimer R package.  
The differentially expressed miRNAs and messenger RNAs 
(mRNAs) between TMEscore-high and TMEscore-low subtypes 
were determined using limma R package, and the enrichment 

analysis of miRNAs and mRNAs was performed using miRPathDB 
and clusterProfiler R package, respectively. Based on cox regression 
model, prognosis related miRNAs and mRNAs were identified, 
and the survival analysis of these miRNAs and mRNAs 
was performed.

The correlation between TMEscore and tumor response to 
ICIs in BLCA was explored. Tumor Immune Dysfunction and 
Exclusion (TIDE) scoring system was used to evaluate tumor 
response to ICIs, in which the higher the TIDE score, the 
worse the tumor response to ICIs and the worse the prognosis 
(Jiang et  al., 2018). Kaplan-Meier method was used to analyze 
overall survival (OS) stratified by TME score. Statistical 
significance was defined as two-tailed values p  <  0.05.

Somatic Mutation and Copy Number 
Variation Analysis
We performed somatic mutation analysis based on 400 BLCA 
samples. Mutational spectrum and mutational signature were 
depicted via maftools and SomaticSignatures R packages, 
respectively. Significant chromosomal regions harboring CNVs 
were identified by GISTIC. Based on the results of CNVs, 
tumor purity and ploidy were estimated by ABSOLUTE R 
package. Furthermore, a landscape of molecular and clinical 
characteristics for two TME subtypes in BLCA was depicted.

RESULTS

TME Subtypes are Associated With the 
Prognosis of BLCA
The proportions of 22 types of immune cells were presented 
in Figure  2A. Based on the proportions, immune cells were 
classified into four clusters using unsupervised hierarchical 
clustering (Supplementary Figure 1A). Immune cells in each 

FIGURE 1 | The flowchart of the model construction process and further analysis, including survival analysis, correlation analysis, and genetic analysis.
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cluster have similar functions. Immune cells in Cluster A 
recognize antigens and act as messengers between the innate 
and the adaptive immune systems, including activated dendritic 
cells, CD4 naïve T cells, resting mast cells, naïve B cells, 
CD8 T cells, and macrophage M1. Most immune cells in 
Cluster B have the function of attacking and killing exogenous 
antigen, such as activated NK cells, T cells regulatory, T cells 
follicular helper, plasma cells, neutrophils, and activated mast 

cells. Cluster C includes macrophage M2, which decrease 
inflammation and encourage tissue repair, and CD4 memory 
resting T cells. Non-activated macrophage M0 forms Cluster 
D alone. Pearson’s correlation coefficients were calculated to 
investigate the correlation between different immune cells, 
and the correlation between immune cells and survival was 
analyzed using survival R package. Cellular interactions of 
immune cells and their correlations with OS were visualized 

A B

C D

E F

FIGURE 2 | The tumor microenvironment (TME) subtypes are associated with the prognosis of bladder cancer (BLCA). (A) The proportions of 22 types of immune 
cells. (B) The cellular interactions of 22 types of immune cells and their correlations with overall survival (OS). Cell cluster A, blue; Cell cluster B, red; Cell cluster C, 
brown; and Cell cluster D, orange. The size of the circle indicates the degree of correlation with the OS. Risk factors for OS are indicated in black, and favorable 
factors for OS are indicated in green. The thickness of the line indicates the degree of cellular interactions; the red lines indicate positive correlations, and the blue 
lines indicate positive correlations. (C–E) Kaplan-Meier curves for OS of the cancer genome atlas BLCA (TCGA-BLCA), GSE48276 and GSE31684 cohort, 
respectively. (F) The forest plot for survival analysis of different data sets.
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using Cytoscape (Figure  2B). The TME cell network revealed 
that four types of immune cells, macrophages (M0), CD8+ 
T cells, mast cells (activated), and neutrophils, had significant 
effects on the prognosis of BLCA (p  <  0.05). Among them, 
CD8+ T cells, mast cells (activated) and neutrophils were 
positively correlated with OS, and macrophages (M0) were 
negatively correlated with OS. Based on the proportions of 
immune cells, elbow method and consensus clustering were 
applied to identify the optimal K value to classify TME 
patterns, and as a result two clusters were determined (K = 2; 
Supplementary Figures 1B–K). BLCA samples were then 
classified into two clusters using K-means clustering 
(Supplementary Table 2). The proportions of 22 types of 
immune cells varied between the two clusters (TMEcluster1 
and TMEcluster2; Supplementary Figure 1L), and the OS 
was significantly different (p  =  0.05) between them 
(Supplementary Figure 1M).

