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ABSTRACT Evolve and resequence studies combine artificial selection experiments with massively parallel sequencing technology to
study the genetic basis for complex traits. In these experiments, individuals are selected for extreme values of a trait, causing alleles at
quantitative trait loci (QTL) to increase or decrease in frequency in the experimental population. We present a new analysis of the
power of artificial selection experiments to detect and localize quantitative trait loci. This analysis uses a simulation framework that
explicitly models whole genomes of individuals, quantitative traits, and selection based on individual trait values. We find that explicitly
modeling QTL provides qualitatively different insights than considering independent loci with constant selection coefficients.
Specifically, we observe how interference between QTL under selection affects the trajectories and lengthens the fixation times of
selected alleles. We also show that a substantial portion of the genetic variance of the trait (50–100%) can be explained by detected
QTL in as little as 20 generations of selection, depending on the trait architecture and experimental design. Furthermore, we show that
power depends crucially on the opportunity for recombination during the experiment. Finally, we show that an increase in power is
obtained by leveraging founder haplotype information to obtain allele frequency estimates.
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SOME of the first artificial selection experiments, per-
formed in the early 1900s, were designed to settle on-

going debates about the nature of selection. In particular,
early researchers hoped to answer questions about whether
selection on continuous variation was even possible and how
to reconcile this with the Mendelian viewpoint of genes as
discrete heritable units (see Falconer and Mackay 1996,
Chap. 11, for theoretical background on artificial selection;
Falconer 1992 for a history of early selection experiments;
and Garland and Rose 2009 for a comprehensive overview
of experimental evolution).

More recently, researchers have used artificial selection
experiments to study the genetic basis for complex traits by
analyzing allele frequency changes in evolved populations.

This technique has been used in a wide variety of organisms,
including for example maize (Laurie et al. 2004), yeast
(Ehrenreich et al. 2010), fruit flies (Nuzhdin et al. 2007;
Teotonio et al. 2009), chickens (Johansson et al. 2010), and
mice (Keightley and Bulfield 1993).

Massively parallel (also known as next-generation) se-
quencing of pooled samples has enabled researchers to obtain
genome-wide allele frequency estimates for a population in a
cost-effective manner (Futschik and Schlotterer 2010). These
technological advances have led to the development of the
evolve and resequence (E&R) method for mapping traits
(Burke et al. 2010; Parts et al. 2011; Turner et al. 2011;
Orozco-terWengel et al. 2012; Remolina et al. 2012). In
E&R studies, artificial selection is followed by pooled se-
quencing of genomic DNA from multiple individuals. A site
exhibiting a large allele frequency change in the selected
population suggests the presence of a nearby quantitative
trait locus (QTL) (Figure 1).

Due to limitations on resources and time, researchers will
face many design decisions as they set up artificial selection
experiments. First, the size of experimental populations af-
fects the degree of genetic drift and the efficacy of selection.

Copyright © 2015 by the Genetics Society of America
doi: 10.1534/genetics.115.175075
Manuscript received October 13, 2014; accepted for publication February 5, 2015;
published Early Online February 10, 2015.
Available freely online through the author-supported open access option.
Supporting information is available online at http://www.genetics.org/lookup/suppl/
doi:10.1534/genetics.115.175075/-/DC1.
1Corresponding author: University of Chicago, 920 E 58th Street, Chicago, IL 60637.
E-mail: jnovembre@uchicago.edu

Genetics, Vol. 199, 991–1005 April 2015 991

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.175075/-/DC1
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.175075/-/DC1
mailto:jnovembre@uchicago.edu


Next, the strength of selection is determined by the pro-
portion of individuals selected each generation to create
the next generation. In addition, the length of the experiment
must be chosen in conjunction with the strength of selection
to maximize allele frequency differences at QTL, while at the
same time minimizing differences at neutral loci due to drift.
For example, extremely strong selection over a large number of
generations will result in the fixation of variants across the
genome, which will stifle any ability to distinguish QTL from
neutral loci. An additional factor to consider is that the selection
can be performed on a single population that will be compared
to a control population; alternatively, selection can be di-
vergent, where two populations selected in opposite directions
will be compared. Finally, replication is a key consideration in
any experiment, and especially in experimental evolution, where
random genetic drift plays a large role: observation of a large
allele frequency difference at a locus in multiple replicate ex-
periments will increase confidence that the difference is due to
selection at the locus rather than drift.

E&R experiments lie at the interface between population
genetics and quantitative genetics. The selection pressure on
a QTL can be parameterized using concepts from quantita-
tive genetics such as effect sizes, genetic variance, and her-
itability, in addition to experimental design parameters such
as the proportion of individuals selected each generation.
Furthermore, as we will see, the effect of a QTL allele on
an individual’s fitness depends strongly on interaction with
the other QTL alleles carried by the individual. As noted by
Felsenstein (1974, 1987), finite populations necessarily ex-
perience random linkage disequilibrium between any two

polymorphic loci. This linkage disequilibrium results in in-
terference, where the effect of selection on each locus is
decreased (Hill and Robertson 1966).

Previous studies of the power of artificial selection experi-
ments to detect trait loci have taken the traditional population
genetics approach in which selection is parameterized using
selection coefficients that remain constant each generation. For
example, previous work by Kim and Stephan (1999) analyzed
a single locus under a constant selection coefficient, using a
diffusion approximation, and two recent simulation studies
employed forward simulations with loci parameterized by con-
stant selection coefficients to obtain power estimates (Baldwin-
Brown et al. 2014; Kofler and Schlotterer 2014). While there
are ways to translate truncation selection intensity parameters
to selection coefficients (see, for example, Falconer and Mackay
1996, Chap. 11), we seek to complement existing efforts by
using an explicit quantitative genetic parameterization and con-
sidering a finite genome length.

We introduce a new simulation framework to investigate
the power of artificial selection experiments to detect and
localize QTL contributing to a quantitative trait. Our simu-
lations employ a whole-genome quantitative genetic model
of loci underlying a trait, and we explicitly model artificial
selection of individuals each generation based on trait values.
As in Baldwin-Brown et al. (2014) and Kofler and Schlotterer
(2014), we model Drosophila melanogaster individuals, and
we use experimental parameters similar to those used by Turner
and Miller (2012).

A common assumption used in theoretical studies (e.g.,
Thornton et al. 2013) and justified by theoretical arguments
(for example, Gillespie 1991, p. 266) is that the fitness effect
sizes of newly arising mutations are exponentially distrib-
uted. In addition, Orr (1998) showed that the distribution of
fitness effect sizes of alleles fixed during adaptation is ap-
proximately exponential and that this result is nearly inde-
pendent of the distribution of mutational effects. In light of
these considerations, we follow the rationale of Otto and
Jones (2000) and model effect sizes of QTL alleles as expo-
nentially distributed. Additional support for this assumption
comes from empirical studies of several quantitative traits
whose genetic variation has been shown to depend on a few
loci of large effect and many loci of small effect (see Mackay
2010 for a review). Because we assume no relationship be-
tween starting allele frequency and effect size, this implicitly
assumes that the trait variation in the founder population is
neutral or effectively neutral prior to the onset of artificial
selection. For traits under stabilizing selection, we might
expect variants of large effect to have reduced frequencies.
The simulation framework we have developed easily gener-
alizes to such alternative cases, but as a starting point we
begin with the simplifying assumption of a neutral trait with
exponentially distributed QTL effect sizes.

