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Oxidative stress, prefrontal cortex hypomyelination and
cognitive symptoms in schizophrenia
DA Maas1,2, A Vallès1,3 and GJM Martens1

Schizophrenia (SZ) is a neurodevelopmental disorder with a broad symptomatology, including cognitive symptoms that are
thought to arise from the prefrontal cortex (PFC). The neurobiological aetiology of these symptoms remains elusive, yet both
impaired redox control and PFC dysconnectivity have been recently implicated. PFC dysconnectivity has been linked to white
matter, oligodendrocyte (OL) and myelin abnormalities in SZ patients. Myelin is produced by mature OLs, and OL precursor cells
(OPCs) are exceptionally susceptible to oxidative stress. Here we propose a hypothesis for the aetiology of cognitive
symptomatology in SZ: the redox-induced prefrontal OPC-dysfunctioning hypothesis. We pose that the combination of genetic and
environmental factors causes oxidative stress marked by a build-up of reactive oxygen species that, during late adolescence, impair
OPC signal transduction processes that are necessary for OPC proliferation and differentiation, and involve AMP-activated protein
kinase, Akt-mTOR-P70S6K and peroxisome proliferator receptor alpha signalling. OPC dysfunctioning coincides with the relatively
late onset of PFC myelination, causing hypomyelination and disruption of connectivity in this brain area. The resulting cognitive
deficits arise in parallel with SZ onset. Hence, our hypothesis provides a novel neurobiological framework for the aetiology of SZ
cognitive symptoms. Future research addressing our hypothesis could have important implications for the development of new
(combined) antioxidant- and promyelination-based strategies to treat the cognitive symptoms in SZ.
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INTRODUCTION
Schizophrenia (SZ) is a neurodevelopmental disorder with positive,
negative and cognitive symptoms. Current treatments only target
positive symptoms, therefore identifying new treatment strategies
that aim at negative and cognitive symptoms is of crucial
importance. To achieve this, the elucidation of the neurobiological
correlates underlying these symptoms is a necessary first step.
Cognitive symptoms of SZ, the focus of this review, include poor
executive functioning and are thought to arise from the prefrontal
cortex (PFC).1,2 Both redox imbalance and PFC dysconnectivity
have been implicated in the aetiology of these symptoms.

SZ IS ASSOCIATED WITH REDOX IMBALANCE
Redox imbalance is a state of high oxidative stress caused by an
imbalance between the production of reactive oxygen species
(ROS) and antioxidants that reduce ROS. A continuous balance
between ROS production and reduction is crucial to maintain ROS-
dependent cellular processes as well as to prevent ROS-induced
cell damage.

Environmental insults that are associated with SZ cause oxidative
stress
One of the most important risk factors for the development of
SZ is the activation of the maternal immune system.3,4 The
mechanism by which maternal immune activation affects brain

development likely involves oxidative stress.5 For example,
lipopolysaccharide (LPS) exposure during pregnancy induces the
release of pro-inflammatory cytokines that induce ROS generation
and peroxisomal dysfunction, whereas antioxidants such as
N-acetyl cysteine can reverse the negative effects of LPS exposure
on brain development.6 Other environmental factors associated
with redox imbalance and SZ are prenatal malnutrition and
maternal stress during pregnancy.7–12 For example, low protein
intake during pregnancy has been shown to induce mitochondrial
dysfunction and a decrease in endogenous antioxidants, resulting
in higher ROS production.13 In addition, obstetric events, such as
hypoxia, and environmental insults later in life, such as social
stress, are associated with oxidative stress and represent risk
factors for SZ.14–20