To identify the key factors associated with different clusters, 
we  used the limma R package to find out DEGs between 
TMEcluster1 and TMEcluster2. As a result, there were 1,144 
DEGs contributed to the TME classification. Based on these 
1,144 DEGs, consensus clustering was used to determine the 
optimal K value (K = 3), and K-means clustering was conducted 
to classify patients into three classes (Supplementary Figure 2). 
After reducing redundant genes by random forest method, 
138 cluster signature genes were obtained. Functional enrichment 
analysis (GO annotation) by clusterProfiler R package revealed 
that cluster signature genes were enriched in immune-related 
pathways. Based on cox regression model, the cox coefficient 
for each cluster signature gene was obtained and used to 
calculate TMEscore. As a result, the samples were classified 
into TMEscore-high (n  =  199) and TMEscore-low (n  =  201) 
subtypes (x  =  0.035).

Survival analysis stratified by TMEscore showed that patients 
with TMEscore-high phenotype had better prognosis than those 
with TMEscore-low phenotype (Figure  2C; p  <  0.0001). The 
model of TMEscore was tested using validation datasets GSE48276 
and GSE31684. The results suggested that the model was credible 
and TMEscore-high was associated with good prognosis of 
BLCA (Figures 2D–F). DEG analysis obtained 45 differentially 
expressed miRNAs (Supplementary Figures 3A,B) and 1,033 
differentially expressed mRNAs (Supplementary Figures 4A,B) 
between TMEscore-high and TMEscore-low subtypes, with the 
threshold adjusted value p  <  0.01 for miRNA, and adjusted 
value p  <  0.01 and |logFC|  >  1 for mRNA, respectively. 
Differentially expressed miRNA annotation in KEGG using 
mirPathDB revealed several cancer related miRNAs, such as 
hsa-miR-200b-3p, hsa-miR-200a-3p, hsa-miR-200c-3p, and 
hsa-miR-429 (Supplementary Figure 3C). Annotation in GO 
and KEGG using clusterProfiler R package showed that 
differentially expressed mRNAs mainly enriched in the activation 
and regulation of immune response (Supplementary Figures 4C, 7) 
as well as remodeling of extracellular matrix 
(Supplementary Figure 4D).

Based on cox regression model, 16 differentially expressed 
miRNAs and 287 differentially expressed mRNAs were identified 
to have statistically significant impact on the prognosis of 

BLCA, among which the top four miRNAs were hsa-let-7c, 
hsa-mir-99a, hsa-mir-125b-2, and hsa-mir-200c (Figures 3A–D), 
and the top four genes were HTRA1, ANXA1, EMP1, and 
FLNC (Figures 3E–H). We performed unsupervised hierarchical 
clustering on 287 survival-related genes, and patients were 
classified into TMEscore-high and TMEscore-low groups 
(Supplementary Figure 5).

Genetic Characteristics of TMEscore-High 
and TMEscore-Low Subtypes of BLCA
The landscape of somatic mutations of BLCA was presented 
in Figure  4A. Missense mutation mainly caused by SNV was 
the major type of mutations, and C  >  T was the major type 
of base substitution. The most frequently mutated genes were 
TTN and TP53 in TMEscore-high subtype and TMEscore-low 
subtype, respectively (Supplementary Figure 6). There were 
94 genes with significant differences in mutation frequencies 
between TMEscore-high and TMEscore-low subtypes 
(p  <  0.05), among which top  18 differential genes were RB1, 
KDM6A, FGFR3, ELF3, TP53, KMT2A, NFE2L2, DZIP1, 
POLR2A, ALMS1, EP300, PIK3CA, SOX5, LRRC37B, PCDHB12, 
PPFIA2, ZNF462, and STAG2 (p  <  0.01). Among the top  10 
frequently mutated genes in BLCA, the variant allele fractions 
(VAFs) of RB1, KDM6A, TP53, PIK3CA, and KMT2D were 
significantly different between two subtypes (p  <  0.05; 
Figures  4B,D). The KEGG pathway enrichment analysis of 
differential genes showed that RTK-RAS, NOTCH, WNT, 
Hippo, and PI3K signaling pathways were mainly altered in 
both TME subtypes (Figures  4C,E).