Our simulations show that forward simulations of a locus
assuming a constant selection coefficient do not fully capture
the allele frequency dynamics of a QTL under artificial selection
on a quantitative trait. In contrast, explicit quantitative genetic

Figure 1 Evolve and resequence experiment. After initial neutral mixing
of founders, individuals with extreme values of the trait are selected to
create the next generation. After several generations of selection, pop-
ulations are sequenced and analyzed for allele frequency differences.
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modeling of the trait leads to insights regarding the effect of the
trait architecture on the allele frequency trajectory of a QTL.
For instance, by simulating the entire genome of individuals,
we demonstrate the important role that recombination plays
in decreasing interference between QTL, as well as reducing
linkage disequilibrium between QTL and neighboring neutral
loci. Our results emphasize that designing the artificial selection
experiment to allow more opportunity for recombination in-
creases the ability to detect and localize QTL.

Finally, previous work has suggested that when founder
sequence information is available, one can obtain more accurate
allele frequency estimates by estimating local haplotype fre-
quencies from pooled read data (Long et al. 2011; Kessner et al.
2013). We show that these improved allele frequency esti-
mates, when compared to estimates calculated directly from
read counts, can lead to an increase in power, although the
magnitude of improvement is condition dependent.

Methods

Forward simulation

We used the program forqs (Kessner and Novembre 2014)
for all forward simulations. forqs simulates whole genomes
of individuals efficiently by tracking the haplotype chunks
that are inherited from the founder individuals in the initial
generation. forqs allows the specification of quantitative
traits and provides flexible fitness functions for the simula-
tion of complex evolutionary scenarios such as artificial
selection.

In our simulations of artificial selection on a quantitative
trait, individuals had three chromosomes, with lengths
matching Drosophila chromosomes X, 2, and 3. For simplic-
ity, we set the recombination rate to be uniform along each
chromosome, with rate = 2 cM/Mb, which is similar to re-
combination rates reported previously (Comeron et al.
2012). For each set of experimental parameters we simu-
lated populations using 200 replicates each of 12 different
canonical architectures: 2, 5, 10, and 100 QTL, at initial
heritability levels 0.2, 0.5, and 0.8. For a given number of
QTL and heritability level, QTL positions and effect sizes
were generated randomly for each simulation run (see next
section). The random trait generation was implemented in
an auxiliary program that produces trait description files,
which are included by forqs configuration files that specify
the experimental setup. Our simulation scenarios represented
selection on standing variation where the expected wait-
ing time 1=ð2NmÞ for a mutation to occur at a QTL is much
larger than the number of generations in the experiment.
Hence, we did not include de novo mutations in our
simulations.

Each generation, forqs calculates trait values for all individ-
uals based on the effect sizes of the alleles they carry at QTL and
a random environmental effect (with variance determined by
the heritability of the trait). Artificial selection was simulated
using the forqs module FitnessFunction_TruncationSelection,
which assigns a fitness value of 1 to those individuals whose

trait value lies above (or below) a threshold (and 0 otherwise),
where the threshold is determined each generation by the
distribution of trait values in the population and the user-
specified proportion of individuals selected to create the
next generation.

All configuration files and analysis scripts for all simu-
lations are freely available online at https://bitbucket.org/
dkessner/artificial_selection_pipeline.

Generation of random trait architectures

To investigate how the genetic architecture of a trait affects
the behavior of QTL allele frequencies under artificial
selection, we developed a method to generate random trait
architectures with specified parameters. In particular, we
were interested in how the number of QTL contributing to
the trait and the heritability of the trait affect the power to
detect QTL. In addition, we wanted to investigate how the
trait architecture affects a focal QTL with a specified effect
size and initial allele frequency. Finally, we wanted to ensure
that linkage disequilibrium in the simulated starting pop-
ulation is similar to that found in populations used in
experimental settings. In the following, we describe our
procedure for generating the founding population and trait
architecture in our simulations.

Starting with founder individuals for which we have full-
genome haplotypes, we run neutral forward simulations with
forqs to recombine the haplotypes and expand the population
size. This results in a mixed population that is two to three
times larger than the desired starting population for the
selection experiment. For our founder individuals, we used
the publicly available SNP data from 162 Drosophila inbred
lines representing Freeze 1 of the Drosophila Genetic Ref-
erence Panel (DGRP) project (Mackay et al. 2012). Our
procedure is similar to the experimental procedure used
by Turner and Miller (2012), where individuals from the DGRP
inbred lines are allowed to mate randomly for several gener-
ations to create a mixed population with genetic variation and
linkage disequilibrium similar to those of the natural pop-
ulation from which the inbred lines were derived.

In some cases we additionally specify a focal QTL, for which
we specify the locus, effect size, and initial allele frequency. We
create a starting population by randomly selecting a subset
of individuals from the mixed population. We ensure that the
focal QTL has the desired allele frequency by choosing in-
dividuals in Hardy–Weinberg proportions according to their
focal QTL genotype.

From the heritability and total variance parameters that
we specify, we calculate a target genetic variance for the
trait. We choose the remaining QTL positions uniformly at
random across the genome, until we have the specified
number of QTL. We choose effect sizes according to a standard
exponential distribution, with random sign for positive/negative
effect on the trait. From the individuals’ haplotypes and QTL
effect sizes, we calculate the current genetic variance of the
trait in the population. We then scale the QTL effect sizes so
that the genetic variance is equal to the target genetic variance.
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In the case where we have a focal QTL, we keep the focal QTL
effect size constant and scale the other QTL effect sizes—this
requires iteration until the genetic variance is close to the tar-
get genetic variance, within a specified tolerance.

Realized selection coefficient

We first recall the deterministic model of selection on
a single locus in a diploid population. Suppose a locus has
two alleles A0 and A1: If p is the frequency of A1; then the
allele frequency change is given by

Dp ¼ pð12 pÞw
*
12w*

0
w

;

where w*
0 and w*

1 are the marginal fitnesses of the A0 and A1

alleles, respectively, and w is the mean fitness of the popu-
lation (Rice 2004).

In the special case where A1 has additive selection co-
efficient s, this becomes

Dp ¼ pð12 pÞ s
1þ 2ps

:

We define the realized selection coefficient for a given p and
Dp to be the selection coefficient s that would result in this
allele frequency change in the deterministic case. By solving
the above equation for s, we obtain a formula for the re-
alized selection coefficient:

srealizedðp;DpÞ ¼
Dp

pð12 pÞ2 2pDp
:

Calculation of power and false-positive rate

We explored several methods for calculating the power and
false-positive rate associated with the detection of QTL by
allele frequency differences between populations.

