
RESEARCH ARTICLE

An Effective Approach for NRSFM of Small-
Size Image Sequences
Ya-PingWang1, Zhan-Li Sun1*, Kin-Man Lam2

1 School of Electrical Engineering and Automation, Anhui University, Hefei, China, 2Department of
Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong, China

* zhlsun2006@126.com

Abstract
In recent years, non-rigid structure from motion (NRSFM) has become one of the hottest

issues in computer vision due to its wide applications. In practice, the number of

available high-quality images may be limited in many cases. Under such a condition, the

performances may not be satisfactory when existing NRSFM algorithms are applied

directly to estimate the 3D coordinates of a small-size image sequence. In this paper, a

sub-sequence-based integrated algorithm is proposed to deal with the NRSFM problem

with small sequence sizes. In the proposed method, sub-sequences are first extracted

from the original sequence. In order to obtain diversified estimations, multiple weaker

estimators are constructed by applying the extracted sub-sequences to a recent NRSFM

algorithm with a rotation-invariant kernel (RIK). Compared to other first-order statistics,

the trimmed mean is a relatively robust statistic. Considering the fact that the estimations

of some weaker estimators may have large errors, the trimmed means of the outputs for

all the weaker estimators are computed to determine the final estimated 3D shapes.

Compared to some existing methods, the proposed algorithm can achieve a higher esti-

mation accuracy, and has better robustness. Experimental results on several widely

used image sequences demonstrate the effectiveness and feasibility of the proposed

algorithm.

Introduction
Non-rigid structure from motion (NRSFM) is the process of recovering the relative camera
motion, and the time-varying 3D coordinates of feature points on a deforming object, by
means of the corresponding 2D points in a sequence of images. In many cases, the recovered
3D shapes can effectively enhance the performances of existing systems in object recognition,
face perception, etc. [1–3]. Nevertheless, in the NRSFMmodel, the objects generally undergo a
series of shape deformations and pose variations. Thus, in the absence of necessary prior
knowledge on shape deformation, recovering the 3D shape and motion of nonrigid objects
from 2D point tracks remains a difficult and ill-posed problem.
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As a pioneering work, a non-rigid model was proposed in [4] by formulating the 3D
shape in each frame of a sequence as a linear combination of a set of basis shapes. Neverthe-
less, due to a lack of sufficient constraints on the shape deformation, the recovered 3D
shapes are not unique under this model. In order to alleviate the ambiguities, recent research
works have attempted to define additional constraints to make NRSFM more tractable [5].
More determined solutions are given in [6] by utilizing the facts that the bases degenerate
under some special cases. In [7, 8], the 3D shape at each time instant is assumed to be
drawn from a Gaussian distribution. Assuming that the 3D shape deformation is smooth
over time, the time-varying structure of a nonrigid object is represented as a linear combina-
tion of a set of basis trajectories [9–11], e.g. the Discrete Cosine Transform (DCT) basis.
Since the basis trajectories are known a priori, this method can significantly reduce the
number of unknown parameters and improve the estimation stability. Instead of the time-
varying structure, the camera’s trajectory is modeled as a linear combination of DCT basis
vectors, which provides better results on complex articulated deformations [12, 13]. In [14],
the complex deformable 3D shapes are represented as the outputs of a non-linear mapping
via the kernel trick [15]. Recently, a novel NRSFM with a rotation-invariant kernel (RIK)
was proposed in [16], which utilizes the spatial-variation constraint. A prominent advantage
of this method is that it is able to deal with the data lacking temporal ordering or with
abrupt deformations.

In practice, the number of available high-quality images may be limited in many cases,
such as the face images in a surveillance system, etc. If the existing NRSFM algorithms are
directly used to estimate the 3D coordinates of a small-size image sequence, the estimation
accuracy may be relatively low. In this paper, a sub-sequence based integrated algorithm
is proposed to deal with the small-sequence problem. In the proposed method, the 3D
coordinates of each frame are estimated one by one. For a test frame, except for itself, a few
frames are first randomly extracted from the original sequence. Then, the extracted frames,
together with the test frame, form a sub-sequence to be applied to RIK. Similar to the classifier
committee learning [17], the sub-sequence and the estimation process of RIK constitute a
weaker estimator. Finally, the z-coordinates obtained by multiple weaker estimators are inte-
grated and used as the final estimation for the test frame. Experimental results on several
widely used image sequences demonstrate the effectiveness and feasibility of the proposed
algorithm.