Redox imbalance in SZ patients
Genetic studies have shown associations between oxidative stress
gene polymorphisms and SZ,21,22 including genetic variations in
glutathione cysteine ligase (GCL) and several glutathione-S-
transferases,23–25 both involved in the synthesis of the endogen-
ous antioxidant glutathione. Fibroblasts of patients carrying
genetic variations in GCL display lower glutathione and GCL
protein expression, and thus redox imbalance.25 Unlike genetic
association studies, the available genome-wide association studies
(GWASs) have not provided convincing evidence for oxidative
stress-related genetic predisposition in SZ, and therefore addi-
tional GWASs with larger sample sizes may be necessary.
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In addition, both downregulation of components of the
antioxidant synthesis pathway and increases in ROS levels have
been observed in SZ patients. For instance, total antioxidant and
glutathione plasma levels are lower in non-medicated, medicated,
first-episode as well as chronic SZ patients,26–29 in line with the
reduced glutathione levels found in the PFC and cerebral spinal
fluid of SZ patients30,31 and in post mortem SZ brains,32 in which
abnormal redox-related protein expression has also been found.33

Furthermore, peripheral levels of ROS are increased, and those of
glutathione peroxidase and superoxide dismutase are decreased
in SZ patients,34–39 independent of drug use or disease stage.
Hence, both lower levels of antioxidants and higher levels of ROS
are core features of the disorder and are not influenced by disease
progression or medication use, indicating that redox imbalance
is a primary characteristic of the disorder. Interestingly, in SZ
patients, deficits in executive functioning are correlated with
higher ROS levels and lower antioxidant-related protein levels,38

directly linking redox imbalance to cognitive dysfunction.35

Redox imbalance in SZ rodent models
The N-methyl-D-aspartate-antagonist MK-801-induced rat model
for SZ shows increased oxidative stress specifically in the PFC,40

although higher levels of brain mitochondrial ROS have been
found in a ketamine-induced rat model.41 Inversely, glutathione
depletion in rats leads to SZ-like phenotypes.42–44 In addition,
knockout mice that lack a crucial subunit of the GCL enzyme show
significant reduction of glutathione levels in the anterior cortex,45

especially during the prepuberal period, which is followed by
SZ-like behaviour in the time frame of disease onset46 and SZ-like
neural changes in the hippocampus (HIP) of the adult knockout
mice, including an increase in oxidative stress and a decrease
in the number of parvalbumin (PV) interneurons.47 Therefore,
redox imbalance may represent the main trigger for brain
alterations before disease onset, which negatively influence
cognition later on.

PREFRONTAL DYSCONNECTIVITY IS ASSOCIATED WITH
COGNITIVE SYMPTOMS OF SZ
Diffusion magnetic resonance imaging reveals alterations in white
matter (WM) integrity, that is, lower fractional anisotropy (FA; for a
review, see Wheeler and Voineskos48), in both medicated and non-
medicated SZ subjects.49,50 Importantly, even before SZ disease
onset, a reduced WM integrity occurs in frontal areas and
advances in further stages of the disorder to more caudal and
posterior regions.50–55

WM abnormalities in SZ are associated with cognitive
symptomatology
Correlations between cognition and frontal WM integrity have
been reported in healthy individuals.56,57 In chronic SZ, abnorm-
alities in cognitive processing speed are associated with WM
disruptions in, among others, frontal areas,58–60 and in first-
episode SZ patients a lower frontal WM integrity is correlated with
more severe cognitive symptoms.61,62 Interestingly, deficit SZ (that
is, SZ with strong cognitive impairment63,64) is associated with
severe WM abnormalities.65–68 Furthermore, cognitive symptoma-
tology of SZ patients worsens as the disease progresses, in line
with the ongoing WM alterations.69,70

Origin of lower FA in SZ PFC
A low FA value in diffusion magnetic resonance imaging is
indicative of alterations in WM that can be attributed to several
cellular factors, including reduced myelination and aberrant
axonal properties.71 Diffusion tensor as well as kurtosis imaging
reveal a lower FA and increased radial diffusivity in combination

with no changes in axial diffusivity in the frontal lobe of SZ
patients.72 This indicates that myelin rather than axonal abnorm-
alities form the neurobiological basis of the diffusion magnetic
resonance imaging aberrations in SZ. Other diffusion studies show
similar results.73,74 Direct evidence for axonal degeneration in SZ is
indeed lacking. Furthermore, magnetisation transfer ratio, a more
specific imaging measure for myelin, shows lower myelin levels in,
among others, the PFC of SZ patients compared with controls.75,76

These low myelin levels predict impaired processing speed in SZ
and link decreased myelination to cognitive symptoms of the
disorder.77,78