First, we note that calculating the false-positive rate as
the proportion of neutral (non-QTL) variants detected does
not capture the effect of detected variants clustering due to
linkage disequilibrium.

In addition, significantly diverged variants are not neces-
sarily causal, but indicate that the region nearby may contain
a causal variant. To address these issues, we define a detection
region to include all variants within a specified radius of any
variant whose absolute allele frequency difference value
exceeds a given threshold (see Results, Measurement of power
to detect and localize QTL). This leads to a natural definition of
false-positive rate: the proportion of the neutral genome cov-
ered by the detection region (see Figure 2 for an illustration).

We calculated the false-positive rate in this way with radii
of 10 kb, 100 kb, and 1 Mb. We found that using a radius of
100 kb or 1 Mb led to true regions that covered a substantial
portion of the genome in the cases where there were a large
number of QTL. Using a10-kb radius for the detection region
gave the most interpretable results.

With regards to power, the simplest method is to calculate
the proportion of QTL detected. However, we feel that a more

relevant measure of power is the proportion of the genetic
variance in the initial population that is explained by the
detected QTL. This measure appropriately gives greater weight
to QTL responsible for more of the genetic variance. Figure 3, A
and B illustrates the difference between these two measures of
power: at a false-positive rate of 1024; only 50% of the QTL are
detected, but these QTL are responsible for .75% of the genetic
variance of the trait.

Going forward, we use the 10-kb radius for the detection
region, together with measuring power as the proportion of
variance explained, to provide the most interpretable results.

Analysis pipeline

The forward simulator forqs efficiently simulates the entire
genome of each individual by tracking haplotype chunks.
forqs outputs data files that represent each chromosome of
each individual as a mosaic of founder haplotypes. To obtain
the neutral variants carried by an individual, the neutral
variation on founder chromosomes must be propagated to
the individual’s mosaic chromosomes.

In our simulation framework, we use two forward
simulations. The first simulation creates a mixed population
from the founder haplotypes, after which we generate the
random trait architecture. The second simulation represents
the selection experiment. Individuals in the final popula-
tions are mosaics of individuals in the mixed population,
which are in turn mosaics of the founders. We implemented
a custom program to handle this two-step propagation of
neutral variation. Given founder sequences, the mixed pop-
ulation, and the final population, the program calculates the
allele frequency in the final population of each variant in the
genome. We note that while this step does not require a large
amount of computation, it is intensive for disk input/output
because it uses the full DGRP variant data set for the founder
sequences, which consists of 162 haplotypes at �5 million
loci.

After calculating allele frequencies for each population,
we calculate the allele frequency difference D for each high–
low population pair under consideration (multiple pairs for
the replication analyses). After sorting the D values, we be-
gin with the highest D value and iteratively decrease the
threshold to obtain data equivalent to a receiver operating
characteristic (ROC) curve (power and false-positive rates)
for that simulation run. We note that this step depends on
the method for calculating power and false-positive rate, so
we performed it once for each method we described above
in Calculation of power and false-positive rate.

We obtain average ROC curves by calculating the average
power over replicate simulation runs at regularly spaced
false-positive rates, where the power for a particular run at
a given false-positive rate is obtained by linear interpolation
between points on its ROC curve.

Empirical error distributions

To investigate the power increase due to the use of haplotype-
based allele frequency estimates, we needed to simulate
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pooled sequence reads from a population, followed by haplotype
frequency estimation in sliding windows across the genome,
using the harp method and software detailed in Kessner et al.
(2013). Because this procedure is computationally expen-
sive, and due to the large number of simulations involved in
this study, it was not feasible to do this for each simulated
experiment.

As an alternative, we obtained empirical error distribu-
tions, which we later used to add random errors to true
allele frequencies. Because errors in the haplotype frequency
estimation depend on the length scale of recombination, we
ran replicate neutral simulations for varying numbers of
generations (from 40 to 400). Haplotypes surrounding selected
QTL are expected to be longer than in neutral regions, so our
empirical error distributions are conservative. We simulated
pooled sequence reads from the final populations, using a new
program simreads_forqs based on the read simulator used in
Kessner et al. (2013). Haplotype frequency estimation was
performed with harp in overlapping sliding 200-kb windows
within a single 1-Mb region. We then calculated allele frequen-
cies at variant sites within the region, using read counts. By
considering allele frequencies in bins of size 0.05, we obtained

a frequency-dependent empirical error distribution. Similarly,
we also derived allele frequency estimates from the local hap-
lotype frequencies, from which we obtained frequency-dependent
empirical error distributions for each generation count. We
found that after�   200 generations, the haplotype-based esti-
mates were no better than the read-count-based estimates;
this behavior is expected as the recombination length scale
approaches the window size used for haplotype frequency
estimation (200 kb in this analysis). Hence, for this analysis we
considered only experimental scenarios lasting,200 generations.

Results

We performed forward simulations of populations, using the
program forqs (Kessner and Novembre 2014), which models
whole genomes of individuals and selection on quantitative
traits. QTL were chosen randomly from variant sites reported
in the DGRP (Mackay et al. 2012). Thus, initial allele frequen-
cies of QTL were randomly distributed according to the allele
frequency distribution of DGRP variant sites. Similarly, link-
age disequilibrium patterns reflect the patterns observed in
the DGRP populations. To simulate various trait architectures,

Figure 2 Illustration of linkage disequilibrium between QTL and neutral loci. In plots of allele frequency differences between high and low populations,
QTL peaks are narrower when extra generations of neutral mixing are introduced. As an example, we indicate a threshold of 0.5 with the blue lines and
the corresponding detection regions with orange bars. Note that the true region, consisting of sites within 10 kb of either SNP, is too small to be seen at
this scale; thus, the size of the orange bars represents the (local) false-positive rate at this threshold. Also note that the threshold of 0.5 was chosen for
the purpose of illustrating the detection region, and in practice a much higher threshold will typically be chosen (10 QTL, h2 ¼ 0:5; N = 1000, 20%
selected, 20 generations of initial mixing, shown are average D values over 20 replicates). (A) Twenty generations of selection; (B) 20 generations of
selection, 4 generations per selection event (80 generations total).
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we considered 12 scenarios by simulating 2, 5, 10, or 100
QTL at initial heritability levels of 0.2, 0.5, or 0.8. Following
previous theoretical and empirical studies (Orr 1998; Otto
and Jones 2000; Mackay 2010; Thornton et al. 2013), we
drew QTL effect sizes randomly from an exponential distri-
bution. These scenarios span settings that are relatively
straightforward for genetic mapping such as an oligenic trait
with 2 QTL and a high heritability of 0.8 to a more challeng-
ing scenario of a complex trait with 100 QTL and heritability
of 0.2. Our simulations began with several generations of
neutral mixing, emulating laboratory procedures that use in-
bred founder lines to create larger experimental populations
with increased genetic variation and reduced linkage disequi-
librium (e.g., Turner and Miller 2012). Using this procedure
we simulated populations of various sizes, which we used as
the initial populations for the artificial selection simulations.

