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While conventional high-resolution techniques in structural biology are challenged by the size and flexibility of
many biological assemblies, recent advances in low-resolution techniques such as cryo-electron microscopy
(cryo-EM) and small angle X-ray scattering (SAXS) have opened up new avenues to define the structures
of such assemblies. By systematically combining various sources of structural, biochemical and biophysical
information, integrative modeling approaches aim to provide a unified structural description of such assemblies,
starting from high-resolution structures of the individual components and integrating all available information
from low-resolution experimental methods. In this review, we describe integrative modeling approaches,
which use complementary data from either cryo-EM or SAXS. Specifically, we focus on the popular molecular
dynamics flexible fitting (MDFF) method, which has been widely used for flexible fitting into cryo-EM maps.
Second, we describe hybrid molecular dynamics, Rosetta Monte-Carlo and minimum ensemble search (MES)
methods that can be used to incorporate SAXS into pseudoatomic structural models. We present concise
descriptions of the two methods and their most popular alternatives, along with select illustrative applications
to protein/nucleic acid assemblies involved in DNA replication and repair.
© 2015 Xu et al.. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural
Biotechnology. This is anopen access article under theCCBY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The structures of complex biological assemblies command consider-
able attention, since critical cellular activities aremore often than not car-
ried out by such assemblies rather than by a single macromolecular
O. Box 3965, Atlanta, GA 30302,

behalf of the Research Network of C
component. A high-resolution structural model of an assembly is often
crucial to understanding its function; and biological mechanisms can be
deduced from a detailed view of the structure and interactions of compo-
nents in an assembly. Structures at atomic resolution are usually obtained
through X-ray crystallography or nuclear magnetic resonance (NMR)
spectroscopy. However, the size and flexibility ofmacromolecular assem-
blies often pose technical difficulties, confounding structural elucidation
and impeding mechanistic exploration by conventional methods. Cryo-
electron microscopy (cryo-EM) is one of the most promising techniques
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for elucidating largermacromolecular complexes but until recently it was
only capable of generating structuralmodels at resolutions of 8–20Å [1] –
substantially lower than routine X-ray crystallography. Better resolution
(3.5–4.5 Å) was reported only for complexes with high symmetry and
stability [2–4]. Not until very recently have the advances in high-
resolution image-capturinghardware [5] and image-processing technolo-
gy [6] enabled cryo-EM to yield near-atomic resolution maps [7,8]. With
the new technologies, the structure of a mammalian TRP channel,
TRPV1, was successfully determined at a resolution of 3.4 Å, for the first
time reaching side-chain resolution for amembraneproteinwithout crys-
tallization [9,10]. In 2014, the success of cryo-EM was boosted by many
other explorations, resulting in 3.0–5.0 Å resolution structures of β-
galactosidase [11], membrane proteins [12–14] and ribosomal ma-
chineries [15] and leading to the notion of “resolution revolution”
in single particle cryo-EM [16]. Recently, Campbell et al. reported a
cryo-EM reconstruction of 2.8 Å for the 700 kDa Thermoplasma
acidophilum 20S proteasome [17]. Furthermore, in 2015 the
Subramaniam group at the National Cancer Institute further refined a
β-galactosidase EM structure to an unprecedented 2.2 Å resolution
[18], whereby the authors were able to identify densities of structural
water molecules and ions, and demonstrated it is rather the intrinsic
flexibility of the target molecule/complex and the quality of the
specimen than the image-capturing or processing technologies that
prevented achieving resolution close to 2 Å by cryo-EM. Apart from
the breakthrough of near-atomic resolution, cryo-EM offers significant
advantages in not requiring the high concentration of protein/complex
that X-ray crystallography demands [19]. Nor does it require preparation
ofmacroscopic crystals, since individual complexes are preserved in a fro-
zen hydrated state on an EM grid. Thus, cryo-EM visualizes a structure
more akin to that “in solution”, and probably of more relevance to
in vivo conditions [19]. Given all of these exciting developments, cryo-
EM stands poised to overtake X-ray crystallography and play an even
more prominent role in the visualization of macromolecular complexes.

Other technologies also generate spatial envelopes of biologicalmol-
ecules or assemblies e.g. negative stain electron microscopy (EM) and
small angle X-ray scattering (SAXS), while detailed interaction profiles
are accessible through methodologies like chemical footprinting,
cross-linking, fluorescence resonance energy transfer (FRET), mass
spectrometry (MS), proteomics studies, and so on [20,21]. Though
both shape and interactions often contribute to modeling a complex,
the results from thesemethods are largely heterogeneous and dispersed
in the literature. Therefore, an integrativemodeling approach capable of
combining these heterogeneous data and translating them into a uni-
form structural representation would be valuable in advancing our un-
derstanding of the relevant biological functions of these assemblies.
Incorporating information from such diverse approaches may in fact
lead to a highly useful model in less time and effort than by the conven-
tional means of X-ray crystallography or NMR spectroscopy. And this
may be the only means of arriving at a useful model. Moreover, the
resultingmodelmay bemore useful to experimentalists, in that, by con-
solidating diverse experimental data, it may generate new hypotheses
directly amenable to experimental tests. A notable example of the
power and utility of integrative modeling methods was given by an el-
egant study by Alber et al., which elucidated the architecture of the nu-
clear pore complex (NPC) using a combination of diverse high-quality
proteomic and structural data [22]. The advance was made possible by
an integrative modeling platform IMP. IMP provides software tools to
represent almost any conceivable combination of experimental data
(e.g. relative positions of protein domains, mutational data on residue
contacts, shape information from SAXS envelopes, EM densities and
symmetry information). This data could even be of a type not normally
used for structure determination or ambiguous in terms of structural in-
terpretation. This diverse data is subsequently converted to spatial re-
straints, which collectively determine a scoring function. A structural
ensemble is then generated and analyzed, which optimally satisfies
the scoring function. The considerable freedom to mix and match
modules in IMP allows the seamless construction of new hybridmodel-
ing protocols. The major advantage of IMP lies in the flexible nature of
the code, written as a software framework – a collection of independent
modules in C++ and Python. IMP also provides interfaces for devel-
opers to introduce new scoring functions, sampling schemes, analysis
methods, model representations and integrative modeling applications
[23].