SZ IS ASSOCIATED WITH OLIGODENDROCYTE ABNORMALITIES
AND DECREASED MYELINATION
Myelin is produced by oligodendrocytes (OLs) that are derived
from OL precursor cells (OPCs) in the developing as well as the
adult brain.79–81 Plasticity in the formation and retraction of
myelin sheaths by OLs also occurs from early childhood to
adulthood.80,81 Neuronal activity can instruct OPCs to divide and
mature, and can stimulate myelin sheath production by OLs,82

leading to increased myelination and improved behavioural
performance.83 Conversely, reduced neuronal stimulation by social
isolation impairs myelination, which correlates with behavioural
and cognitive dysfunction.84,85 Accordingly, altered myelination
dynamics may have a major role in cognition as well as in
psychiatric disorders like SZ.

Evidence from human post mortem studies
In the PFC of SZ patients, lower OL size and regional-specific
differences in OL density alongside higher levels of OL apoptosis
and necrosis have been observed, accompanied by lower levels of
myelin.86–90 Furthermore, expression of the myelin-associated
proteins 2′,3′-Cyclic-nucleotide 3′-phosphodiesterase and myelin-
associated glycoprotein is significantly lower in SZ anterior frontal
cortex,90 and differential mRNA expression of these two and other
myelin-related genes has been observed in SZ dorsolateral PFC.91

Overall, there is abundant evidence for an OL as well as a myelin
deficit in the PFC of SZ post mortem brain.

Evidence from rodent models
Evidence for a myelin deficit in SZ is also provided by studies on
rodent models that range from pharmacological and transgenic to
neurodevelopmental models. For example, administration of the
MK-801 in adulthood is used as a model for SZ (for a review see
Neill et al.92) and alters brain expression of, among others, platelet-
derived growth factor (PDGF), proteolipid protein, myelin
basic protein and 2′,3′-Cyclic-nucleotide 3′-phosphodiesterase,93

and decreases WM volume, together with myelin sheath
degeneration.94 Furthermore, mice transgenic for SZ-associated
locus G72/G30 show SZ-like behavioural traits and myelin-related
protein expression changes.95 In addition, severe hypomyelination
has been observed in mice mutant for the myelination-associated
gene quaking (a gene downregulated in SZ) alongside structural
abnormalities of myelin sheath thickness and composition.96,97

Moreover, rodent models for demyelination display SZ-like
behavioural abnormalities, for example, cuprizone demyelination
leads to reduced expression of several OL-related transcripts and
diminished ability to perform a SZ-relevant cognitive flexibility
task.98

Genetic evidence
OL-related gene variants correlate with reduced WM integrity and
cognitive performance.99,100 Nevertheless, candidate gene asso-
ciation studies and a large meta-analysis of genetic risk for SZ
have shown that myelin- and OL-related genes are not
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significantly associated with the disorder.101–105 Therefore, in most
cases the myelin pathology observed in SZ likely reflects a
secondary phenotype with an indirect, non-genetic cause.

REDOX IMBALANCE CAN CAUSE AN OPC MATURATION
DEFICIT
OPCs and OLs contain exceptionally high amounts of ROS (six
times as much), three times lower glutathione concentration and
20-fold higher free-iron levels than astrocytes,106,107 probably
because their myelin synthesis entails a high metabolic rate.108

This means that OPCs and OLs are constantly under a high degree
of oxidative stress to which the cells are already more susceptible.
In fact, redox changes of only 15–20% can already influence signal
transduction pathways such as PDGFα stimulation of OPC
proliferation and maturation.109 The susceptibility of OPCs and
OLs to oxidative stress has serious implications for the process of
myelination. For instance, oxidative stress leads to downregulation
of myelin-related gene expression in human OLs in vitro,110 and
reduced myelin basic protein expression and OL number in the rat
brain.111–113 Hence, the myelination abnormalities observed in SZ
may well be due to oxidative stress-related OPC dysfunctioning.