Methodology
Fig 1 shows the flowchart of the sub-sequence-based integrated RIK algorithm. There are three
main steps in our algorithm: extract the sub-sequences from the original sequences, construct
the weaker estimators based on the RIK algorithm, and integrate the outputs of the weaker esti-
mators. A detailed description of these three steps is presented in the following subsections.

Sub-Sequence Extraction
The first step of our proposed method is to extract sub-sequences from a small-size sequence,
as shown in Fig 2. For a sequence with F frames and n feature points in each of the frames,
denote [xt, j, yt, j]

T (t = 1, 2, � � �, F, j = 1, 2, � � �, n) as the 2D projection of the jth 3D point
observed on the tth image. The n 2D point tracks of the F images can be represented as a 2F ×
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Fig 1. Flowchart of the sub-sequence-based integrated RIK algorithm.

doi:10.1371/journal.pone.0132370.g001
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Fig 2. The extraction of sub-sequences.

doi:10.1371/journal.pone.0132370.g002
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n observation matrixW, i.e.

W ¼

x1;1 x1;2 � � � x1;n

y1;1 y1;2 � � � y1;n

..

. ..
. . .

. ..
.

xF;1 xF;2 � � � xF;n

yF;1 yF;2 � � � yF;n

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

: ð1Þ

For the tth frame, the observation wt is a 2 × nmatrix, as follows:

wt ¼
xt;1 xt;2 � � � x1;n

yt;1 yt;2 � � � y1;n

0
@

1
A: ð2Þ

The observations of an original sequence with F images are derived. When the 3D coordinates
of the tth image are to be estimated, the matrixWr shown in Fig 2 can be given as follows:

Wr ¼ ½wT
1 ; � � � ;wT

t�1;w
T
tþ1; � � � ;wT

F �T : ð3Þ

Assuming that the number of frames in a sub-sequence is Fs, the observation matrixWs
t is con-

structed by randomly selecting Fs−1 observations fromWr and merging them with wt. Thus, N
sub-sequencesWs

tjðj ¼ 1; � � � ;NÞ are obtained when the sub-sequence extraction process is

repeated N times.

RIK-basedWeaker Estimator
For each test frame wt, we construct N sub-sequence observation matricesWs

tjðj ¼ 1; � � � ;NÞ.
In order to estimate the 3D coordinates of the tth frame, one sub-sequenceWs

tj is applied to

the RIK algorithm. Assume that the number of basis shapes is K. In terms of the linear-sub-
space model [8],Ws

tj is factorized as a product of two matrices via singular value decomposi-

tion, i.e.

Ws
tj ¼ MS; ð4Þ

whereM is a 2Fs × 3K camera matrix, and S includes K basis shapes, i.e.

S ¼
Ŝ1

..

.

ŜK

2
6664

3
7775 2 R

3K�n: ð5Þ

Further,M is decomposed as follows:

M ¼ DðC� I3Þ; ð6Þ

where the block-diagonal rotation matrixD is obtained via an Euclidean upgrade step [10],
and C and I3 represent a shape coefficient matrix and a 3 × 3 identity matrix, respectively. The
operator� denotes the Kronecker product. Further, C is represented as a product of the coeffi-
cient matrix X and a new basis matrix B [13], i.e.

C ¼ BX: ð7Þ
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In the optimization procedure, X can be initialized as a low-rank identity matrix, and B is com-
puted via the kernel mapping [15]. Let cT

t be the tth row of C. The 3D shape of the tth image
can be given as follows:

SðcT
t Þ ¼ ðcT

t � I3ÞMyWs
tj; ð8Þ

whereM† denotes the Moore-Penrose pseudo-inverse ofM [16].