To start integrative modeling, all relevant data from different lines of
experimental, physical, bioinformatics, and statistical studies have to be
pooled together for close examination. Upon a proper choice of the reso-
lutionwith which the system of interest will be defined in themodel, the
applicable data that were collected in the first stage would have to be
translated into spatial restraints on part or all of the system. For example,
a residue–residue contact can be incorporated by applying a harmonic
constraint on the distance between these two residues, and a cryo-EM
density map can be used to generate a 3D-grid based function to bias
the system being modeled to evolve toward it. To sample these
constrained functions all together, various methods can then be applied,
such as molecular dynamics (MD), Monte Carlo (MC), Brownian dynam-
ics, and docking. In the end, an ensemble of models is generated for
analysis and refinement toward a final model. Recent successes in
implementing integrativemodeling include a variety of systems, utilizing
experimental data from X-ray, NMR, cryo-EM and SAXS [20]. These suc-
cesses have contributed many innovative insights into biomolecular as-
semblies, and generated much interest in the approach. Karca et al. have
comprehensively reviewed how different types of experimental data
can be translated into restraints, suggesting four categories of restraints
e.g. binding sites, distance, orientation, and shape, operating at a high
level of abstraction [21].When no high-resolution experimental structure
(or structures from closely homologous organisms) are available, cryo-
EM maps can still be used for secondary structure element identification
using computational tools such as SSHunter [24], ab initio proteinmodel-
ing using EM-fold [25], de novo protein structure prediction using
RosettaCM [26,27]. In this review we concentrate on cryo-EM- and
SAXS-based integrative modeling using atomistic MD simulation.

DNA replication and repair are fundamentally important biological
processes and involve multiple protein-DNA complexes. The detailed
structures of many of these complexes, however, are difficult to obtain
through X-ray or NMR studies, due to their large size and intrinsic
flexibility. Meanwhile, a great number of related experimental results,
including X-ray crystal structures, biochemistry and biophysical signa-
tures of various components, are accessible. This extensive body of
information provides a favorable scenario inwhich to apply the integra-
tivemodeling approach. Themodeling of the human Rad9–Hus1–Rad1/
FEN1/DNA ternary complex [28] is reviewed here to illustrate theMDFF
method [29] utilizing a negative stain EM density map. Other applica-
tions, in which the conformational space of ubiquitinated and/or
SUMOylated Proliferating Cell Nuclear Antigen (PCNA) is explored, are
also presented as a guide to incorporating experimental SAXS data
into a hybrid modeling protocol [30,31].

2. Methods

2.1. Molecular Dynamics Flexible Fitting

Although the resolution of current cryo-EMmethodology is general-
ly not comparable to that of X-ray crystallography [1], cryo-EM is
routinely capable of providing coarse structural information on macro-
molecular complexes, and in a biologically more realistic environment,
perhaps even capturing different functional states [32]. Combining at-
omistic detail from crystal structures with a cryo-EM density map pro-
vides complementarity and enhances the model construct that might
be deduced from each set of data alone. Methods developed for fitting
atomic structures into cryo-EM maps can be divided generally into
rigid-body docking and flexible fitting. Rigid-body docking (also often
called rigid-body fitting), refers to the process of placing the atomic



Fig. 1. Active orientation of DNA editing enzymes revealed inmodels of FEN1with sliding clamps and DNA. Computationalmodels of FEN1with PCNA and 9-1-1were developed based on
one of the stabilized positions of FEN1 in a DNA-free PCNA crystal structure. Modeling revealed that the sliding clamps tilted the DNA toward FEN1. The PCNA and 9Δ-1-1 complexes are
shown as cartoons. PCNA is shown in green, FEN1 in purple, Rad1 in green, Hus1 in yellow, Rad 9 in blue, and DNA in black. The gray surfaces are the FEN1/DNA from the original starting
models. The surfaces for the two clamps in the startingmodels were omitted for clarity. (For interpretation of the references to color in this figure legend, the reader is referred to theweb
version of this article.)
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structure entity in the corresponding part of the cryo-EM density map
as a rigid-body. Automated rigid-body docking approaches maximize
the cross-correlation between the experimental cryo-EM density map
and a simulated density map of the protein complex by performing an
exhaustive search over a six-dimensional parameter space (three trans-
lational and three rotational degrees of freedom of the system) [33,34].
Fast Fourier Transform (FFT) is introduced to reduce computational
complexity by transforming the translational degrees of freedom into
Fourier space, leaving only the three rotational degrees of freedom
to be evaluated in real space [35]. Other improvements including
local cross-correlation (LCC) score [36], core-weighted (CW) cross-
correlation score [37], vector quantization [38], and geometric hashing
[39] were introduced subsequently to rigid-body docking to either cus-
tomize the docking process or further improve computational efficien-
cy. Flexible fitting has an advantage in that reasonable conformational
variations are allowed in the fitting process, so as to give better correla-
tion between the cryo-EMmap and the modeled structure. A variety of
flexible fitting methods have been developed in recent years, based on
different mathematical flavors, including real-space refinement upon
segmented rigid-body docking [40,41], normal-mode calculation
based on optimization of the correlation between structure and
map [42], vector quantization based coarse-grained model fitting [38],
etc. More recently, a Monte Carlo search and simulated annealing mo-
lecular dynamics-based fitting method has been developed [43]. Other
methods have applied external forces proportional to the gradient of
the EM-map (implemented in MDFF) [44] or the gradient of the cross-
correlation coefficient between the structure and the EM-map [45,46]
alongwithMD simulations to guide the atoms into high-density regions
of an EM-map. Among these different approaches, the MDFF method
has gained popularity due to its simple implementation and its seamless
compatibility with MD simulations.