Qualitative comparison of selection coefficient
simulations and explicit quantitative genetic modeling

To first illustrate the importance of modeling quantitative traits
explicitly, we show examples of allele frequency trajectories of
a focal QTL contributing to a quantitative trait under trunca-
tion selection in comparison to a single locus with two alleles
with a constant additive selection coefficient. For these simu-
lations, we depart from our general procedure (described above)
and fix the starting allele frequency of a focal QTL to 0.2 and
track its trajectory. The remaining QTL are chosenwith a random
distribution on starting allele frequencies and effect sizes (see
Methods). We simulated populations of size N ¼ 5000 with the
top 20% of individuals selected based on their trait values to
create the next generation, so that the effective population size
was Ne ¼ 1000: To match the predicted degree of drift at neu-
tral loci, we simulated populations of size N ¼ 1000 for the
selection coefficient simulations. Selection is assumed to be in
the direction of increasing trait values.

As seen in Figure 4, A and C, the allele frequency tra-
jectories of the focal QTL under truncation selection are
qualitatively different from the trajectories under a constant
selection coefficient. While a strong selection coefficient leads
to nearly deterministic allele frequency trajectories that mono-
tonically increase, trajectories of a focal QTL under strong
truncation selection are dependent on the underlying trait ar-
chitecture. In particular, the focal QTL may experience inter-
ference from other linked QTL. This effect can be seen in the
trajectories where the focal QTL decreases in frequency at first,
due to repulsion linkage disequilibrium (i.e., QTL of opposite
effect are positively associated), but eventually increases in
frequency once linkage disequilibrium has decreased suffi-
ciently through recombination.

In addition, once an allele with a constant selection co-
efficient reaches high frequency, it only gradually increases
in the final generations before finally going to fixation. In
contrast, the focal QTL under truncation selection tended to
become fixed quickly after reaching high frequency in the
population. This behavior is not surprising, because after a few
generations of selection, the upper tail of the population trait
value distribution is highly enriched for individuals carrying
high-effect variants.

To further illustrate these qualitative differences, we
analyzed the realized selection coefficient of the trajectories,
which represents the selection coefficient that would result in a
given single-generation allele frequency change under a de-
terministic model (see Methods). Under a constant selection
coefficient, the mean realized selection coefficient tracks the
true selection coefficient closely during the selection phase,
after which it decreases to zero during the drift phase (Figure
4B). Under truncation selection, the behavior of the mean re-
alized selection coefficient depends on the underlying genetic
architecture of the trait. When the effect size is low, the re-
alized selection coefficient increases each generation—this is

Figure 3 Comparison of three methods for calculating and interpreting power and false-positive rate. (A) Power is measured by the proportion of QTL
detected, and false-positive rate is measured by the proportion of neutral variant sites detected. (B) Power is measured by the proportion of genetic
variance in the founder population explained by the detected QTL, and false-positive rate is measured as in A. (C) Power is measured as in B, and false-
positive rate is measured by the proportion of the neutral genome covered by the detection region. In this case, the ROC curve shows that.75% of the
genetic variance is explained by QTL in a detection region that covers 1% of the neutral genome.
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because selection acts on the larger-effect QTL first and then
has a greater effect on the focal QTL after the larger-effect
QTL have reached fixation. On the other hand, when the
effect size is higher, the focal QTL experiences very strong
selection initially, decreasing as the focal QTL rises to fixation
(Figure 4D).

Another effect of the underlying trait architecture can be
seen in the fixation times of the focal QTL (Figure 5). For
a given effect size and heritability, the fixation time of the
focal QTL increases with total number of QTL due to inter-
ference. While these two forms of simulation (explicit QTL
simulation vs. single-locus fixed-s simulation) cannot be ex-
actly calibrated to match one another, the qualitative result
that the explicit QTL simulation is capturing more complex
and realistic dynamics motivated our use of QTL-based
simulations for assessing power and experimental design
choices going forward.

Measurement of power to detect and localize QTL

In all of the following analyses, we examine the power to
detect QTL through allele frequency differences at variant
sites. There is currently no consensus regarding the choice of
test statistic for the analysis of artificial selection experiments.

Both for simplicity and because of its use in practice (Parts
et al. 2011; Turner and Miller 2012), we chose to base
our analysis on the absolute allele frequency difference
D ¼ jp1 2 p2j; where p1 and p2 are the allele frequencies
of the variant in populations 1 and 2, respectively. We also
note that this statistic, also called the difference in derived
allele frequencies (DDAF or DDAF), is used in several
related or composite methods for detecting selection
(Grossman et al. 2010; Turner et al. 2011; Utsunomiya
et al. 2013).

We calculate D for each variant site in the genome, and
we call a site detected if the D value exceeds a threshold
value. By varying the threshold, we obtain ROC curves
showing the relationship between power (true positive rate)
and the false-positive rate.

Due to linkage and strong selection, detected QTL will
generally have neighboring neutral variants whose allele
frequency differences also exceed the detection threshold.
Because of this, detection and localization of a QTL are
necessarily intertwined. In an actual experimental set-
ting, the entire genomic region surrounding the signifi-
cantly diverged loci would often be chosen for follow-up
studies.

Figure 4 Qualitative differences between fixed selection coefficient and truncation selection on a quantitative trait. A focal QTL exhibits fundamentally
different behavior under a constant selection coefficient, compared to truncation selection on a quantitative trait. Shown are allele frequency trajectories
(A) and realized selection coefficient distributions (B) of a locus under two different selection coefficients (0.2, 0.3) (N = 1000, 80 generations). C and D
show the same for a focal QTL (effect sizes 0.1, 0.3) under truncation selection on the trait (N = 5000, 20% selected, 80 generations, 100 QTL, h2 ¼ 0:8;
s2
trait ¼ 1).
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We explored several methods for calculating and inter-
preting power and false-positive rate. We present our results
using the method that we found to be most interpretable,
which we summarize here (see Methods for full details on
the different methods). For a given D-value threshold, we
determine a detection region that consists of all variants
within a specified radius of any variant above the threshold
(10 kb for the results presented here; see Figure 2 for an
illustration). Power is calculated as the proportion of genetic
variance (in the founder population) explained by the QTL
located within the detection region. We define the true region

to consist of all variants within the specified radius of any
QTL (i.e., 10 kb here), and we define the neutral genome to
be the rest of the genome (outside the true region). The false-
positive rate is calculated as the proportion of the neutral
genome covered by the detection region. Thus, a false-positive
rate of 0.01 can be interpreted to mean that 1% of the ge-
nome would be incorrectly flagged for follow-up studies. In
D. melanogaster, this would correspond to a 1.4-Mb region.
We note also that the false-positive rate represents the com-
bined size of regions surrounding loci above the threshold;
the detection region surrounding a single locus will be one to

Figure 5 Effect of genetic architecture on fixation times.
Fixation times of a focal QTL for a trait under truncation
selection decrease with increasing effect size and herita-
bility. For a fixed effect size and heritability, the fixation
times increase with the number of QTL contributing to the
trait due to interference (N = 5000, 20% selected, 80
generations).