Integration of Weaker Estimators
For the tth test frame, we can see from Section 1 that one set of estimated ztj can be obtained
for the jth sub-sequenceWs

tj. When each sub-sequenceWs
tjðj ¼ 1; � � � ;NÞ is applied in turn to

RIK, we can obtain N sets of estimated ztj (j = 1, � � �, N). Similar to the notation of classifier-
committee learning [17] in pattern recognition, here each inputWs

tj and the corresponding

reconstruction model can be considered as a weaker estimator. In order to integrate the results
obtained by the N weaker estimators, the arithmetic average ẑt of zt1, � � �, ztN is a relatively sim-
ple implementation, i.e.

ẑt ¼
1

N

XN
j¼1

ztj; ð9Þ

which can be used as the final estimated z-coordinates of the tth test image. Compared to the
arithmetic average, the trimmed mean is a more robust integration estimation. Assuming that
P percentage of the observations is trimmed, the number (Nd) of the smallest or the largest
observations to be discarded is

Nd ¼ ½NðP=100Þ=2�; ð10Þ
where [�] denotes a rounding operation. Further, assuming that the entries of ztj are ordered
such that zt1 < zt2 < � � �< ztN, the trimmed mean ẑt can be computed as follows:

ẑt ¼
1

N � 2Nd

XN�Nd

j¼Ndþ1

ztj; t ¼ 1; � � � ; F: ð11Þ

Experimental results

Experimental data
We evaluate the performance of our proposed method on three synthetic-image sequences
(stretch, face1, face2) and three real-image sequences (cubes, dance, matrix), which are widely
used sequences and are publicly available [11, 16]. For these 6 sequences, the corresponding
number of frames (T) and the number of point tracks (n) are shown in Table 1.

Besides these data, some real face-image sequences from the Bosphorus database are also
used in the experiments. Bosphorus is a relatively new 3D face database that includes face
images with a rich set of expressions and a systematic variation in poses [18].

To evaluate the estimation accuracy, two performance indices are adopted here to compare
the true 3D shapes and the estimated results. One performance index is the Pearson’s linear
correlation coefficient cðz; ẑÞ between the true z-coordinates z and the estimated z-coordinates
ẑ, i.e.

cðz; ẑÞ ¼ 1

n� 1

Xn

i¼1

zi � mz

sz

� �
ẑ i � mẑ
sẑ

� �
; ð12Þ
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where μz and σz are the respective mean and standard deviation of z, and mẑ and sẑ are the
respective mean and standard deviation of ẑ. A higher absolute value of cðz; ẑÞmeans that ẑ is
closer to z. The other performance index is the mean error �ðz; ẑÞ between the true z-coordi-
nates z and the estimated z-coordinates ẑ, i.e.

�ðz; ẑÞ ¼ 1

n

Xn

i¼1

jðzi � ẑ iÞj; ð13Þ

Experiments
In order to verify the performance of our proposed sub-sequence-based integrated RIK algo-
rithm (denoted as SSI-RIK), we compare it to the original RIK method [16], EM-SFM [7], and
CSF [14], which have relatively good performances among existing algorithms.

As the challenge addressed in this paper is the NRSFM problem with small-size image
sequences, we first extract a small sequence from an original sequence, to be used as the experi-
mental data. Take the sequence stretch, for example: the first 15 frames are used to form a small
sequence. i.e. F = 15. The length of sub-sequences (Fs) and the number of weaker estimators (N)
are set at 6 and 10, respectively. For the four algorithms, Table 2 shows the correlation coefficients

Table 2. The correlation coefficients, and the correspondingmean (μ) and standard deviation (σ), of 15 frames of the sequence stretch for 4
algorithms.

Frame Number EM-SFM CSF RIK SSI-RIK

1 0.1873 0.6087 0.1700 0.9813

2 0.1997 0.6459 0.2425 0.9879

3 0.2083 0.6966 0.3295 0.9859

4 0.2134 0.7719 0.4602 0.9882

5 0.1997 0.8420 0.6325 0.9944

6 0.1632 0.9011 0.8696 0.9915

7 0.1426 0.9612 0.9205 0.9954

8 0.1138 0.9921 0.9497 0.9960

9 0.1007 0.9893 0.9601 0.9946

10 0.0728 0.9554 0.9551 0.9934

11 0.0375 0.8951 0.9207 0.9903

12 0.0268 0.8120 0.9010 0.9874

13 0.0219 0.7251 0.8933 0.9802

14 0.0224 0.6436 0.8843 0.9817

15 0.0262 0.5705 0.8711 0.9762

μ 0.1157 0.8007 0.7307 0.9883

σ 0.0765 0.1461 0.2851 0.0062

doi:10.1371/journal.pone.0132370.t002

Table 1. The number of frames (T) and the number of point tracks (n) for 6 sequences.