TheMDFFmethodwas developed on top of classical MD simulation,
in which a potential energy function, also known as the MD force field
(UMD), is used to describe the interactions between atoms. Upon com-
puting from Umd the forces experienced by the atoms, MD iteratively
solves the Newtonian equations of motion and provides atomistic de-
tails of motions in the system. In MDFF, UMD preserves all the physical
parameters, thereby preventing the resulting structure from straying
into a non-physical state. Two extra terms are added to the classical
MD potential energy function in MDFF, UEM and Uss.

UEM is converted from the EM map and used to bias the atoms into
the corresponding EM density region:

UEM Rð Þ ¼
X
j

wjVEM r j
� � ð1Þ

where wj is the weighting factor (usually set to the atomic mass) for
atom j of coordinate rj. VEM is defined as the following:

VEM rð Þ ¼ ξ 1−
ϕ rð Þ−ϕthr

ϕmax−ϕthr

� �

ξ

i fϕ rð Þ ≥ ϕthr

i fϕ rð Þ bϕthr

8<
: ð2Þ

Image of Fig. 1


Fig. 2. Single-particle EM analysis shows how FEN1 interacts flexiblywith 9-1-1 and adopts a fixed position on 9Δ-1-1 in the presence of the DNA substrate. (A) Representative reference-
free 2D class averages (top and side views) for the 9-1-1/FEN1 binary complex are compared with those corresponding to the 9Δ-1-1/FEN1/DNA ternary complex. Top and side views of
the 9-1-1 complex are shown. (B) Side and top views of the 9Δ-1-1/FEN1/DNA 3D reconstruction. (C) MDFF flexible fitting of the 9Δ-1-1/FEN1/DNA complex into the 3Dmap of the ter-
nary complex.
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ϕ(r) is the potential converted from the cryo-EM density. ϕmax is the
maximum value in the given density map. ϕthr is the threshold value
chosen to reduce the solvent influence. ξ is the scaling factor, applied
uniformly to the biasing potential generated from the cryo-EM map.
By varying the scaling factor the relative weight of the EM density bias-
ing potential can be increased to ensure closer conformance of the
model to the map. Conversely, ξ can be decreased in cases where it is
necessary to prevent over-fitting.

Uss is a summation of all the harmonic secondary structure con-
straints to ensure retention of well-defined secondary structure regions
over the fitting process.

USS ¼
X
μ
kμ Xμ−X0

μ

� �2
ð3Þ

where μ designates the restrained internal coordinate including all the
bonddistances, angles, dihedral angles that relate to thewell-defined sec-
ondary structure regions. kμ is the force constant chosen to be applied to a
particular bond, angle or dihedral angle. Xμ and Xμ
0 are the instantaneous

and initial value of the restrained coordinate, respectively.
A fitting procedure is typically conducted in a multi-step manner by

firstly using rigid-body fitting to optimally overlay the structure with
the map followed by stages of flexible fitting wherein the magnitude
of ξ keeps increasing from one to the next (typically varying from 0.1
kcal/mol to 0.3 kcal/mol), until the fitting has been converged as evalu-
ated by the root mean square deviation (RMSD) and/or the cross-
correlation coefficient between the simulated map generated from the
fitted atomic structure and the experimental map, which is defined as:

ρSE ¼ S− Sh ið Þ E− Eh ið Þh i
σ SσE

ð4Þ

where S and E stand for the one particular voxel value in the simulated
and experimental maps, respectively; 〈S〉 and 〈E〉 are the corresponding
average voxel values; σS and σE are the corresponding deviations [47].
Trabuco et al. have provided a useful introduction to MDFF [29].
Additionally, the practical aspects of MDFF have been thoroughly

Image of Fig. 2
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explained on the developer's website (http://www.ks.uiuc.edu/
Training/Tutorials/science/mdff/tutorial_mdff-html).
2.2. Traditional Model Building and Refinement Applied to EM