Figure 6 Increase in power due to divergent
selection. Comparison of two populations di-
vergently selected for extreme values of a trait
has greater power to detect QTL than compar-
ison between selected and control populations.
Three populations of 1000 individuals (high,
low, neutral) originating from a single founder
population were simulated for 20 generations,
with 20% selected each generation in the high
and low populations. Shown are the scenarios
with 5, 10, and 100 QTL, with h2 ¼ 0:5:
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two orders of magnitude smaller than this (i.e., �10–100 kb
in D. melanogaster), depending on the trait architecture.

Advantages of divergent artificial selection

In artificial selection studies of quantitative traits, one com-
monly used technique is divergent (also called bidirectional)
selection, where the first “high” population is obtained by
selecting from the upper tail of the trait value distribution
each generation, and the second “low” population is obtained
by selecting from the lower tail (for example, Johansson et al.
2010 and Turner and Miller 2012). Use of this technique
presumes that allele frequency differences between the
high and low lines will be more pronounced at QTL con-
tributing to the trait than, for example, differences between
the high line and a control population that has been evolving
neutrally.

To compare the power obtained by a divergent selection
experiment to the power obtained by selection in a single
direction, we simulated three populations originating from
a single founder population, where one population was
selected for high values, one selected for low values, and
one allowed to evolve neutrally. Each population had 1000
individuals, of which 20% were selected each generation in
the high and low populations, for 20 generations total.

We ran the simulations for each of our 12 canonical
architectures (see Methods), and we show the results in
Figure 6 for some of these (h2 ¼ 0:5; with 5, 10, and 100
QTL). Comparison between the high and low populations
leads to a substantial increase in power over the comparison
between the high and neutral populations. In particular, at
a 1% false-positive rate, roughly half of the genetic variance
of the trait is detected in the high vs. low comparison but not
in the high vs. neutral comparison.

Extent of increased power due to replication

Another technique available in artificial selection experiments
is the use of replicate high and low populations to increase
confidence that allele frequency differences between diverged
populations are due to selection rather than genetic drift. A
natural generalization of the allele frequency difference D for

replicate populations is D ¼ �
�PR

i¼1 pi;high 2 pi;low
�
�; where R is

the number of replicate population pairs.
We investigated the effects of evolving replicate popula-

tions by simulating five pairs of populations originating from
a single founder population (10 QTL, h2 ¼ 0:5; N = 1000,
20% selected, 20 generations). We then calculated the av-
erage power to detect QTL, using subsets of the data repre-
senting population replicates from one to five pairs.

We found that using two replicate populations substantially
increases power to detect QTL (Figure 7). For example, at the
low false-positive rate (neutral genome proportion) of 0.0005,
the proportion of genetic variance detected increases from 25%
to 50%. Adding further replicate populations continues to in-
crease power, but with diminishing returns.

Effect of population size

It is well known that selection on a single locus, defined by
a selection coefficient s, acts more efficiently in larger pop-
ulations, as can be seen in the dependence of fixation prob-
abilities and fixation times on the population-scaled selection
coefficient 4Ns (Ewens 2004).

To investigate how the population size affects artificial
selection experiments, we performed simulations of popula-
tions of different sizes (N ¼ 500;  1000;  2000;  5000) under
identical experimental conditions (20% selected, 20 genera-
tions), with each of our 12 canonical trait architectures.

In all cases we found a substantial increase in power to
detect and localize QTL as we increased the population size.
For example, in the case of 10 QTL and h2 ¼ 0:5; increasing
the population size from 500 to 1000 resulted in an additional
25% of the genetic variance detected at the 0:5% false-positive
rate (Figure 8). Moreover, while,50% of the genetic variance
was detected with N ¼ 500 at that false-positive rate, nearly
100% was detected with N ¼ 5000:

Effects of the length of experiment and
proportion selected

We next investigated the effects of the length of the ex-
periment and the strength of selection on the power to
detect QTL. To do this, we simulated four different selection

Figure 7 Increase in power due to rep-
licate populations. Adding replicate pairs
of divergently selected populations in-
creases power to detect QTL. Five pairs
of populations originating from a sin-
gle founder population were simulated
(h2 ¼ 0:5; N = 1000, 20% selected,
20 generations).
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scenarios, from weak selection (top/bottom 80% selected
each generation) to strong selection (20% selected). Each
simulation ran for 80 generations, and we examined snap-
shots of each population at generations 20, 40, 60, and 80.
In these simulations, the populations consisted of 1000
individuals, and the trait had 10 QTL, with a heritability
of 0.5.

One particularly interesting finding was that under
strong selection, power can actually decrease with the number
of generations, depending on the false-positive rate threshold
chosen (for example, 20% or 40% selected, at false-positive
rate 0.01 in Figure 9). In these scenarios, most of the QTL have
differentiated by generation 20 (.75% of the genetic variance
was detected at false-positive rate 1%). However, the lower

effective population size induced by strong selection results
in the fixation of many neutral variants, which are then falsely
detected as QTL.

Conversely, by lowering the selection pressure (80% se-
lected each generation) the maximum power is actually in-
creased. In addition, letting the experiment run for a greater
number of generations at this lower selection pressure
increases the maximum power attained.

These observations suggest that recombination plays a large
role in the power to detect and localize QTL: reducing the
selection pressure and increasing the number of generations
should allow more recombination, which reduces linkage
disequilibrium between QTL and neighboring neutral variants.
Increased recombination will also reduce interference between

Figure 8 Increase in power due to pop-
ulation size. Using larger population sizes
substantially increases power to detect QTL
(h2 ¼ 0:5; 20% selected, 20 generations).

Figure 9 Effects of length of experi-
ment and selection strength. Experi-
ments with weak selection (top/bottom
80% selected each generation) over
a longer number of generations have
higher power than those with strong
selection (20% selected) (N = 1000,
h2 ¼ 0:5).
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QTL, which should allow lower-effect QTL to be selected and
detected. This led us to investigate the effects of recombination
further in our subsequent analyses.

Effect of recombination

To investigate the effects of recombination on the power to
detect and localize QTL, we first considered the effect of
increasing the recombination rate of the simulated individ-
uals. We simulated populations of 1000 individuals, with
each of our 12 canonical trait architectures, with recombi-
nation rates at 13, 23, 33, and 43 our standard recombi-
nation rate (see Methods) (20 generations of neutral mixing,
20 generations of selection, 20% selected).

We found that increasing the recombination rate does
indeed increase the power to distinguish QTL from neutral
variants, for all trait architectures (Figure 10, A and D).
While in practice it is not feasible to experimentally increase
the recombination rate of individuals, the experiment can be
designed to increase the opportunity for individual chromo-
somes to recombine and thus decrease linkage between QTL
and neighboring neutral variants.