Mutational signature analysis (Alexandrov et al., 2013) showed 
that TMEscore-high subtype was associated with Signature 2, 
Signature 5, and Signature 10, whereas TMEscore-low subtype 
was associated with Signature 1, Signature 2, Signature 5, and 
Signature 13 (Figure  5). Signature 1 is associated with 
spontaneous deamination of 5-methylcytosine; Signature 2 and 
Signature 13 are associated with APOBEC cytidine deaminase; 
and Signature 10 is associated with defects in polymerase POLE.

The CNVs analysis by GISTIC showed that amplifications 
of chromosomal arms 20q, 8q, and 20p, and deletions of 
chromosomal arms 9q, 9p, 8p, 11p, 5q, and 11q frequently 
occurred in TMEscore-high subtype 
(Supplementary Figure 7A); amplifications of chromosomal 
arms 20q, 8q, 20p, and 3q, and deletions of chromosomal 
arms 8p, 5q, 15q, and 17p frequently occurred in TMEscore-low 
subtype (Supplementary Figure 7B). The minimal common 
region (MCR) analysis showed that amplifications of 20p13, 
17q12, and 5q11.2, and deletions of 10q21.1, 10q21.3, and 
12p13.33 frequently occurred in TMEscore-high subtype 
(Supplementary Figure 7C); amplifications of 20p13, 5q11.2, 
and 4p16.1, and deletions of 10p11.22, 10q11.23, and 11p15.5 
frequently occurred in TMEscore-low subtype 
(Supplementary Figure 7D). As shown, the two subtypes 
shared most amplification regions, but the deletion regions 
were different. Based on the results of CNV, the estimated 
tumor purity  
ranged from 0.33 to 1.00 and the estimated tumor  
ploidy ranged from 1.98 to 10. The tumor purity in 
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TMEscore-high subtype was higher than that in TMEscore-low 
subtype, indicating lower tumor content in TMEscore-low 
subtype (Supplementary Figure 7E). However, the tumor 
ploidy was comparable between two subtypes, indicating that 
CNV might be  a universal phenomenon in BLCA 
(Supplementary Figure 7F). There was significant difference 
in tumor purity between TMEscore-high and TMEscore-low 
subtypes (p  =  0.027), but no significant difference in 
tumor ploidy.

TMEscore-High subtype is Associated 
With Tumor Response to Immunotherapy 
in BLCA
The TIDE score of TMEscore-high BLCA was statistically lower 
than that of TMEscore-low BLCA (Figure  6A), indicating that 
TMEscore-high was associated with better tumor response to 
immunotherapy in BLCA. Compared with TMB, an emerging 
biomarker for predicting the efficacy of ICIs, the predictive 
efficiency of TMEscore was significantly better than that of 
TMB based on receiver operating characteristic (ROC) curve 
analysis, in which the area under the curve (AUC) of TMEscore 
is 0.6918 and the AUC of TMB is 0.5374 (p < 0.0001; Figure 6B). 
Furthermore, the correlation analysis between TMEscore and 
MSI status was performed. As a result, the TMEscore of samples 
with MSI-H was significantly higher than samples with 
MSI-L/MSS (Figure  6C), inferring that both TMEscore-high 
and MSI-H (Hause et  al., 2016) were associated with good 
response to ICIs.