The PHENIX software suite [48,49] is suitable for refining experimen-
tal crystallographic data with a wide range of upper resolution bound
[50], therefore, a suboptimal starting atomic model can in principle be
refined into a cryo-EM map in a pseudo-crystallographic manner
using phenix.refine. In a typical application using an EMmap, the density
can be segmented and fitted in artificial crystal lattices to calculate the
observed structure factors, Fobs [50], whose amplitudes and/or phases
are then used as pseudo-diffraction data for the subsequent refinement.
During the refinement stage, one could opt to use a ‘black box’-like de-
fault strategy or customize the control parameters (more than 500
available), including atomic and non-atomic ones. The atomic parame-
ters are atomic coordinates, atomic displacement parameters (ADPs),
atomic occupancies and anomalous scattering terms; the non-atomic
ones are used to describe bulk solvent. The parameters are combined
in the expression of the total structure factor of the computational
model, Fmodel. In turn, the refinement is essentially amulti-stepminimi-
zation of a target function that quantifies the fitness of the Fmodel to the
experimental observations (Fobs). In case of refinement against low-
resolution density maps as is typical for cryo-EM maps in the 3.5–
4.5 Å resolution range, themodelwill have to be considerably restrained
(either by applying secondary structure restraints or by providing a
high-resolution crystal structure as a referencemodel, if available). Fur-
thermore the relative weight of the restraints versus the experimental
data can be varied to reduce the risk of over-fitting and assure the over-
all correctness of the model.

Recently, a new xMDFF method for structural determination from
low-resolution crystallographic data was introduced, which integrates
the functionalities of the original MDFFmethod and the PHENIX crystal-
lographic refinement package [51]; TheMDFF protocol was modified to
work with model-phased densities, wherein experimental X-ray scat-
tering amplitudes are augmented with phases computed from an ap-
proximate initial model to produce a density map. The starting model
is then flexibly fitted into the density using MDFF and this new fitted
structure used to update the phases and regenerate the density map.
This process is continued iteratively until convergence. In this way,
xMDFF can refine initial structural models (e.g. homology models)
that are quite distant from the refined structure and must undergo
large-scale deformations to reach convergence. As an example of a re-
cent application of xMDFF we point to the work of Li et al. who used
the method to determine the structures Ciona intestinalis Voltage-
sensing domain (Ci-VSD) in its active and resting forms [52].

While the successful application of phenix.refine using high reso-
lution density maps include modeling the structure of Salmonella
bacteriophage ε15 [53] and the core of hepatitis B virus [54] has
been demonstrated, failing to converge on accurate atomic models
often happens when the density maps are of resolution worse than
~3.5 Å [49]. This problem is also associated with other X-ray crystal-
lographic tools [55–57]. To solve this problem, Dimaio et al. inte-
grated the crystallographic refinement [50] in phenix.refine with
Rosetta sampling to develop a hybrid refinement scheme, Rosetta–
Phenix [58], which generated models with improved geometry
and lower R factors [59] compared to other crystallographic refine-
ment tools such as Phenix [48], DEN [57], and REFMAC5 [60]. More
recently, a variation of this approach, tailored to refine models
Fig. 3. Two distinct bindingmodes of the PCNA/FEN1/DNA and 9Δ-1-1/FEN1/DNA complex. A–
and PCNA1, yellow for Hus1 and PCNA3 and green for Rad1 and PCNA2. The dsDNA phosphodi
spheres and red surfaces, respectively. Schematic representations of C) PCNA/FEN1 and D) 9Δ-
FEN1 C-terminal tail in orange and sliding clamp (PCNA/Rad1) in blue. Ribbon representations o
the PCNA surface are indicated in green. (For interpretation of the references to color in this fig
against high-resolution cryo-EM density maps was developed by
the same group, as described below.

2.3. Rosetta Refinement Protocol

To address the challenges of flexible fitting into medium to near-
atomic resolution cryo-EM maps Dimaio et al. developed a general Ro-
setta refinement protocol for generating pseudoatomic structural
models [61]. This refinement protocol comprises two major stages, the
first being an iterative density-guided local structural element optimi-
zation using Monte Carlo sampling, and the second an alternating be-
tween Rosetta all-atom refinement and real-space B-factor fitting until
correlation between the map and the model converges. In the first
stage, segments in the starting-model that fit poorly to the density are
identified and superimposed on the endpoints by the backbone frag-
ments from the Protein Data Bank. Variations of these fragments are ob-
tained usingMonte Carlo sampling followed by a preminimization to fit
them into the density with proper constraints applied, such as coordi-
nate constraints at the endpoints of the fragments, Ramachandran and
rotameric constraints. The best fitted fragments are then selected to re-
place the corresponding backbone segments in the previous iteration to
construct a updated structural model for a global minimization using a
smooth version of the Rosetta centroid level energy function [27]. In
the second stage, a real-space B-factor refinement is conducted using
quasi-Newton optimization with restraints applied to prevent the B
values being over-fitted [50]; and the all-atom refinement cycles are
carried out using the Rosetta relax protocol [62]. The model quality
can be assessed by a cross-validation measurement in reciprocal
space, the expected phase error (EPE), which is independent of the
quality of cryo-EMmap being used for the refinement [61]. In their test-
ing cases, the Rosetta refinement protocol largely generatedmore accu-
rate models than the MDFF approach, and the refined-model accuracy
was shown to be independent of the starting-model quality when
using cryo-EMmaps of 4.5 Å or better resolution [61]. In another recent
contribution by Wang et al., the Rosetta refinement protocol was ex-
tended to enable the de novo protein structure determination using
high-resolution cryo-EM maps [26].