Sequences T n

1 stretch 370 41

2 face1 74 37

3 face2 316 40

4 cubes 200 14

5 matrix 105 30

6 dance 264 75

doi:10.1371/journal.pone.0132370.t001
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of the 15 frames, and the corresponding mean (μ) and standard deviation (σ). Table 3 shows the
correlation coefficient increasing percentages (%) of SSI-RIK compared to EM-SFM, CSF and
RIK. Additionally, Tables 4 and 5 show the similar performance comparisons of the z-coordinate
errors. In these Tables, the numbers 1 to 15 denote the 1th to 15th frame in the small sequence.

From Tables 2 and 3, we can see that the correlation coefficients of SSI-RIK are obviously
higher than those of EM-SFM, CSF and RIK. Moreover, it can be seen from Tables 4 and 5 that

Table 4. The z-coordinate errors, and the corresponding mean (μ) and standard deviation (σ), of 15 frames of the sequence stretch for 4
algorithms.

Frame Number EM-SFM CSF RIK SSI-RIK

1 0.5783 0.2936 0.4793 0.0420

2 0.5353 0.2680 0.4400 0.0370

3 0.4960 0.2350 0.3868 0.0441

4 0.4602 0.1852 0.3067 0.0388

5 0.4247 0.1433 0.2165 0.0309

6 0.4007 0.1078 0.1109 0.0295

7 0.3989 0.0630 0.0833 0.0218

8 0.3948 0.0269 0.0720 0.0210

9 0.3934 0.0304 0.0645 0.0273

10 0.3946 0.0661 0.0640 0.0284

11 0.3997 0.1066 0.0922 0.0325

12 0.4033 0.1514 0.1082 0.0357

13 0.4068 0.1963 0.1130 0.0449

14 0.4110 0.2403 0.1169 0.0422

15 0.4118 0.2843 0.1227 0.0497

μ 0.4342 0.1599 0.1851 0.0351

σ 0.0577 0.0917 0.1439 0.0086

doi:10.1371/journal.pone.0132370.t004

Table 3. The correlation coefficient increasing percentages (%) of SSI-RIK compared to EM-SFM, CSF and RIK.

Frame Number ðSSI�RIK
EM�SFM � 1Þ � 100 ðSSI�RIK

CSF � 1Þ � 100 ðSSI�RIK
RIK � 1Þ � 100

1 423.9241 61.2107 477.2671

2 394.6490 52.9373 307.3797

3 373.4054 41.5431 199.2156

4 362.9820 28.0223 114.7493

5 398.0821 18.1051 57.2236

6 507.6249 10.0365 14.0165

7 597.9663 3.5580 8.1411

8 775.5285 0.3979 4.8737

9 888.1652 0.5341 3.5889

10 1264.5 3.9763 4.0102

11 2540.4 10.6278 7.5507

12 3588.5 21.5968 9.5802

13 4366.2 35.1860 9.7305

14 4284.4 52.5452 11.0215

15 3619.7 71.1259 12.0690

μ 753.8268 23.4300 35.2578

doi:10.1371/journal.pone.0132370.t003
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the z-coordinate errors of SSI-RIK are significantly lower than those of EM-SFM, CSF and
RIK. Thus, SSI-RIK has a higher estimation accuracy than the other methods. In addition, we
can see from Tables 2 and 4 that the standard deviations of SSI-RIK are lower than those of the
other three methods. This indicates that SSI-RIK is a more robust approach.

Taking the first frame of stretch as an example, Figs 3 and 4 show the comparisons of the true
values and the estimated values for the z-coordinate values and the 3D feature points, respec-
tively. We can see that the z-coordinate values and the 3D feature points estimated by SSI-RIK
are closer to the true values than those estimated by the other three methods, which coincides
with the performance indices of the correlation coefficients and the z-coordinate errors.