The proportion of immune cells in TMEscore-high and 
TMEscore-low groups is shown in Supplementary Table 3. 
TMEscore-high group had significantly higher proportions 
of activated dendritic cells, monocytes, T cells follicular 
helper, and regulatory T cells, while TMEscore-low group 
had significantly higher proportions of macrophage M0/M1/
M2 and CD4 memory resting T cells. Of note, BLCA patients 
in TMEscore-low group had a much higher proportion of 
macrophages than TMEscore-high group (34.81 vs. 19.18%). 
According to the recently published literature (Joseph and 
Enting, 2019), macrophages play roles in suppressing adaptive 
immunosurveillance and create a tumor favoring 
microenvironment in BLCA, suggesting that BLCA with high 
proportion of macrophages may have a poor response to 
immunotherapy, which is consistent with our findings. 
Moreover, the proportions of immune cells involved in 
adaptive immunity, such as activated dendritic cells, follicular 
helper T cells, and regulatory T cells, are higher in TMEscore-
high group.

DISCUSSION

Transcriptome profiling has been a major tool for BLCA 
subtype discovery. Based on the large-scale transcriptomic 
data, Rebouissou et  al. (2014) identified a subtype of BLCA 
presenting a basal-like phenotype, which was associated with 
shorter survival and presented an activation of the epidermal 

A B C D

E F G H

FIGURE 3 | Kaplan-Meier curves for OS of differentially expressed micro-RNAs (miRNAs) and messenger RNAs (mRNAs) between TMEscore-high and TMEscore-
low subtypes, which had statistically significant impact on the prognosis of BLCA. (A–D) The top four miRNAs. (E–H) The top four mRNAs.
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growth factor receptor (EGFR) pathway, implying basal-like 
BLCAs were sensitive to anti-EGFR therapy. Damrauer et  al. 
(2014) used the gene expression data to classify high-grade 
BLCAs into two subtypes, termed “luminal” and “basal-like,” 
which have characteristics of different stages of urothelial 

differentiation and have clinically meaningful differences in 
outcome. Choi et al. (2014) performed whole genome mRNA 
expression profiling and identified three subtypes of BLCA, 
termed “basal,” “luminal,” and “p53-like,” which have different 
sensitivities to frontline chemotherapy. Using RNA-seq data, 

A

B C

D E

FIGURE 4 | Genetic characteristics of TMEscore-high and TMEscore-low subtypes of BLCA. (A) The landscape of somatic mutations of BLCA. The variant allele 
fractions (VAFs) of top 10 frequently mutated genes in TMEscore-high subtype (B) and TMEscore-low subtype (D). The enrichment analysis of differential genes in 
TMEscore-high subtype (C) and TMEscore-low subtype (E).
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Robertson et  al. (2017) identified five subtypes, termed 
“luminal-papillary,” “luminal-infiltrated,” “luminal,” “basal-
squamous,” and “neuronal,” which may stratify response to 
different treatments. Marzouka et  al. (2018) developed a 
mRNA classifier based on tumor cell phenotypes defined 
by extensive IHC analyses and identified five subtypes, termed 
“urothelial-like,” “genomically unstable,” “basal/SCC-like,” 
“mesenchymal-like,” and “small-cell/neuroendocrine-like.” Mo 
et al. (2018) developed a classifier from 18 genes differentially 
expressed in various layers of the bladder urothelium and 
identified two distinct subtypes in BLCA designated as “basal” 
and “differentiated.” On the basis of these six classifications, 
Kamoun et  al. (2020) defined a unified consensus subtyping 
system consisting of six subtypes termed “luminal papillary,” 
“luminal nonspecified,” “luminal unstable,” “stroma-rich,” 

“basal/squamous,” and “neuroendocrine-like,” which differ 
regarding underlying oncogenic mechanisms, infiltration by 
immune and stromal cells, and histological and clinical 
characteristics, including outcomes.