2.4. Integrating SAXS Profiles into Computational Modeling

SAXS is another method, which characterizes low-resolution struc-
tural features of macromolecular assemblies. Among its advantages
are tolerance to various solution conditions, relatively low concentra-
tion requirement on the sample, applicability to large sizemolecular as-
semblies, and low time/cost investment [63]. The method generates a
scattering intensity profile that reveals information concerning the
mass, volume, and radius of gyration of the biological assembly. Al-
though both EM and SAXS can provide macromolecular envelopes [64,
65], Fourier transform of SAXS data also yields a distribution of electron
pair distances P(r) [63,66]. This constitutes a critical differencewith EM,
in that SAXS can sensitively discriminate among computational models,
even thosewith the same outer envelope. All interatomic distance infor-
mation is retained, even from low-populated flexible conformations.
Thus, it is advantageous to develop and validate atomic models by
comparing directly to the P(r) distributions andnot the overall SAXS en-
velopes. Another important distinction is that such pseudoatomic com-
putational models are developed through dynamics simulations and
feature fully flexible relaxation of the systems. To include the SAXS
data in a modeling process, it is important to compute the theoretical
SAXS profile of a given atomic structural model. A variety of methods
B) Cartoon representations of PCNA and 9-1-1 binding to dsDNA, colored in blue for Rad9
ester groups and basic residues on the inner surface of PCNA and 9-1-1 are shown in gray
1-1(Rad1)/FEN1 interfaces and contacts. Secondary structure elements are shown for the
f the core of FEN1with secondary structure elements are labeled. Hydrophobic pockets on
ure legend, the reader is referred to the web version of this article.)
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have been developed to compute theoretical SAXS profiles based on
different spherical averaging, treatment of the excluded volume and
hydration layer [67]. The FoXS code [68,69] is one of the popular
approaches to compute the a theoretical scattering profile based on
the Debye formula [70]:

Iq ¼
XN
i¼1

XN
j¼1

f i qð Þ f j qð Þ sin qdi j
� �
qdi j

ð5Þ

where Iq, the scattering intensity, is a function of the momentum
transfer q = (4 sin θ)/λ, in which 2θ is the scattering angle and λ is
the wavelength of the incident X-ray beam; N is the number of atoms
in the system; f(q) is the form factor of one particular atom, dij is the
distance between atom i and atom j.

The theoretical scattering profile can then be fitted to the experi-
mental data by minimizing the goodness-of-fit value [71], X :

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
i¼1

Iexp qið Þ−cI qið Þ
σ qið Þ

	 
2
vuut ð6Þ

where M is the number of points in the profile, Iexp(qi) and I(qi) are the
experimental and theoretical profiles, respectively. σ(qi) is the experi-
mental error, and c is the scaling factor. It is worth noting that the X
values are comparable only for the same experimental profile, since
the experimental error is different with different sets of experimental
profiles.

Experimental scattering profiles can be informative for modeling in
different ways. First, the profile can be used as a reference to assess
models. For example, a straightforward comparison between the com-
puted SAXS profile of a crystal structure and experimental profile can
reveal possible different oligomeric states or structural features due to
a difference in environments between crystal and solution [72,73]; the
conformation from a number of possible homology models can be dis-
tinguished by using SAXS data [74]. Alternatively, the SAXS data can
be incorporated into the modeling process by fitting a single perturbed
conformation to the profile [75] or modeling an ensemble of conforma-
tions [72]. It is often preferable to fit the profile to an ensemble of con-
formations when the macromolecule or complex is flexible in solution
[76]. Among themethods that have been developed to generate the en-
semble from a pool of candidate conformations, the EOM [77] and min-
imal ensemble search (MES) [78] are particularly useful. Specifically,
MES uses a genetic algorithm to select a small subset of weighted con-
formations that optimally represent the SAXS I(q) profile. Goodness-
of-fit between computed and experimental SAXS profiles is measured
byX free [79], which gives a noise-reduced assessment of the fit. The cri-
terion used to prevent over-fitting is including in the ensemble as few
conformations as necessary to minimize X free. A variety of parameters
such as RMSD, normalized spatial discrepancy (NSD), maximal diame-
ter (DMAX), and radius of gyration (Rg) from the minimal ensemble
can be used to compare with those from the original conformation
pool to shed light on the flexibility of the macromolecule or complex
in solution.

Other computational approaches use SAXS profiles directly in
modeling and don't involve filtering of preexisting MD ensembles. For
example, Förster et al. incorporated SAXS profile into Monte Carlo sam-
pling in which new conformations are accepted or rejected based on
Metropolis criterion of SAXS-based X2 statistics [80]; Gorba et al. used
linear combination of low frequency normalmodes to deform the struc-
tural models in order to conform to the pair distribution function de-
rived from experimental SAXS profile [81]. More recently, Chen et al.
reported amethodwithwhich the dynamic trajectory of a protein in so-
lution can be modeled by incorporating SAXS or SWAXS (small and
wide angle X-ray scattering) information as a differentiable energetic
restraint into explicit solvent MD simulation [82,83]. These methods
greatly enhance the power of SAXS in determining multi-functional
states of biological entities. A valuable review of SAXS-based integrative
modeling methods was given by Schneidman-Duhovny et al. [67].