One way to decrease linkage disequilibrium in the pop-
ulation is to allow more generations of initial neutral mixing
in the founder population, before selection starts (e.g., Turner

and Miller 2012). We simulated scenarios with varying num-
bers of generations of neutral mixing (20, 40, 60, 80), with
the other parameters as above. We found that increasing the
number of generations of initial neutral mixing increases
power (Figure 10, B and E).

An alternative way to decrease linkage disequilibrium is to
intersperse extra generations of neutral mixing between rounds
of selection. To test this idea, we simulated scenarios where
selection was carried out every one, two, three, or four
generations, with random mating during the generations where
selection did not take place (other parameters as above). Again,
we found that the additional recombination events increased
power to detect QTL (Figure 10, C and F). We further illustrate
the effect of extra recombination on allele frequency differences
in Figure 2.

Taken together, these results show that the ability to
detect and localize QTL depends crucially on recombination,
both to decrease interference between QTL and to break up
linkage between QTL and nearby neutral variants.

Haplotype-based inference of allele frequencies
increases power

In all of our power analyses, we have assumed that we are
able to calculate the allele frequencies at all variant sites

Figure 10 Effect of recombination. The power to detect and localize QTL depends on the extent of recombination experienced by the populations. (A
and D) Power increases with the recombination rate of the organisms under selection. (B and E) Additional generations of initial mixing and (C and F)
additional generations between rounds of selection similarly increase power. [Top row (A–C), 10 QTL; bottom row (D–F), 100 QTL; h2 ¼ 0:5; N = 1000,
20% selected, 20 generations of selection, and 20 generations of mixing in A, C, D, and F.]
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perfectly. However, in actual experiments, the allele fre-
quency at a locus will be estimated by considering the
sequence read counts that cover the site. These estimates are
prone to errors from two sources: random base errors and
stochasticity in the number of reads covering the site. The
error in measurement of allele frequencies will lead to a loss
of power to detect and localize QTL.

In the case where founder sequences are known, previous
studies (Long et al. 2011; Kessner et al. 2013) have shown
that one can leverage haplotype information from the founders
to obtain local haplotype frequencies and that these estimates
are robust to both sequence read errors and uneven coverage.
This work suggested that improved allele frequency estimates
could be derived from local haplotype frequency estimates.

We investigated the effect of allele frequency estimation
error on power by first obtaining empirical error distribu-
tions for the two estimation methods (see Methods). We
then simulated artificial selection experiments with our
standard experimental parameters (N ¼ 1000; 20% se-
lected, 20 generations) and canonical trait architectures,
followed by the random introduction of errors based on
the empirical error distributions. In all cases, we found that
the haplotype-based allele frequency estimates led to im-
proved power over the read-count-based estimates. How-
ever, at very low false-positive rates (,   0:1% neutral
genome detected), the improvement is small, which sug-
gests that founder haplotype information may not be very
useful in these cases. Figure 11A shows the results from the
case with 10 QTL and h2 ¼ 0:5:

Our analyses from the previous section showed that
increasing the amount of recombination led to an increase

in power. On the other hand, increased recombination re-
sults in shorter haplotypes. This leads to greater errors in
local haplotype frequency estimates and the allele frequency
estimates derived from them, with a subsequent decrease in
power. To investigate the relative magnitude of these two
counteracting effects, we added two scenarios: one where we
interspersed rounds of neutral mating between generations of
selection (4 generations per selection event, 100 generations
total for the experiment) and one where we also added an
extra 50 generations of initial neutral mixing (150 generations
total). We introduced random errors as above, using empirical
error distributions that take into account the increased number
of generations.

We found that recombination’s positive effect of breaking
up linkage between QTL and neutral sites outweighed the
negative effect on haplotype frequency estimation (Figure
11B). However, for experiments lasting $200 generations,
our haplotype-derived allele frequency estimates were no
better than read-count-derived estimates (see Methods for
parameter assumptions). Thus, we do not expect haplo-
type-derived allele frequency estimates to lead to increased
power in scenarios where the typical length of haplotype
chunks is shorter than the window size used for the local
haplotype frequency estimation.

Discussion

We have presented a new analysis of the power of artificial
selection experiments to detect and localize loci contributing
to a quantitative trait. In this analysis, we explicitly model
whole genomes of individuals, quantitative traits, and selection

Figure 11 Using founder haplotype information estimation improves power. (A) If founder sequence information is available, estimating local haplotype
frequencies leads to better allele frequency estimates and an increase in power over that of estimates obtained from raw read counts. (B) Error in local
haplotype frequency estimates increases with the number of generations due to recombination; however, there is a still a net gain in power from extra
generations of neutral mixing. Default: 20 generations mixing, 20 generations selection. Interspersed: 20 generations mixing, 4 generations per
selection event, 20 selection events (100 generations total). Initial + interspersed: as interspersed, with 70 generations mixing (150 generations total).
(Ten QTL, h2 ¼ 0:5.)
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based on individual trait values, using a novel simulation
framework.

We showed that population genetic simulations based on
loci with constant selection coefficients do not fully capture
the dynamics of QTL contributing to a trait under artificial
selection and that the trait architecture plays a large role in
these dynamics. In addition, explicit modeling of selection
on a quantitative trait has several other advantages. For
example, simulated experiments can be parameterized and
results can be reported using the standard quantitative genetics
concepts of effect size, genetic variance, and heritability. Also,
scenarios such as divergent selection can be simulated in a
straightforward manner. Finally, the behavior of a QTL under
artificial selection is dependent both on the experimental
design (proportion of individuals selected each generation)
and on the trait architecture (effect size and linkage to
other QTL). While the selection coefficient conflates these
parameters into a single number, our simulation framework
allows these parameters to be separated and investigated
independently.

Our results show the important role that recombination
plays in the ability to identify QTL. Recombination not only
reduces interference between QTL, but also decreases linkage
disequilibrium between QTL and neighboring neutral loci. In
fact, one can view the artificial selection experiment as a
classification problem. From this viewpoint, the ROC curve,
which measures the ability to classify a locus as QTL vs. neu-
tral, contains information about how well the experiment can
break linkage disequilibrium between causal and neutral loci
(Figure 3).

The classification viewpoint is useful when thinking
about how to design a selection experiment. For example, we
found that experiments allowing more opportunity for re-
combination, either during initial neutral mixing of the founder
haplotypes or between selection events, have greater power to
detect and localize QTL. Similarly, experiments with weaker
selection (greater proportion selected each generation) over
a longer period of time will have greater power than shorter
experiments with strong selection. We note that the improved
mapping resolution afforded by additional recombination is
analogous to the use of recombinant inbred lines (see Crow
2007 for a history) or advanced intercross lines (Darvasi and
Soller 1995) in traditional QTL mapping studies.