In order to investigate the effect of sequence size (F) on the performances of the various
algorithms, Tables 6 and 7 tabulate the mean and standard deviation (μ ± σ) of the correlation
coefficients and the z-coordinates errors, respectively, when the sequence sizes vary from 15 to
50 with an equal interval of 5. Moreover, for the mean values of the correlation coefficients and
the z-coordinates errors, Tables 8 and 9 show the corresponding increasing percentages and
decreasing percentages of SSI-RIK compared to EM-SFM, CSF and RIK, respectively.

Further, Figs 5 and 6 show the overall mean and standard deviation (μ ± σ) of the correla-
tion coefficients and the z-coordinate errors for different sequence sizes, respectively. In these
two figures, the x axis denotes image sequences in terms of the numbers shown in Table 1.
From Tables 6–9 and Figs 5 and 6, we can see that SSI-RIK has a better performance than
EM-SFM, CSF and RIK for different sequence sizes.

We also present the experimental results on the real Bosphorus database. In experiments,
the z-coordinates of the frontal-view images are estimated. As an example, Tables 10 and 11
show the correlation coefficients and the z-coordinate errors, respectively, when the sequence
sizes vary from 7 to 14 for one individual. Moreover, Tables 12 and 13 show the corresponding
increasing and decreasing percentages of SSI-RIK compared to EM-SFM, CSF and RIK, respec-
tively. It can be seen that, for different sequence sizes, SSI-RIK generally achieves a better per-
formance than EM-SFM, CSF and RIK.

Table 5. The z-coordinate error decreasing percentages (%) of SSI-RIK compared to EM-SFM, CSF
and RIK.

Frame Number ð1� SSI�RIK
EM�SFMÞ � 100 ð1� SSI�RIK

CSF Þ � 100 ð1� SSI�RIK
RIK Þ � 100

1 92.7335 85.6856 91.1333

2 93.0961 86.2091 91.6044

3 91.1128 81.2403 88.6056

4 91.5725 79.0604 87.3552

5 92.7245 78.4350 87.7288

6 92.6255 72.5794 73.3644

7 94.5323 65.3521 75.2942

8 94.6739 21.8112 70.8067

9 93.0505 10.1219 57.6105

10 92.8134 57.0992 55.6592

11 91.8814 69.5715 64.8051

12 91.1454 76.4122 66.9998

13 88.9547 77.1146 60.2482

14 89.7311 82.4328 63.9039

15 88.0274 82.5346 59.5209

μ 91.9268 78.0756 81.0650

doi:10.1371/journal.pone.0132370.t005
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Fig 3. The comparisons of the true z-coordinate values and the estimated z-coordinate values of the
first frame of stretch for the four methods.

doi:10.1371/journal.pone.0132370.g003

Fig 4. The comparisons of the true 3D feature points and the estimated 3D feature points of the first
frame of stretch for the four methods.

doi:10.1371/journal.pone.0132370.g004
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Further, Figs 7 and 8 show the overall mean and standard deviation (μ ± σ) of correlation
coefficients and z-coordinate errors for 10 individuals, respectively. In these two figures, the x
axis denotes the individuals in terms of their corresponding number in the database. We can
see that, again, SSI-RIK has a better performance than EM-SFM, CSF and RIK for different
individuals.

Table 6. The mean and standard deviation (μ ± σ) of correlation coefficients when the sequence sizes
vary from 15 to 50 with an equal interval 5.

EM-SFM CSF RIK SSI-RIK

15 0.1157±0.0765 0.8007±0.1461 0.7307±0.2851 0.9883±0.0062

20 0.3508±0.0568 0.7093±0.1841 0.9702±0.0204 0.9868±0.0114

25 0.3104±0.0998 0.6626±0.2156 0.9659±0.0318 0.9870±0.0134

30 0.3042± 0.1175 0.5896±0.2455 0.8659±0.1565 0.9763±0.0213

35 0.1448± 0.0897 0.5185±0.2706 0.9705±0.0449 0.9708±0.0220

40 0.3888±0.0767 0.4432±0.2983 0.9490±0.0527 0.9719±0.0191

45 0.4564±0.0666 0.3875±0.3108 0.8095±0.2874 0.9678±0.0393

50 0.1167±0.0752 0.3658±0.3024 0.8296±0.2427 0.9710±0.0330

doi:10.1371/journal.pone.0132370.t006

Table 7. The mean and standard deviation (μ ± σ) of z-coordinate errors when the sequence sizes vary
from 15 to 50 with an equal interval 5.