3. Example Applications

3.1. DNA Repair Complex of Human Rad9-Hus1-Rad1/FEN1/DNA

PCNA and Rad9–Hus1–Rad1 (9-1-1) are sliding clamps specialized
in DNA replication and DNA repair, respectively. Association and hand-
off of DNA-editing enzymes, such as flap endonuclease 1 (FEN1), with
these clamps are critical events of which the mechanistic details are
poorly understood. Toprovide an atomistic level description of the com-
plexes of FEN1with its DNA substrate in the presence of either PCNA or
9-1-1 and to reveal the structural foundation of functional differences,
negative stain EM and an integrative computational approach were
used, in which different component crystal structures, single-particle
EM data and modeling were used to obtain atomistic models of each
complex. The EM data were collected on the Fei Tecnai F20 at 80,000×
magnification (1.5 Å/pixel) in low dose (20 e−/Å2) with a Gatan
4 K × 4 K pixel CCD camera (15-μmpixel size). Specifics on the software
used for data collection, image processing and 3D reconstruction are de-
tailed in the original reference [28].

The modeling process was started by overlaying FEN1 from the
FEN1/DNA structure (PDB access code 3Q8L) and PCNA/FEN1 structure
(PDB access code 1UL1). A double-stranded B-form DNA (dsDNA) ex-
tension was then introduced on the 3′ flap side to pass through the
PCNA ring. An initial model of 9-1-1/FEN1/DNA was then generated
by replacing PCNA in PCNA/FEN1/DNA with 9-1-1. FEN1 interacts with
the Rad1 subunit in this complex based on previous experimental
evidence. Both initial models were then refined through ~120 ns MD
simulation to fully relax the systems, followed by pairwise RMSD clus-
tering analysis to select the centroid of each dominant cluster as final
model, shown in Fig. 1.

Using single-particle EM, the structural features of the binary com-
plexes of 9-1-1/FEN1 and the ternary complex of 9-1-1/FEN1/DNA
were revealed by the reference-free 2D class averages as shown in
Fig. 2A. The computational model of 9-1-1/FEN1/DNA was then filtered
at 20 Å to assign relative orientations to the different experimental
views of the assembly. A final 3D reconstruction of the 9-1-1/FEN1/
DNA complex at a resolution of 18 Åwas then obtained using 3D refine-
ment with iterative projection matching [84,85] (Fig. 2B). The atomistic
model was then flexibly fitted into the EMmap using MDFF. Due to the
difficulty in visualizing DNA density with negative staining, the DNA
was not included in the MDFF process. In the end, the fitted atomic
model of 9-1-1/FEN1/DNA left fewer than 300 atoms outside of the
EM map (at a threshold of 3.6), showing an excellent agreement with
the map (Fig. 2C). It is worth noting that the EMmap supports the ob-
servation that FEN1 is tilted toward the Rad1 subunit in the computa-
tional model.

Detailed analysis of the contacts of clamp/DNA or clamp/FEN1 with
the models has illuminated the structural basis for their functional spe-
cialties (Fig. 3). FEN1 adopts an overall upright position on the clamp's
surface, with its DNA substrate passing through the ring at a tilted
angle; in either case, the upstream DNA passes through the 9-1-1 ring
at an even greater angle than it does through the PCNA ring. The DNA
also forms more persistent contacts with the inner layer of clamp in 9-
1-1/FEN1/DNA. The distinct DNA interactionswith these clampproteins
are consistent with the functional difference between the two com-
plexes: PCNAneeds to bemobile onDNA in conjunctionwith replicative
polymerases, while 9-1-1 serves as a temporary scaffold for DNA repair
at specific sites. Interesting differences in the interactions of clamp/
FEN1 for each complex were also observed beyond the conservative,
inter-domain connector loop – PCNA-interacting protein motif (PIP) in-
teraction, often referred to as “IDCL-PIP box interaction”. The PCNA/
FEN1 interface features two stable hydrophobic pockets in the C-



Fig. 4. SAXS analysis of PCNAK164-Ub in solution suggests that ubiquitin is not exclusively
oriented in the position determined by crystallography. (A) SAXS curves. (B) Molecular
envelope derived from SAXS data analysis of split-fusion or cross-linked PCNAK164-Ub.
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terminus of PCNA, which interact with the PIP box in the C-terminus of
FEN1 (Fig. 3C). In contrast, the Rad1/FEN1 interface lacks the corre-
sponding hydrophobic interactions (Fig. 3D). This difference rational-
izes a previous report that the exact C-terminal residues responsible
for stimulation of FEN1 by the two clamps are distinct [86].

3.2. Modeling Ubiquitin-modified PCNA Using SAXS Data

Post-translational modification of PCNA by ubiquitin is essential for
PCNA to recruit the specialized polymerase needed to carry out
translesion DNA synthesis (TLS) – a major mechanism to bypass DNA
damage sites, which stall replication by classical DNA polymerase. The
mono-ubiquitylated PCNA (PCNA-Ub) governs the step of recruiting
TLS polymerase and the conformational switch between the replicative
Fig. 5. Flowchart of the modeling protocol for PCNAK164-Ub. (A) The strategy to generate mode
heavy atoms in 6837 frames from a 34-μs TBD simulation were binned and displayed relative t
(blue). (C) PCNAK164-Ub complex identified from multi-scale refinement in surface representa
and translesion polymerase. It does so by providing additional binding
surfaces for interaction with their ubiquitin-biding motifs [87–89].
X-ray crystallography studies of PCNA mono-ubiquitylated at Lys164
(PCNAK164-Ub) have revealed that the ubiquitin interacts with PCNA
on the back face of PCNA (as opposed to the front face of PCNA, where
most PCNA-interacting proteins bind) [90]. Crystallography had also
revealed that paradoxically, the ubiquitin surface engaged in PCNA
interactions was the same as the surface implicated in translesion
polymerase binding. Apparently, a dynamic process of exposing
this binding surface of ubiquitin is necessary for the recruitment
and switching to the TLS polymerase. This finding implied a degree
offlexibility inherent in the complex. To address this segmentalflexibility,
we combined multi-scale computational modeling and SAXS to reveal
alternative positions for ubiquitin on PCNA, distinct from the crystal
structure [30].