HYPOTHESIS OF REDOX-INDUCED PREFRONTAL OPC
DYSFUNCTIONING
On the basis of the above, we here propose the redox-induced
prefrontal OPC-dysfunctioning hypothesis of cognitive sympto-
matology in SZ. This hypothesis states that in SZ the combination
of environmental factors and genetic predisposition causes
oxidative stress, marked by a build-up of ROS in OPCs (Figure 1).
During late adolescence, the high ROS levels impair OPC signal
transduction processes that are necessary for their proliferation

and differentiation. OPC dysfunctioning coincides with the
relatively late onset of PFC myelination, and causes hypomyelina-
tion and disruption of connectivity in this brain area. The resulting
cognitive symptoms coincide with SZ onset.
In the next sections, evidence for this hypothesis will be

presented. First, the relationship between redox imbalance,
hypomyelination and cognitive functioning in the PFC will be
highlighted. Second, the molecular mechanisms underlying the
impairment of OPC functioning by ROS will be discussed. Third, we
will consider the critical developmental time period of PFC
myelination and, in particular, of PFC hypomyelination in SZ.

ROS CAN CAUSE OPC DYSFUNCTIONING
Baseline levels of oxidative stress in OPCs are high. In SZ, oxidative
stress levels in OPCs are even higher because of extra ROS
production by environmental factors as well as intracellular
abnormalities that lead to extra ROS production and less ROS
clearance (see above). The cause of OPC dysfunction in SZ may be
explained by two different, but related, cellular pathways
described below. In both pathways, ROS inactivates protein
synthesis that is necessary for OPC proliferation and differentiation
via the mammalian target of rapamycin (mTOR)-P70S6K pathway.
The inactivation of the latter pathway leads to OPC proliferation
arrest, apoptosis and hypomyelination.114

Figure 2 presents a molecular map that is based on the literature
described below and depicts the interactions among various
molecules inactivating the mTOR-P70S6K pathway in SZ OPCs.

Inactivation of the mTOR-P70S6 pathway in SZ OPCs
The relatively active metabolism in OPC mitochondria leads to the
production of ROS as a by-product of the respiratory chain
(Figure 2). The elevated ROS levels cannot be effectively reduced
by glutathione because in OPCs glutathione levels are low. Excess
ROS leads to an overstimulation of AMP-activated protein kinase
(AMPK), which activates the tuberous sclerosis 1/2 complex. This
complex prevents the activation of the mTOR-P70S6K pathway
through inhibition of ras homologue enriched in brain (RHEB).115

Moreover, RHEB mediation of mTOR activity is necessary for OPC
differentiation into myelinating OLs.116 In addition, AMPK
stimulation causes enhanced biosynthesis of mitochondria via
peroxisome proliferator-activated receptor gamma coactivator-1
alpha as well as the upregulation of glutathione and other
antioxidants. However, these antioxidant levels are not sufficient
to rescue the redox imbalance in SZ OPCs.117 Proliferator-activated
receptor gamma coactivator-1 alpha transactivation of peroxi-
some proliferator receptor alpha inhibits transcriptional nuclear
factor kappa-light-chain-enhancer of activated B cells,118 prevent-
ing efficient transcriptional activation of its target genes, thus
contributing to OPC dysfunctioning.118–120 In addition, environ-
mental factors implicated in SZ (for example, prenatal stress and
malnutrition) may cause the production of cytokines such as
tumour necrosis factor alpha.121,122 This cytokine can activate
AMPK, but also directly leads to both the mitochondrial uptake of
calcium that might trigger apoptosis and to the additional
activation of complex I of the respiratory chain, followed by an
increase in ROS production.115

The other cellular pathway that can give rise to reduced activity
of the mTOR-P70S6K pathway includes signalling via PDGFRα. As
stated above, activation of this receptor is necessary for
proliferation and maturation of OPCs. The increased levels of
ROS in SZ OPCs cause stimulation of Fyn kinase, which in turn
activates C-Casitas B-lineage Lymphoma.109,123 This overactivation
of C-Casitas B-lineage Lymphoma has been shown to decrease
PDGFRα receptor numbers on the OPC cell membrane, reduce
mTOR-P70S6K pathway activation and lower protein synthesis
rate for proliferation and differentiation, disrupting OPC cell