EM-SFM CSF RIK SSI-RIK

15 0.4342±0.0245 0.1599±0.0917 0.1851±0.1439 0.0351±0.0086

20 1.0501±0.0064 0.2217±0.1196 0.0551±0.0177 0.0352±0.0148

25 1.6247±0.0107 0.2620±0.1441 0.0522±0.0238 0.0328±0.0176

30 1.5909±0.0137 0.3101±0.1635 0.1028±0.0549 0.0409±0.0198

35 1.5841±0.0140 0.3534±0.1751 0.0488±0.0259 0.0473±0.0210

40 1.7107±0.0059 0.3935±0.1840 0.0666±0.0365 0.0482±0.0175

45 1.1868±0.0115 0.4153±0.1835 0.1504±0.1529 0.0478±0.0279

50 0.4857 ±0.0125 0.4232±0.1701 0.1341±0.1255 0.0458±0.0214

doi:10.1371/journal.pone.0132370.t007

Table 8. The mean correlation coefficient increasing percentages (%) of SSI-RIK compared to
EM-SFM, CSF and RIK, when the sequence sizes vary from 15 to 50 with an equal interval 5.

ðSSI�RIK
EM�SFM � 1Þ � 100 ðSSI�RIK

CSF � 1Þ � 100 ðSSI�RIK
RIK � 1Þ � 100

15 753.8268 23.4300 35.2578

20 181.2612 39.1249 1.7095

25 217.9668 48.9574 2.1781

30 220.9478 65.6084 12.7546

35 570.2348 87.2287 0.0319

40 149.9892 119.3056 2.4215

45 112.0418 149.7742 19.5537

50 732.0983 165.4305 17.0438

doi:10.1371/journal.pone.0132370.t008
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Table 9. The mean z-coordinate error decreasing percentages (%) of SSI-RIK compared to EM-SFM,
CSF and RIK, when the sequence sizes vary from 15 to 50 with an equal interval 5.

ð1� SSI�RIK
EM�SFMÞ � 100 ð1� SSI�RIK

CSF Þ � 100 ð1� SSI�RIK
RIK Þ � 100

15 91.9268 78.0756 81.0650

20 96.6438 84.1055 36.0142

25 97.9831 87.4934 37.1732

30 97.4313 86.8213 60.2506

35 97.0155 86.6232 3.0704

40 97.1840 87.7593 27.6980

45 95.9684 88.4783 68.1849

50 90.5625 89.1686 65.8147

doi:10.1371/journal.pone.0132370.t009

Fig 5. The overall mean and standard deviation (μ ± σ) of correlation coefficients for different sequence sizes.

doi:10.1371/journal.pone.0132370.g005
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Fig 6. The overall mean and standard deviation (μ ± σ) of z-coordinate errors for different sequence sizes.

doi:10.1371/journal.pone.0132370.g006

Table 10. The correlation coefficients, and the correspondingmean (μ) and standard deviation (σ),
when the sequence sizes vary from 7 to 14 for one individual.

EM-SFM CSF RIK SSI-RIK

7 0.3403 0.3531 0.4884 0.8279

8 0.4070 0.3740 0.4807 0.7392

9 0.5498 0.0557 0.3836 0.6499

10 0.5487 0.5362 0.1682 0.6713

11 0.5513 0.7893 0.7490 0.4687

12 0.5740 0.8234 0.4467 0.6623

13 0.5978 0.8129 0.7675 0.7120

14 0.6020 0.1920 0.5513 0.6531

μ 0.5214 0.4921 0.5044 0.6731

σ 0.0952 0.2968 0.1939 0.1019

doi:10.1371/journal.pone.0132370.t010
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Discussions
There are two possible methods to integrate the outputs of the weaker estimators, i.e. the arith-
metic average (denoted as AA-SSI-RIK) and the trimmed mean (denoted as TM-SSI-RIK). For

Table 11. The z-coordinate errors, and the correspondingmean (μ) and standard deviation (σ), when
the sequence sizes vary from 7 to 14 for one individual.