While recombination increases the ideal power of an
artificial selection experiment, it also decreases the ability to
use founder haplotype information to obtain more accurate
allele frequency estimates. We showed that the haplotype-
based estimates still result in a net increase in power in
experimental scenarios where the scale of recombination is
larger than the window used for estimating local haplotype
frequencies. This suggests that when choosing the window
size for such an analysis, one should take into consideration
the expected scale of recombination based on the experi-
mental design.

Similar to the findings of Kofler and Schlotterer (2014) and
Baldwin-Brown et al. (2014), we found that increasing

population sizes and number of replicates leads to an increase
in power. Additionally, our simulation framework allowed us
to quantify the increase in power due to bidirectional selec-
tion. We also note that adding generations of initial neutral
mixing in the founder population is in some ways similar to
increasing the number of founder haplotypes, in that it places
QTL on multiple genetic backgrounds. Our results regarding
the increase in power due to additional initial mixing are thus
consistent with the findings of both of these groups that in-
creasing the number of founder haplotypes increases power
to detect and localize QTL.

Also in agreement with Baldwin-Brown et al. (2014), but in
contrast to Kofler and Schlotterer (2014), we found that the
effect of increasing the length of the experiment is not uni-
formly beneficial, but rather depends on the strength of selec-
tion. From the classification viewpoint again, power depends
on the ability of the experiment to allow QTL to differentiate
in selected populations while keeping allele frequencies at
neutral loci constant. Continuing the experiment beyond
the point where the majority of QTL have differentiated will
lead to increased fixation of linked neutral loci and hence
lower power.

In contrast to both Kofler and Schlotterer (2014) and
Baldwin-Brown et al. (2014), whose results suggest that
hundreds of generations are necessary to obtain reasonable
power, we found that artificial selection experiments can
detect QTL explaining most of the genetic variance of the
trait in as little as 20 generations, under reasonable assump-
tions about the trait architecture (100 loci, h2 ¼ 0:5; expo-
nentially distributed effect sizes). We caution that the high
power observed here may not apply to other experimental
designs, such as extremely weak selection on a quantitative
trait or artificial selection based on survival in altered envi-
ronmental conditions. On the other hand, it is not obvious
how to interpret selection coefficients in the context of an
artificial selection on a quantitative trait, where we feel it is
more natural to use parameters representing the trait archi-
tecture and experimental design.

Future directions for this work would include relaxing
the assumption that effect size and initial frequency are
unrelated in the founder population. This implicitly assumes
neutrality or near neutrality, whereas for traits under stabiliz-
ing selection one might expect large-effect mutations to be
found only at low frequencies. Initializing the joint distribution
of allele frequencies and effect sizes with a distribution that
captures this expected inverse relationship would be one
possible alternative approach.

A related future change is to relax the assumption of ex-
ponential distribution of effect sizes. As mentioned above, this
assumption is sensible for neutral traits. One impact of this
assumption is that the leading factor of a simulated trait often
accounts for a nontrivial fraction of the genetic variance of the
trait (e.g., often 20–25% in traits with 100 QTL; Supporting
Information, Figure S1) and that genome-wide association
studies (GWAS) have high power to detect this leading factor
as long as the heritability is modest (Figure S2). While such
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major-effect loci are found for some complex traits in Dro-
sophila [e.g., alcohol dehydrogenase (King et al. 2012) and
susceptibility to viral infection (Magwire et al. 2012)] (see
Figure S1), there are many other traits where such major-
effect loci are not present. For such traits, we might expect
the levels of interference during selection to be reduced
from the values seen in our simulations, as the expected
transit of the major-effect variant to high frequency will not
interfere with selection at other QTL.

Another avenue for future research is to investigate alter-
natives to increasing recombination during the experiment. In
particular, the use of a larger number of inbred founder lines
may decrease linkage disequilibrium in the initial experimental
populations, leading to higher power and better resolution
without adding additional rounds of recombination.

In summary, we have shown that it is feasible to do whole-
genome simulations of artificial selection with explicit quanti-
tative trait modeling. The scope of this study was limited to the
use of D. melanogaster as our model species and simple trait
architectures with no dominance or pleiotropic effects. However,
we believe that our simulation methodology can be applied to
a wide variety of species, trait architectures, and experimental
protocols. We emphasize that the opportunity for recombination
is a key factor in the power to detect and localize QTL and that
this should be taken into account by future designers of artificial
selection experiments.

Acknowledgments

The authors thank Alex Platt, Charleston Chiang, Eunjung
Han, and Diego Ortega Del Vecchyo for helpful comments and
discussion. This work was supported by the National Institutes
of Health (R01 HG007089 to J.N.), the National Science
Foundation (EF-0928690 to J.N.), and the University of
California, Los Angeles (dissertation year fellowship to D.K.).

Literature Cited

Baldwin-Brown, J. G., A. D. Long, and K. R. Thornton, 2014 The
power to detect quantitative trait loci using resequenced, exper-
imentally evolved populations of diploid, sexual organisms. Mol.
Biol. Evol. 31(4): 1040–1055.

Burke, M. K., J. P. Dunham, P. Shahrestani, K. R. Thornton, M. R.
Rose et al., 2010 Genome-wide analysis of a long-term evolu-
tion experiment with Drosophila. Nature 467(7315): 587–590.

Comeron, J. M., R. Ratnappan, and S. Bailin, 2012 The many
landscapes of recombination in Drosophila melanogaster. PLoS
Genet. 8(10): e1002905.

Crow, J. F., 2007 Haldane, Bailey, Taylor and recombinant-inbred
lines. Genetics 176: 729–732.

Darvasi, A., and M. Soller, 1995 Advanced intercross lines, an ex-
perimental population for fine genetic mapping. Genetics 141:
1199–1207.

Ehrenreich, I. M., N. Torabi, Y. Jia, J. Kent, S. Martis et al.,
2010 Dissection of genetically complex traits with extremely
large pools of yeast segregants. Nature 464(7291): 1039–1042.

Ewens, W. J., 2004 Mathematical Population Genetics 1: Theoretical
Introduction (Interdisciplinary Applied Mathematics, Vol. 1),
Ed. 2. Springer-Verlag, Berlin/Heidelberg, Germany/New York.

Falconer, D. S., 1992 Early selection experiments. Annu. Rev.
Genet. 26: 1–14.

Falconer, D. S., and T. F. Mackay, 1996 Introduction to Quantita-
tive Genetics, Ed. 4. Benjamin-Cummings, Menlo Park, CA.

Felsenstein, J., 1974 The evolutionary advantage of recombina-
tion. Genetics 78: 737–756.

Felsenstein, J., 1987 Sex and the evolution of recombination, pp.
74–86 in The Evolution of Sex: An Examination of Current Ideas,
edited by R. E. Michod, and B. R. Levin. Sinauer Associates,
Sunderland, MA.

Futschik, A., and C. Schlotterer, 2010 The next generation of mo-
lecular markers from massively parallel sequencing of pooled
DNA samples. Genetics 186: 207–218.