Figure 1. Flowchart of the redox-induced prefrontal OPC-
dysfunctioning hypothesis. Environmental and genetic factors lead
to a faulty antioxidant system, as well as redox imbalance resulting
in OPC/OL proliferation and maturation arrest during adolescence,
causing hypomyelination of the PFC, insufficient PFC functioning
and subsequently the cognitive symptoms observed in SZ. OL,
oligodendrocyte; OPC, OL precursor cell; PFC, prefrontal cortex; SZ,
schizophrenia.
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function.109,124,125 Interestingly, glutathione depletion, both in vivo
and in vitro, inhibits Fyn-dependent maturation of OPCs,
accompanied by reduced myelination.126

Proof of concept for the hypothesis that hypoactivation of the
mTOR-P70S6K pathway leads to inhibition of OPC proliferation
and maturation, and subsequently hypomyelination is provided
by the fact that conditional mTOR knockout in mouse OPCs leads
to various myelination defects.127 Furthermore, a number of
studies have demonstrated that ERK1/2 signalling (which inhibits
the tuberous sclerosis 1/2 complex and, therefore, increases
mTOR-P70S6K signalling) can enhance myelination. For example,
ERK1/2 signalling is implicated in the mechanism of action of
diosgenin, a drug that enhances OPC differentiation and
myelination,128 and of miconazole, which promotes remyelination
in vitro and in animal models of multiple sclerosis (MS).129

In sum, a correct regulation of the AMPK, mTOR-P70S6K and
ERK1/2 pathways is essential for OPC functioning and myelination. In
SZ, these pathways are affected by increased oxidative stress,
leading to OPC dysfunctioning and subsequently hypomyelination.

REDOX IMBALANCE, ABERRANT MYELINATION AND
COGNITIVE FUNCTIONING ARE DIRECTLY RELATED
Evidence from SZ patients and rodent models
Low glutathione levels are correlated with reduced WM integrity
in the medial PFC of SZ patients and in PFC myelin of GCL

knockout mice and mature OL numbers are decreased.126

Environmental risk factors for SZ that are related to oxidative
stress are also linked to myelination abnormalities. For example,
prenatal stress leads to myelination and WM abnormalities,130,131

and prenatal infection causes effects on myelination and
WM.132,133 The effects of prenatal infection on oxidative stress in
adulthood are largely unknown, whereas in young animals the
glutathione metabolism is affected.134,135 Although a link between
prenatal infection and both myelination deficits and redox
imbalance has thus been observed, it is not clear whether the
infection-induced effects on myelination are directly mediated by
the redox imbalance. An interesting recent investigation studying
the relationship between redox imbalance, reduced myelination
and cognition has shown that in vitro hypoxia leads to oxidative
stress that causes OPC maturation defects, which can be rescued
by free-radical scavengers.136 Likewise, under in vivo hypoxic
circumstances ROS levels are higher, OPC maturation does not
take place, myelination is decreased, mice show cognitive
impairments and when free-radical scavengers are provided the
cellular as well as behavioural abnormalities are rescued.136 Hence,
redox imbalance causes hypomyelination and cognitive decline.

Redox-related demyelination leads to cognitive defects in MS
The connection between oxidative stress and myelination defects,
as observed in SZ, has also been found in MS, a disease associated