In this study, we  focused on stratification of BLCAs in 
response to immunotherapy. Although ICIs are effective for 
advanced urothelial cancer including BLCA (Niglio et al., 2019), 
the objective response rate of BLCA to ICIs ranged from 24.4 
to 31%, thus robust biomarkers are needed to predict tumor 
response to immunotherapy (Massard et  al., 2016; Sharma 
et  al., 2016; Plimack et  al., 2017; Petrylak et  al., 2018). PD-L1 
expression level is a widely used biomarker for immunotherapy, 
but its effectiveness has been questioned (Zou et  al., 2016). 
TMB is considered a promising biomarker to predict the 
response to ICIs in many types of tumors (Chan et  al., 2019); 
however, the breakpoint between TMB-high and TMB-low 
remains to be well defined (Samstein et al., 2019). Considering 
the amounts of TILs were correlated with therapeutic response 
of tumors to ICIs, Pfannstiel et  al. (2019) used sTILs along 
with tumor subtypes to stratify BLCA, and identified three 
different inflammatory phenotypes and a unique tumor evasion 
phenotype, all affecting patient outcomes. However, other 
immunocytes were not included, which are also important for 
the formation of TME. In our study, we  investigated TME 
subtypes and their correlations with the prognosis of BLCA 
and the tumor response to ICIs in BLCA. Immune cells 
participated in the local immune reactions within a tumor 
mass can be roughly divided into two camps, anti-tumor camp 
and pro-tumor camp (Riera-Domingo et  al., 2020). One type 
of immune cell may play different roles in different types of 
tumors. In this study, we  found that CD8+ T cells, mast cells 
(activated), and neutrophils were positively correlated with OS, 
and macrophages (M0) were negatively correlated with OS.

We performed unsupervised clustering method to classify 
BLCA samples based on the proportions of 22 types of immune 
cells. As is known, determining the optimal number of clusters 
remains an open question in partitioning clustering. Consensus 
clustering has been widespread used in genomic studies (Monti 
et al., 2003). Șenbabaoğlu et al. (2014) compared different methods 
to estimate K value, and the results suggested that proportion 
of ambiguous clustering (PAC) was more accurate than other 
methods. In this study, we  used consensus clustering to find 
the optimal K value. We  found that when K  =  2, the consensus 
matrix was the crispest (Supplementary Figures 1B–G), CDF 
plot showed a flat middle segment (Supplementary Figure 1H), 
and the value of PAC was minimum (Supplementary Figure 1J). 
Then, we  used elbow method to find the optimal K value. 
Although a clear inflection point was not found in the elbow 
plot, the sum of squared error (SSE) decreases the most when 
K  =  2 (Supplementary Figure 1K). Therefore, BLCA samples 
were classified into two clusters, TMEcluster1 and TMEcluster2. 
Based on the DEGs between TMEcluster1 and TMEcluster2, 
we  used this criterion to determine the optimal K value and 
classify BLCA samples. As shown in Supplementary Figure 2J, 
SSE decreased dramatically when K  =  2 or K  =  3. The results 
of consensus clustering showed that the consensus matrix was 
also crisp when K  =  3 (Supplementary Figures 2A–F), and 

A

B

FIGURE 5 | Mutational signatures associated with TMEscore-high subtype 
(A) and TMEscore-low subtype (B).
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the value of PAC for K  =  3 was as low as that for K  =  2 
(Supplementary Figure 2I). According to the principle of grouping 
as detailed as possible, we  selected K  =  3 as the optimal K 
value and BLCA samples were classified into three clusters.

Finally, two TME subtypes, TMEscore-high and 
TMEscore-low, were identified based on this BLCA cohort. 
DEGs between TMEscore-high and TMEscore-low subtypes 
mainly enriched in the activation and regulation of immune 
response as well as remodeling of extracellular matrix, both 
of which have been proved to be  associated with the clinical 
outcomes of cancer patients (Oudin et  al., 2016; Salmon et  al., 
2019). Among these DEGs, 16 miRNAs and 287 mRNAs had 
statistically significant impacts on the prognosis of BLCA, 
among which the top four miRNAs were hsa-let-7c, hsa-mir-99a, 
hsa-mir-125b-2, and hsa-mir-200c, and the top four genes were 
HTRA1, ANXA1, EMP1, and FLNC. These DEGs may 
be  potential prognostic biomarkers and therapeutic targets 
for BLCA.