EM-SFM CSF RIK SSI-RIK

7 0.8670 0.4939 0.1774 0.1152

8 0.9005 0.3342 0.2935 0.2265

9 1.1727 0.5746 0.6061 0.2901

10 1.1730 0.1737 0.2184 0.3266

11 1.1560 0.2191 0.1494 0.3216

12 1.1092 0.1100 0.4518 0.2804

13 1.0099 0.1507 0.1296 0.1813

14 1.0289 0.4231 0.5520 0.2551

μ 1.0522 0.3099 0.3223 0.2496

σ 0.1212 0.1730 0.1889 0.0727

doi:10.1371/journal.pone.0132370.t011

Table 12. The correlation coefficient increasing percentages (%) of EM-SFM, CSF and RIK to SSI-RIK,
when the sequence sizes vary from 7 to 14 for one individual.

ðSSI�RIK
EM�SFM � 1Þ � 100 ðSSI�RIK

CSF � 1Þ � 100 ðSSI�RIK
RIK � 1Þ � 100

7 143.2793 134.5014 69.5317

8 81.5967 97.6609 53.7704

9 18.1888 1066.9 69.4185

10 22.3452 25.1935 299.1271

11 -14.9772 -40.6099 -37.4219

12 15.3750 -19.5635 48.5639

13 19.0956 -12.4199 -7.2393

14 8.5008 240.2560 18.4719

μ 29.0906 36.7832 33.4294

doi:10.1371/journal.pone.0132370.t012

Table 13. The z-coordinate error decreasing percentages (%) of EM-SFM, CSF and RIK to SSI-RIK,
when the sequence sizes vary from 7 to 14 for one individual.

ð1� SSI�RIK
EM�SFMÞ � 100 ð1� SSI�RIK

CSF Þ � 100 ð1� SSI�RIK
RIK Þ � 100

7 84.7816 76.6792 35.0948

8 71.2805 32.2333 22.8317

9 76.8843 49.5067 52.1282

10 73.9893 -88.0403 -49.5110

11 74.0310 -46.7908 -115.2227

12 76.4741 -154.7749 37.9501

13 83.4065 -20.2712 -39.8828

14 77.0480 39.7177 53.7929

μ 77.0231 19.4680 22.5591

doi:10.1371/journal.pone.0132370.t013
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the results given in Tables 10, 11 and 14 tabulates the correlation coefficients, the z coordinate
errors, and the corresponding mean (μ) and standard deviation (σ) when the sequence sizes
vary from 7to 14 using the different integration methods. Moreover, Table 15 shows the corre-
sponding increasing and decreasing percentages of TM-SSI-RIK compared to AA-SSI-RIK.
We can see that TM-SSI-RIK generally has a higher estimation accuracy than AA-SSI-RIK.
Therefore, the trimmed mean is adopted in our proposed method to integrate the outputs of
the weaker estimators.

As RIK has been developed originally for the long sequences, we also present here the exper-
imental comparison of RIK and SSI-RIK when the entire sequence is used to estimate the 3D
shapes. Tables 16 and 17 show the mean and standard deviation (μ ± σ) of the correlation coef-
ficients and the z-coordinate errors, respectively. We can see that the performance of SSI-RIK
is better than RIK for most sequences.

Fig 7. The overall mean and standard deviation (μ ± σ) of correlation coefficients for 10 individuals.

doi:10.1371/journal.pone.0132370.g007
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Fig 8. The overall mean and standard deviation (μ ± σ) of z-coordinate errors for 10 individuals.

doi:10.1371/journal.pone.0132370.g008

Table 14. The correlation coefficients, z-coordinate errors, and the correspondingmean (μ) and standard deviation (σ), when the sequence sizes
vary from 7 to 14 for different integration methods.