Yeast PCNAK164-Ub was obtained using either split-fusion construct
[90] or chemical cross-linkingwithmutant PCNA (K164C). SAXS data of
both constructs in solution were compared, showing nearly identical
profiles (Fig. 4A). Ab initio 3D shapes of both constructswere generated,
indicating the core, torroidal structure of PCNA, and also the protruding
part comprising the ubiquitin moiety. This conjunction of ring-plus-
protrusion do not agreewell with the position of ubiquitin in the crystal
structure (PDB accession code 3L10) (Fig. 4B). However, fitting the solu-
tion SAXS profiles to the crystal structure profile generated a high value
of χ (Fig. 4A), which in combination with the observation of discrepan-
cies between the ab initio 3D shape and crystal structure favors previ-
ously unrevealed conformational states of ubiquitin in the PCNAK164-
Ub complex in solution.

To examine the conformational space of Ub on PCNA more system-
atically, a successive, computational modeling approach was adopted
by combining tethered Brownian dynamics (TBD) [91], protein–protein
docking (using RosettaDock [92–94]), flexible loop modeling (using
ModLoop [95,96]), and MD simulation (Fig. 5). First, an extensive TBD
simulation of 34 μs identified a bound state of PCNA-Ub, based on
ls for PCNA with covalently bound ubiquitin. (B) The positions of the covalently bound Ub
o PCNA; the number of frames in each bin is color coded as from smallest (red) to largest
tion.

Image of Fig. 4
Image of Fig. 5


Fig. 6.AMES ensemble of discrete Ub positions on PCNA best fit the experimental SAXS data for split-fusion (green) and cross-linked (blue) PCNAK164-Ub. (A) Schematic showing theMES
methodology. (B) The scattering curve of the best MES ensemble fits the experimental scattering data better than the crystal structure 3L10.pdb. (C) P(r) plots. (D) Structures of the three
models that as an ensemble best fit the experimental scattering curve are shown. (For interpretation of the references to color in thisfigure legend, the reader is referred to theweb version
of this article.)
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electrostatic and shape complementarity. The resulting conformational
ensemble was then clustered into 90 clusters in order to select the cen-
troids for local protein–protein docking; in this process side-chain pack-
ing was allowed, as opposed to side-chain rigidity imposed in TBD. The
distinct, dominant docking modes from the top three Rosetta-scoring
models showed Ub situated in the large cleft defined by a β-sheet that
forms the subunit–subunit interface of PCNA. As the tethering peptide
in both TBD and RosettaDock calculations was included implicitly, the
models were then completed by including the linker (Ub residues
72–76) into the structures obtained from clustering with
RosettaDock (Fig. 5) using Modloop, and subsequently refined
through ~25 ns all-atom, explicit solvent MD simulations.

Flexible positions of Ub on PCNA were then identified using
BILBOMD [78] with the models from the MD simulation. This flexible
position of Ub, along with the original MD positions, and the position
observed in the crystal structure were then permuted on the homo-
trimer of PCNA to generate 130 PCNAK164-Ub PDB models, where each
PCNA is modified by three Ubs. MES was then applied using this pool
of models to fit either the split-fusion or the cross-linked PCNAK164-Ub
SAXS profile. An ensemble of three models for each of the experimental
constructs was identified, with the Ub being 25–30% in the crystallo-
graphic position, 40–50% in the computationally determined positions,
and 25–30% flexible positions (Fig. 6). The result suggests a segmental
flexibility of the Ub in PCNAK164-Ub, meaning that in solution Ub can
adopt a number of discrete interchangeable positions on the surface of
PCNA. This segmental flexibility of the Ubmoiety on PCNA-Ub provides
a variety of distinct positions capable of forming complexes with TLS
polymerase, and, accordingly spatially organizes the PCNA-Ub interacting
proteins for either efficient DNA replication or repair. These novel posi-
tions provided a rationalization for perplexing biochemical data e.g. ex-
plained the effects of mutations originally identified in genetic screens
and known to interfere with TLS. The computationally derived positions,
in an ensemble with the crystallographic position, provided the best fit
to the solution scattering. The finding of new docking sites and the posi-
tional equilibriumof PCNA-Ub occurring in solution provided unexpected
insight into the question of how Ubmay help transition the TLS Pol from
the back to the front side of PCNA to exchange with the replicative Pol
[30].