Based on TIDE score, a gene expression biomarker to predict 
the clinical response to ICIs (Jiang et  al., 2018), we  evaluated 
the tumor response to ICIs in TMEscore-high and TMEscore-low 
subtypes of BLCA. The result revealed that TMEscore-high 
was associated with better tumor response to immunotherapy 
in BLCA. Furthermore, we  compared the predictive efficiency 
of TMEscore to predict the tumor response to ICIs with that 
of TMB by performing ROC curve analysis. As a result, 
TMEscore (AUC  =  0.6918) had a better predictive efficiency 
than TMB (AUC  =  0.5374). The relatively low AUC values 
of TMEscore or TMB may be  due to the criticism of AUC. 
It has been pointed out by researchers that although AUC is 
a popular statistical approach with a long history, there has 
been considerable criticism of it, which indicates that AUC is 
a poor metric for evaluating markers for disease diagnosis, 
screening, or prognosis (Pepe and Janes, 2008). The clinical 
biomarkers usually have low AUC values ranging from 0.5 to 
0.7 according to the literatures (Gail, 2008; Louie et  al., 2015). 

Since the model of TIDE was developed and validated based 
on melanoma patients treated with first-line anti-PD1 or anti-
CTLA4, TMEscore can be  used as a biomarker to predict the 
tumor response to anti-PD1 or anti-CTLA4, but whether 
TMEscore can predict the tumor response to other ICIs 
remains uncertain.

There were both similarities and differences in genetic 
characteristics between TMEscore-high and TMEscore-low 
subtypes. Although there were 94 differential genes, the altered 
pathways of the two subtypes were mainly concentrated in 
RTK-RAS, NOTCH, WNT, Hippo, and PI3K signaling pathways. 
The PIK3CA mutation has been reported to be  associated 
with improved recurrence-free survival and cancer-specific 
survival in patients with BLCA (Kim et  al., 2015). In our 
study, we  found a higher VAF of PIK3CA in TMEscore-high 
group (0.42) compared with TMEscore-low group (0.25; 
p < 0.01), indicating that PIK3CA may be a reliable prognostic 
biomarker for BLCA. The CNV analysis showed that the two 
subtypes shared most amplification regions, but the deletion 
regions were different. Mutational signature analysis showed 
that both subtypes were associated with APOBEC cytidine 
deaminase. However, Signature 10, which is associated with 
defects in polymerase POLE, was significantly dominant in 
TMEscore-high subtype of BLCA. POLE plays an important 
role in chromosomal DNA replication. It is responsible for 
the leading-strand synthesis as well as recognition and removal 
of mismatch nucleotides by its proofreading capacity through 
the POLE exonuclease domain, which is crucial for the 
maintenance of replication fidelity (Guerra et  al., 2017). The 
dysfunction of polymerase POLE leads to a high mutation 
burden and high neoantigen burden; therefore, tumors harboring 
deficient POLE have more active local immune response and 
a higher TMEscore.

There are some limitations in this study. First, the TME 
clustering and scoring pipeline was not tested in other 
types of tumors, therefore, we  do not know whether this 

A B C

FIGURE 6 | TMEscore-high subtype is associated with tumor response to immunotherapy in BLCA. (A) The tumor immune dysfunction and exclusion (TIDE) score 
of TMEscore-high and TMEscore-low subtypes. (B) Receiver operating characteristic (ROC) curves of TMEscore and tumor mutation burden (TMB). (C) The 
correlation analysis between TMEscore and microsatellite instability (MSI) status.

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhang et al. TME Subtypes of BLCA

Frontiers in Genetics | www.frontiersin.org 10 March 2021 | Volume 12 | Article 551605

method is BLCA-specific or can be  applied in pan-cancer 
scenario. Second, we  did not explore the relationship of 
TME subtypes with molecular subtypes of BLCA. Despite 
these shortcomings, this study provided a novel way to 
predict the prognosis of BLCA and tumor response to 
immunotherapy in BLCA.

CONCLUSION

We developed a method to classify BLCA patients to two 
TME subtypes, TMEscore-high and TMEscore-low, and we found 
TMEscore-high subtype of BLCA had a good prognosis and 
a good response to ICIs. TMEscore may be used as a biomarker 
to predict the prognosis of BLCA and the tumor response to 
immunotherapy in BLCA.
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