Garland, T., and M. R. Rose (Editors), 2009 Experimental Evolu-
tion: Concepts, Methods, and Applications of Selection Experi-
ments. University of California Press, Berkeley, California.

Gillespie, J. H., 1991 The Causes of Molecular Evolution (Oxford
Series in Ecology and Evolution). Oxford University Press,
London/New York/Oxford.

Grossman, S. R., I. Shlyakhter, I. Shylakhter, E. K. Karlsson, E. H.
Byrne et al., 2010 A composite of multiple signals distin-
guishes causal variants in regions of positive selection. Science
327(5967): 883–886.

Hill, W. G., and A. Robertson, 1966 The effect of linkage on limits
to artificial selection. Genet. Res. 8(3): 269–294.

Johansson, A. M., M. E. Pettersson, P. B. Siegel, and O. Carlborg,
2010 Genome-wide effects of long-term divergent selection.
PLoS Genet. 6(11): e1001188.

Keightley, P. D., and G. Bulfield, 1993 Detection of quantitative
trait loci from frequency changes of marker alleles under selec-
tion. Genet. Res. 62(3): 195–203.

Kessner, D., and J. Novembre, 2014 forqs: forward-in-time simu-
lation of recombination, quantitative traits and selection. Bio-
informatics 30(4): 576–577.

Kessner, D., T. L. Turner, and J. Novembre, 2013 Maximum likeli-
hood estimation of frequencies of known haplotypes from
pooled sequence data. Mol. Biol. Evol. 30(5): 1145–1158.

Kim, Y., and W. Stephan, 1999 Allele frequency changes in arti-
ficial selection experiments: statistical power and precision of
QTL mapping. Genet. Res. 73: 177–184.

King, E. G., C. M. Merkes, C. L. McNeil, S. R. Hoofer, S. Sen et al.,
2012 Genetic dissection of a model complex trait using the
Drosophila Synthetic Population Resource. Genome Res. 22
(8): 1558–1566.

Kofler, R., and C. Schlotterer, 2014 A guide for the design of
evolve and resequencing studies. Mol. Biol. Evol. 31(2): 474–
483.

Laurie, C. C., S. D. Chasalow, J. R. LeDeaux, R. McCarroll, D. Bush
et al., 2004 The genetic architecture of response to long-term
artificial selection for oil concentration in the maize kernel. Ge-
netics 168: 2141–2155.

Long, Q., D. C. Jeffares, Q. Zhang, K. Ye, V. Nizhynska et al.,
2011 Poolhap: inferring haplotype frequencies from pooled
samples by next generation sequencing. PLoS ONE 6(1):
e15292.

Mackay, T. F., 2010 Mutations and quantitative genetic variation:
lessons from Drosophila. Philos. Trans. R. Soc. Lond. B Biol. Sci.
365(1544): 1229–1239.

Mackay, T. F. C., S. Richards, E. A. Stone, A. Barbadilla, J. F. Ayroles
et al., 2012 The Drosophila melanogaster Genetic Reference
Panel. Nature 482(7384): 173–178.

Magwire, M. M., D. K. Fabian, H. Schweyen, C. Cao, B. Longdon
et al., 2012 Genome-wide association studies reveal a simple
genetic basis of resistance to naturally coevolving viruses in
Drosophila melanogaster. PLoS Genet. 8(11): e1003057.

Nuzhdin, S. V., L. G. Harshman, M. Zhou, and K. Harmon,
2007 Genome-enabled hitchhiking mapping identifies QTLs

1004 D. Kessner and J. Novembre

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.175075/-/DC1/genetics.115.175075-3.pdf


for stress resistance in natural Drosophila. Heredity 99(3): 313–
321.

Orozco-terWengel, P., M. Kapun, V. Nolte, R. Kofler, T. Flatt et al.,
2012 Adaptation of Drosophila to a novel laboratory environ-
ment reveals temporally heterogeneous trajectories of selected
alleles. Mol. Ecol. 21(20): 4931–4941.

Orr, H. A., 1998 The population genetics of adaptation: the dis-
tribution of factors fixed during adaptive evolution. Evolution
52(4): 935–949.

Otto, S. P., and C. D. Jones, 2000 Detecting the undetected: es-
timating the total number of loci underlying a quantitative trait.
Genetics 156: 2093–2107.

Parts, L., F. A. Cubillos, J. Warringer, K. Jain, F. Salinas et al.,
2011 Revealing the genetic structure of a trait by sequencing
a population under selection. Genome Res. 21(7): 1131–1138.

Remolina, S. C., P. L. Chang, J. Leips, S. V. Nuzhdin, and K. A.
Hughes, 2012 Genomic basis of aging and life-history evolu-
tion in Drosophila melanogaster. Evolution 66(11): 3390–3403.

Rice, S. H., 2004 Evolutionary Theory. Sinauer Associates,
Sunderland, MA.

Teotonio, H., and I. M. Chelo, M. Bradić, M. R. Rose, and A. D.
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Figure S1. Proportion of variance explained by leading factor. Above are histograms of
the proportion of variance explained by the QTL of largest effect, for random traits generated
based on the DGRP SNPs and exponentially distributed effect sizes. Shown are histograms for
random traits with A) 5 QTLs, B) 10 QTLs, and C) 100 QTLs (500 random trait simulations
each). For comparison, we have included colored segments to indicate the proportion of variance
explained by the leading factor of several quantitative traits as reported by selected empirical
studies. [Adh activity, 2 experimental lines (.49, .28, red) (King et al., 2012); susceptibility to
viral infection, Drosophila C virus (.47, cyan), Sigma virus (.29, pink) (Magwire et al., 2012);
larval nicotine resistance (.50, yellow) (Marriage et al., 2014); bristle number (.1, orange) (Mackay
and Lyman, 2005)]. Note that the calculation of variance proportion assumes that QTLs
segregate independently in the population (no linkage disequilibrium), which is generally not true
for natural populations nor for the simulated populations.
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Figure S2. The -log10(p-values) for leading factors in simulated GWASs using the
DGRP lines. Above are histograms of the -log10(p-value) for the QTL of largest effect, for
random traits generated based on the DGRP SNPs, 100 randomly chosen QTL loci with
exponentially distributed effect sizes, and the specified heritability value. We assume a GWAS is
conducted using the DGRP founder lines with 20 replicate flies per line and using a standard
ANOVA for computing p-values. Shown are histograms for random traits with A) h2 = 0.2, B)
h2 = 0.5, and C) h2 = 0.8 (100 random trait simulations each). (For smaller numbers of QTLs
[not shown], the leading factor -log10(p-value)’s are larger than those shown here). The results
show that under the assumed genetic architecture used in this study the leading factor should be
readily detectable by a GWAS unless heritability is low. In practical cases, where a leading effect
is not detected in a GWAS for a trait with modest or high heritability, it may be because the
leading effect is smaller and/or at lower frequency than the simulated values used here. Together
with Supplementary Figure S1 these results highlight that for some traits the results of this
simulation study may not be applicable.
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