Figure 2. Molecular map of pathways that lead ROS to cause OPC dysfunctioning in SZ. A molecular map is essential to elucidate the
neurobiological mechanisms underlying the impairment of OPC functioning by ROS in the SZ PFC. The map shows that two cellular pathways
result in a reduced activation of the mTOR-P70S6K pathway under conditions of increased ROS production and decreased antioxidant levels.
The first pathway involves ROS-induced downregulation of PDGFRα, leading to sub-activation of the mTOR-P70S6K pathway. The second
AMPK-related pathway leads to inhibition of the mTOR-P70S6K signalling cascade, as well as to downregulation of the transcription of
proliferation- and differentiation-related genes. Inactivation of mTOR-P70S6K causes decreased protein synthesis for proliferation and
differentiation, and consequently leads to OPC dysfunction. See section 'ROS can cause OPC dysfunctioning - Inactivation of the mTOR-P7056
pathway in SZ OPCs' for a description, Supplementary Table 1 for the pertinent references and the list of abbreviations for full names of all
components of the molecular map. AMPK, AMP-activated protein kinase; mTOR, mammalian target of rapamycin; OPC, oligodendrocyte
precursor cell; PDGF, platelet-derived growth factor; PFC, prefrontal cortex; ROS, reactive oxygen species; SZ, schizophrenia.
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with major demyelination. For example, in active demyelinating
lesions of post mortem MS brains high levels of oxidised lipids and
DNA are present, and apoptotic OLs contain oxidised DNA.137,138 It
is thought that in MS the elevated oxidative stress is caused by
inflammation and leads to the progressive demyelination that
characterises this neurodegenerative disease.139 The fact that MS
patients show cognitive symptoms similar to those observed in SZ
(for reviews, see Korakas et al.140 and Cardoso et al.141) together
with the observation that MS is associated with oxidative stress,
decreased myelination and cognitive decline strengthens our
hypothesis that an interaction between these factors exists in SZ.

IS HYPOMYELINATION DURING SZ DISEASE ONSET PFC-
SPECIFIC?
Frontal WM development coincides with the prodromal SZ phase/
onset of psychosis
WM maturation commences in central and extends to more lateral
brain regions over time,142,143 and WM volume peaks during early
adolescence.144 From this period onwards, the PFC white/grey
matter ratio rises with increasing age.145 In frontal areas, WM and
connectivity maturation occurs during late adolescence. In
addition, the superior longitudinal fasciculus shows increasing
connectivity during adolescence146 and corticosubcortical WM
tracts reach peaks of maturation between the ages of 23 and
39.147 These findings indicate that WM maturation in frontal areas
is ongoing during SZ disease onset.
High-risk individuals have a lower FA than controls,51 and

prodromal patients (at-risk individuals who proceed to psychosis)
show a progressive reduction in WM integrity in frontal regions
over time,51 in contrast to the increase in integrity leading to the
WM maturation peak observed in controls.148–150 WM tracts of
other association areas (for example, the uncinate and arcuate
fasciculi, the anterior and dorsal cingulate and parts of the corpus
callosum) are not different in high-risk versus prodromal
individuals.151 Moreover, in prodromal SZ patients WM integrity
reductions are observed only in frontal areas, whereas in first-
episode patients decreases in WM are found in frontal as well as
more caudal regions, including the inferior longitudinal fasciculus
and the internal capsule.51–53 In chronic SZ, lower FA is found in
frontal, caudal and more posterior regions, including the corpus
callosum, minor and major forceps, inferior fronto-occipital
fasciculus and the splenium.50,54,55 Thus, even before SZ disease
onset a reduced WM integrity occurs in frontal areas that
advances in further stages of the disorder, proceeding from
frontal towards more caudal and posterior brain regions.
Myelination of most brain regions is completed within the first

year of life, whereas the myelination of association areas is
ongoing until the thirties, after which myelin levels stabilise and
finally decline from the late fifties onwards.152,153 The extent of
cortical myelination is positively correlated with cognitive
performance throughout life.153 PFC myelination, which occurs
during late adolescence, displays a time frame similar to that of
PFC WM development.154 In addition, human PFC myelin-related
mRNA expression peaks during late adolescence.155 Thus, the
prodromal phase/onset of SZ coincides with the time frame of PFC
myelination, and during this stage frontal WM is affected.149

Furthermore, adult SZ dorsolateral and medial PFC mRNA
expression patterns of OL-related genes are similar to those in
the juvenile healthy developing brain.156 Therefore, it seems that
myelin does not reach the mature state in the SZ PFC during
adolescence, as it does in healthy brain development.