correlation coefficients z coordinates errors

AA-SSI-RIK TM-SSI-RIK AA-SSI-RIK TM-SSI-RIK

7 0.6333 0.8279 0.3114 0.1152

8 0.6262 0.7392 0.4437 0.2265

9 0.6585 0.6499 0.3584 0.2901

10 0.6408 0.6713 0.4801 0.3266

11 0.5689 0.4687 0.3589 0.3216

12 0.6470 0.6623 0.3869 0.2804

13 0.6681 0.7120 0.2147 0.1813

14 0.6775 0.6531 0.2449 0.2551

μ 0.6400 0.6731 0.3499 0.2496

σ 0.0335 0.1019 0.0911 0.0727

doi:10.1371/journal.pone.0132370.t014

An Effective Approach for NRSFM

PLOSONE | DOI:10.1371/journal.pone.0132370 July 10, 2015 16 / 20



Similar to pattern recognition, we tried to search for the optimal values of parameters Fs,
N and P with the cross validation method, which is a widely used parameter selection
approach. After the small-size sequences are extracted from the original sequences, the
remained frames are divided into 5 folds and used as the validation sets. Furthermore, the
grid divisions are carried out on the three parameters. The z-coordinates of the validation sets
are estimated via the proposed method with each possible set of parameters Fs, N and P. Take
the sequence stretch for example, Fig 9 shows the mean z-coordinate errors of 5-fold valida-
tion sets for different Fs, N and P. Correspondingly, Fig 10 shows the z-coordinate errors of
the testing sequences. We can see that the testing error may not be small for a set of parameter

Table 15. The corresponding increasing and decreasing percentages of SSI-RIK compared to
EM-SFM, CSF and RIK for the results given in Table 14.

ðAA�SSI�RIK
TM�SSI�RIK � 1Þ � 100 ð1� AA�SSI�RIK

TM�SSI�RIKÞ � 100
7 30.7334 63.0102

8 18.0353 48.9562

9 -1.3173 19.0484

10 4.7741 31.9808

11 -17.6120 10.3814

12 2.3555 27.5474

13 6.5665 15.5656

14 -3.5952 -4.1499

μ 5.1567 28.6650

doi:10.1371/journal.pone.0132370.t015

Table 16. Themean and standard deviation (μ ± σ) of the correlation coefficients when the entire
sequences are used in the experiments for RIK and SSI-RIK.

RIK SSI-RIK

stretch 0.9421±0.0086 0.9778 ±0.0200

face1 0.9994±4.48e-4 0.9791±0.0234

face2 0.7447±0.1777 0.9209 ±0.0617

cubes 0.9793±0.0013 0.9855 ±0.0018

matrix 0.3081±0.1560 0.4577 ± 0.1912

dance 0.9065 ± 0.0132 0.9500 ± 0.0109

doi:10.1371/journal.pone.0132370.t016

Table 17. Themean and standard deviation (μ ± σ) of the z-coordinate errors when the entire
sequences are used in the experiments for RIK and SSI-RIK.

RIK SSI-RIK

stretch 0.0705±0.0103 0.0460 ±0.0232

face1 0.0079±0.0031 0.0503±0.0380

face2 0.1384±0.0539 0.0657±0.0345

cubes 0.1212±0.0118 0.0766±0.0155

matrix 0.5439±0.0724 0.2540±0.0378

dance 0.0737±0.0051 0.0622±0.0071

doi:10.1371/journal.pone.0132370.t017
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with a small validation error. Thus, it is not effective to search for the optimal parameters
with the cross validation method. On the other hand, it can be seen from Fig 10 that the
z-coordinate errors vary with different parameter values, but the variations are not so signifi-
cant. Besides the cross validation, there are many other parameter selection methods. Thus,
how to devise a more effective method to accurately determine the optimal parameter values
should be a meaningful and valuable work.

Conclusions
In this paper, a sub-sequence-based RIK algorithm is proposed for NRSFM for small-size
sequences. Compared to some existing algorithms, the proposed method has a higher estima-
tion accuracy. Moreover, the robustness of the proposed method is better than those of the
existing algorithms. The experimental results on both the artificial and the real data have veri-
fied the effectiveness and feasibility of the proposed method.

Fig 9. Themean z-coordinate errors of the 5-fold validation sets with different parameters Fs,N and P for the sequence stretch.

doi:10.1371/journal.pone.0132370.g009
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