We have recently extended this work to provide a common hybrid
modeling/SAXS framework and examined K107-Ub and SUMOylated
PCNA [84]. The biological functions of the small ubiquitin-related mod-
ifier SUMO appear to be evenmore diverse, ranging from nuclear trans-
port to signal transduction, transcription, and genome stability [85].
Sumoylation of PCNA occurs on two lysines, predominantly on K164
and to a lesser extent on K127. Attachment of SUMO can induce a vari-
ety of cellular outcomes but often its mode of action remains poorly
understood. To explore the overall architecture and flexibility of yeast
PCNAK107-Ub and PCNAK164-SUMO complexes, we examined solution
conformations with small-angle X-ray scattering (SAXS). Yeast
PCNAK107-Ub was produced using chemical cross-linking with a
K107C mutant PCNA. The PCNAK164-SUMO complex was formed by
split-fusion [76]. Experimental SAXS curves (Fig. 7), along with a com-
paction observed in the pair distribution P(r) plot, show the three com-
plexes adopt conformations with different levels of compactness in

Image of Fig. 6


Fig. 7.Ub primarily adopts docked positions in PCNAK107-Ubwhile SUMO occupies extended positions in PCNAK164-SUMO (A,B) χ values for the triplet PCNAK107-Ub and PCNAK164-SUMO
structures plotted against RMSD. Conformations selected by MES are highlighted in blue, magenta and red, respectively. (C,D) Overlaid SAXS profiles. (E,F) Overlaid P(r) plots. (G,H) The
most populated atomic structures fromMES analysis of PCNAK107-Ub and PCNAK164-SUMO in surface representation. The K107 and K164 attachment points are depicted in red. PCNA, Ub
and SUMO are shown in gray, green and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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solution. The χ fit of the SAXSmodel to existing crystal structures (with
PDB codes 3L10 and 3V60) produced high values, consistentwith signif-
icant discrepancies between the observed structures in solution and in
the crystalline environment.

To further probe the conformational differences of the PCNAK107-Ub
and PCNAK164-SUMO complex implied by SAXS experimental data, we
created models using a recently developed protein conjugated docking
module in Rosetta 3.4. The protocol involved searching the conforma-
tional space available to ubiquitin or SUMOwhen chemically conjugat-
ed via an isopeptide bond to PCNA. Sampling proceeded with the
standard Rosetta Metropolis-Monte Carlo search protocol [86,87]. For
the isopeptide linker, torsions sampled included the χ angles of
Lys107 or Lys164 of PCNA, the isopeptide bond and bothΦ andΨ angles
for the Gly76, Gly75 and Arg74 of ubiquitin (Gly98, Gly97 and Ile96 of
SUMO). The lowest-scoring structurally distinct models from the
Rosetta output were selected and refined using all-atom explicit solvent
molecular dynamics (MD). The conformations easily departing from the
PCNA surface were excluded during MD refinement. Twelve positions
for PCNAK107-Ub (including 3 detached flexible Ub positions identified
by averaging from the MD ensemble) and twelve positions for
PCNAK164-SUMO (including the 3V60 X-ray structure and 3 detached
flexible SUMO positions) were used to generate models with three
ubiquitin or three SUMO moieties linked to homotrimeric PCNA. The
trimeric models were then used for comparison to the experimental
SAXS data. Theoretical SAXS profiles for all triplet models of the modi-
fied complex were computed with the program FOXS and fitted to the
experimental profiles. Fig. 7A, B shows computed χ values for
PCNAK107-Ub and PCNAK164-SUMO as a function of Cα RMSD for each
conformation. A MES [64] was then utilized to identify a small subset
of conformations that as an ensemble best fits the scattering data. The

Image of Fig. 7
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fit to the experimental data improved significantly (Fig. 7C,D). This
study demonstrated that Ub adopts discrete docked binding positions
on PCNA and the position of ubiquitin attachment, 107 versus 164, al-
ters conformation. In contrast to Ub, SUMO adopts extended flexible
conformations on PCNA by simple tethering (Fig. 7G,H). The distinct
structural features can be explained by the opposite surface electro-
static potentials of SUMO and Ub, and present different accessibility
of interacting surface for partner proteins of Ub-PCNA and SUMO-
PCNA. This observation elucidates the structural basis for the differ-
ent functional involvement of Ub-PCNA and SUMO-PCNA in DNA re-
pair pathway regulation.

4. Summary and Outlook

Studies in structural biology have substantially enhanced our under-
standing on themolecular mechanisms of many biological pathways by
way of solving structures at different resolution. While X-ray and NMR
are capable of generating structures at atomic resolution, they are limit-
ed in their ability to access large flexible biomolecular assemblies. Cryo-
EMand SAXS, on the other hand, arewell suited to generating structural
data from low- to medium to near-atomic resolution, without substan-
tial limitation on the size of the molecule/assembly. Integrative model-
ing takes advantage of the available experimental data at different levels
of resolution, and combines them in complementary ways, which en-
able retention of the highest resolutions while yielding an accurate
“overall picture”.

Experimental data from other studies, which reveal interaction in-
formation, can also find their way into the finalmodel. Models resulting
from integrative modeling often enhance our understanding of the
function of the molecule/assembly from a mechanistic point of view,
as illustrated by the modeling applications presented in this review.
The applicability and power of integrative modeling approaches to
DNA replication machinery are demonstrated further by recent studies
of the complexes of single-stranded DNA with replication protein A
(RPA) [97,98] utilizing both SAXS and NMR data. Thus, integrative
modeling is an emerging area with great promise as evidenced by the
sheer variety of methods, ever-expanding modeling codes e.g. the inte-
grative modeling platform (IMP) [23], the the inferential structure de-
termination (ISD) framework [99], HADDOCK [100] and RNABuilder
[101], and exemplary applications reported. Regardless of what sources
of experimental constraints a particularmethod or software framework
is able to incorporate, if it provides insightful models it is of value. Inte-
grative modeling is a composite method, not an ultimate goal, a sort of
in silico microscope enabling us to discern atomic-level mechanisms
underlying biological functions.
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