Cognitive symptomatology in SZ is associated with age-related
decline in WM integrity
It is important to note that cognitive symptoms of SZ are observed
already during the prodromal phase and worsen when psychosis

starts. As such, these symptoms follow a developmental pattern
that is similar to the decline in WM integrity in SZ. WM maturation
and the cognitive functioning of inhibitory control are indeed
correlated.157 In addition, the poor working memory of SZ patients
correlates with a low WM integrity in the superior longitudinal
fasciculus, a frontal structure that matures during adolescence.157

The role of OPCs in the PFC and other brain areas during
adolescence
In the adult brain, OPCs are necessary for myelin repair following
damage.158 However, as OPCs make up to 4% of the adult brain159

and appear to be evenly distributed throughout the brain, it
seems unlikely that they would be involved in only myelin repair.
It has been hypothesised that following the major myelination
event during the first year of life a subset of OPCs change into a
subtype with a morphology and function different from those of
precursor cells of OLs.160,161 This second type of OPC may have a
role in the monitoring of neuronal activity and the immune
response.160,162 Recently, a brain region-dependent variation in
the distribution of various subtypes of OPCs has been shown,
which differs between young and adult animals.163 For example,
adult monkey motor cortex OPCs mainly give rise to perivascular
cells, not OLs.164 Likewise, during adolescence, readily myelinated
brain areas may well have a set of OPCs that is functionally
different from the set of OPCs in brain areas in which myelination
is ongoing, such as the PFC that is likely to have OPCs
programmed to become OLs.

Oxidative stress may cause apoptosis of pre-OLs in the SZ PFC
The cells that are in transition from OPC to OL are called pre-OLs.
The detrimental effects of ROS are the largest in this subtype of
OLs.165,166 The excessive build-up of ROS in pre-OLs during SZ
adolescence may lead to apoptosis or a cell cycle arrest followed
by an inability to sufficiently produce myelin. In the SZ PFC, a
lower number of cells expressing OLIG2 (a marker for all cells of
the OL lineage) is observed, with no changes in the number of
OPCs, suggesting that indeed PFC OPC maturation impairment in
SZ is a likely cause of the lack of myelination in this brain area.167

In addition to the PFC, demyelination and a decreased WM
integrity have also been observed in the HIP of SZ brains.168–171

However, HIP WM defects become apparent during first-episode
SZ and are fully evident only during the chronic state of SZ,171–173

and as such their development follows a different time course
than the PFC WM defects that occur already in the prodromal
phase. Nevertheless, the neurobiological mechanisms causing OL
and myelin defects may be similar in the PFC, HIP and other brain
areas of SZ patients. Differentiating OPCs are most vulnerable to
oxidative stress; therefore, PFC myelination that is dependent on
these cells is harmed during early stages of SZ (as discussed
above). Oxidative stress levels increase over time and may reach a
level at which mature myelinating OLs are also damaged, and thus
regions like the HIP and other brain areas, that depend on mature
OLs to maintain proper myelination, will be affected during later
stages of SZ. Furthermore, oxidative stress may cause perturbation
of de novo myelination in the HIP and other brain areas, a
possibility that requires further investigation.

NEUROBIOLOGICAL LINK BETWEEN HYPOMYELINATION AND
INTERNEURON ABNORMALITIES
A significant body of evidence suggests that interneuron
abnormalities in both the PFC and HIP have an important role in
SZ pathology.174–179 Interneurons in the PFC mature during
adolescence.179 Apart from OLs and OPCs, interneurons are also
relatively vulnerable to the effects of oxidative stress because of
their high mitochondrial demand.180 Interestingly, oxidative
stress-based animal models for SZ display both myelin
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abnormalities and interneuron defects.181 Oxidative stress in PV
interneurons has been proposed as a cause of SZ182 and PV
interneuron densities are reduced in, among other brain regions,
SZ PFC183 and HIP.184 Impaired myelination of the PV interneurons
may render them more susceptible to degeneration in late
adolescence, contributing to the reduced PV interneuron densi-
ties. Thus, the combination of aberrant myelination and reduction
in the number of PV interneurons in the PFC and HIP, both caused
by oxidative stress, may well lead to an inefficient neuronal
network and eventually to SZ-like symptoms (for review, see
Steullet et al.185).
PV interneurons are responsible for the cortical high-frequency

gamma-band oscillations that are involved in cognitive function-
ing and disrupted in SZ.186,187 The degree of myelination is
dependent on neuronal activity,83 and PV cells are the most active
of all interneurons and the only interneuron subtype to be
myelinated.188 Interestingly, a recent review states that the
inefficient myelination of specifically PV interneurons, according
to our hypothesis caused by high oxidative stress levels, would
generate altered gamma-band oscillations and cognitive deficits
in SZ.188

THERAPEUTIC IMPLICATIONS
The redox-induced prefrontal OPC-dysfunctioning hypothesis of
the cognitive symptoms in SZ may have important implications
for novel treatment strategies.

Pharmacological manipulations
On the basis of the molecular map of the relationship between
oxidative stress and OPC functioning (Figure 2), new preventive
strategies for individuals at high risk for SZ could include
antioxidant treatment. In this regard, antioxidant treatment is
effective in rodent models,189 and decreases symptom severity in
SZ patients.180,190 Therefore, the use of antioxidants, or com-
pounds that generate an increased production of endogenous
antioxidants, may be attractive for SZ therapy.
New potential therapeutic targets include components of the

mTOR-P70S6K or ERK1/2 pathway (to be activated) and/or AMPK
signalling (to be downregulated) in OPCs, and upregulation of the
number of PDGFRα receptors in the cell membrane of OPCs. In this
respect, increasing mTOR signalling by inducing the upregulation
of brain-derived neurotrophic factor (for example, through 1-
amino-1,3-dicarboxycyclopentane) may be considered, and the
drugs diosgenin and miconazole could be used to boost ERK1/2
signalling.128,129,191 Moreover, drugs that are known to increase
myelination by mature OLs and that are tested in the MS field (for
example, benztropine192) may prove useful for the treatment of
cognitive symptoms in SZ as well.

Cognitive behavioural therapy
Cognitive behavioural therapy specific for cognitive deficits
in SZ reduces symptom severity and improves cognitive
performance.193–196 As learning and neuronal activation upregu-
late myelin levels in cortical regions, and WM integrity in SZ is
directly linked to cognitive functioning, beneficial cognitive and
other neuronal activity-dependent therapies may be, at least in
part, mediated by an experience-dependent increase of PFC
myelination.83,197–201

CONCLUSIONS
Here we propose the redox-induced prefrontal OPC-
dysfunctioning hypothesis for the aetiology of cognitive symp-
toms in SZ (Figure 1). This hypothesis states that in SZ a
combination of increased ROS levels caused by genetic and/or
environmental factors and a decreased ROS clearance caused by a

faulty antioxidant system leads to a build-up of ROS in OPCs. ROS
may result in the dysfunctioning of OPCs through a number of
cellular pathways, including the ERK1/2 and AMPK signalling
cascades that cause an inactivation of the mTOR-P70S6K pathway,
and hence negatively influence proliferation and differentiation of
this cell type (Figure 2). OPC dysfunctioning occurs in late
adolescence, during the critical period of PFC myelination.
Therefore, in SZ patients the PFC is hypomyelinated, leading to
dysconnectivity and the cognitive symptoms of SZ.
A next step would be the testing of the hypothesis proposed

here, in both animal models and SZ patients. For instance, animal
models for SZ that show both high oxidative stress levels and PFC
hypomyelination (such as the APO-SUS rats, and the rodent
prenatal infection and hypoxia models) may be treated with
antioxidants from a young age onwards to assess whether
lowering oxidative stress can (partially) rescue myelination deficits
in the PFC, together with PFC-dependent cognitive functioning,
and evaluate the width of the therapeutic window. Furthermore,
magnetisation transfer ratio and diffusion magnetic resonance
imaging may be used to study PFC myelination over time of
individuals at high risk to develop SZ, together with PFC-relevant
cognitive assessment. Such studies would establish a relationship
between SZ risk, SZ development, PFC WM integrity, myelin levels
and cognitive (dys)functioning. In addition, the studies would give
insight into whether PFC WM and myelin deficits are indeed
caused by a deficiency in prefrontal myelination within the
window of SZ disease onset, and whether these shortcomings
correlate with cognitive dysfunction in SZ. If confirmed, our
hypothesis may significantly contribute to the development of
novel antioxidant- and promyelination-based strategies to treat
the cognitive symptomatology of this devastating disorder.
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