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Abstract

Motivation: Analysis of biological data often involves the simultaneous testing of thousands of genes. This requires
two key steps: the ranking of genes and the selection of important genes based on a significance threshold. One
such testing procedure, called the optimal discovery procedure (ODP), leverages information across different tests
to provide an optimal ranking of genes. This approach can lead to substantial improvements in statistical power
compared to other methods. However, current applications of the ODP have only been established for simple study
designs using microarray technology. Here, we extend this work to the analysis of complex study designs and RNA-
sequencing studies.

Results: We apply our extended framework to a static RNA-sequencing study, a longitudinal study, an independent
sampling time-series study,and an independent sampling dose–response study. Our method shows improved per-
formance compared to other testing procedures, finding more differentially expressed genes and increasing power
for enrichment analysis. Thus, the extended ODP enables a favorable significance analysis of genome-wide gene ex-
pression studies.

Availability and implementation: The algorithm is implemented in our freely available R package called edge and
can be downloaded at https://www.bioconductor.org/packages/release/bioc/html/edge.html.

Contact: jstorey@princeton.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide gene expression studies measure simultaneously the
expression levels of thousands of genes using RNA-seq or DNA
microarray technology. A primary objective in these studies is to dis-
cover biologically important genes by applying appropriate statistic-
al tools to the data. One such approach is to apply a hypothesis
testing procedure on a gene-by-gene basis to detect differentially
expressed genes; for example, a t-test or F-test is commonly used to
compare multiple biological groups. These test statistics are then
ranked and a subset of genes with values above a specified threshold
are deemed statistically significant. The significance threshold is
chosen to control the false discovery rate (FDR), which is the
expected proportion of false positives in the subset of selected genes.
Thus, there are two key steps when selecting important genes: the
ranking of test statistics and the selection of tests based on a signifi-
cance threshold.

One commonly used class of testing procedures to rank genes is
based on the likelihood ratio test (LRT). The LRT compares the
goodness-of-fit between two models, namely, the alternative and
null models. The test statistic is the ratio of the likelihood under the
alternative model to the likelihood under the null model, where
large values indicate evidence against the null model. It is popular

due to its optimality guarantees: the Neyman–Pearson (NP) lemma
states that the LRT statistic is the most powerful testing procedure
for a single hypothesis, where no other testing procedure can achieve
more power at a fixed significance threshold (Neyman and Pearson,
1933). However, the LRT statistic may not provide the optimal
ranking for multiple hypotheses (Storey, 2007). This is problematic
in genomics where thousands of tests are typically performed.

When there are multiple hypotheses, such as in gene expression
data, many testing procedures can improve upon the statistical
power using information across genes. One such method is the opti-
mal discovery procedure (ODP), which maximizes the number of
expected true positives for a fixed number of expected false posi-
tives—a quantity related to the FDR (Storey, 2007). The ODP is a
generalization of the NP lemma: while the NP lemma is optimal for
a single hypothesis test, the ODP is optimal for multiple hypothesis
tests. The ODP achieves the optimal ranking of test statistics by lev-
eraging information across all tests when calculating the test statistic
for each gene. Intuitively, the improvement in ranking stems from
genes that follow similar patterns of expression (known as co-
expression). This information is incorporated into the test statistic
to quantify the evidence for differential expression. In the study by
Storey et al. (2007), an approximation to the ODP performs favor-
ably on DNA microarray studies compared to SAM (Tusher et al.,
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2001), shrunken t-test or F-test (Cui et al., 2005; Smyth, 2004),
Bayesian local FDR (Efron et al., 2001) and posterior probabilities
(Lönnstedt and Speed, 2002).

There are two main limitations when applying the ODP to gen-
omic studies. First, the method was primarily developed for simple
static experiments (e.g., comparing two conditions) and it has not
yet been extended to more complex sampling designs. Second, the
underlying assumption in the ODP is that the data are generated
from a Normal distribution where the per-gene observations have
the same variance (i.e., homoscedasticity). This is problematic for
RNA-sequencing studies where the data are modeled using an over-
dispersed Poisson distribution or a Normal distribution where the
per-gene observations have different variances (i.e., hetereoscedas-
ticity) (Law et al., 2014). Due to these constraints, the applicability
of the ODP has been limited to static DNA microarray studies.

In this work, we extend the ODP to both complex study designs
and RNA-sequencing studies. To incorporate non-linear responses
commonly found in non-static studies, we utilize the regression
spline methodology from Storey et al. (2005). An advantage of this
approach is that it flexibly models gene expression responses within
the least squares framework where the data are assumed to follow a
Normal distribution with constant variance: this enables for a
straightforward application of the ODP. For RNA-sequencing stud-
ies, we implement the same strategy in Law et al. (2014) to estimate
the per-gene hetereoscedasticity using the observed mean–variance
relationship. We then use these estimated weights in a weighted least
squares algorithm to adjust for unequal variances among observa-
tions. This transformation allows for the standard ODP framework
to be utilized.

We apply our algorithm to three different experimental designs.
The first is a ‘static sampling’ experiment, where samples are
obtained at a fixed time point. For this example, we analyze a
smoker study where smoking and non-smoking groups are com-
pared to detect transcriptional differences in airway basal cells using
RNA-seq technology. The second is an ‘independent sampling’ ex-
periment, where subjects are independently sampled across time or
dosage level. Here, we consider two independent sampling studies,
namely, a time-series and a dose–response study. The former consid-
ers the effect of age on gene expression in the cortex region of the
kidney and the latter explores breast cancer cell sensitivity in re-
sponse to multiple 17b-estradiol doses. The final design is a ‘longitu-
dinal sampling’ experiment, where subjects are sampled at multiple
time points. As an example, we examine an endotoxin study which
compares the leukocytes at a control group to those of an
endotoxin-treated group across multiple time points.

The article is outlined as follows. Section 2 reviews background
on the ODP and regression splines. We also review a computational-
ly efficient implementation of the ODP called the modular optimal
discovery procedure (mODP). Section 3 introduces our proposed al-
gorithm, and Section 4 illustrates the results from our method on the
four studies. We validate these results through comprehensive
simulations.

2 Background

2.1 The optimal discovery procedure
The optimal (or ‘most powerful’) hypothesis test statistic for a single
test is provided by the NP lemma (Neyman and Pearson, 1933).
Given some observed data y ¼ ðy1; y2; . . . ; ynÞ, the NP lemma states
that the ratio of the alternative likelihood gðyÞ over the null likeli-
hood f ðyÞ—known as the likelihood ratio—has the largest power
for each false-positive rate compared to any other test statistic.
Intuitively, this optimality arises because the data-generating process
under each model is assumed to be known. For multiple hypotheses,
the likelihood ratio could be applied on a test-by-test basis.
However, potentially useful information across different hypotheses
is ignored. As a consequence, the NP likelihood ratio test statistic
may no longer be an optimal statistical test (Storey, 2007).

The ODP is a generalization of the NP lemma for multiple
hypotheses. More specifically, consider gene expression

measurements ðy1; y2; . . . ; ymÞ where there are m genes and n obser-
vations. Further assume that the first m0 and the last m1 ¼ m�m0

hypotheses are from the null and alternative models, respectively.
The ODP test statistic for gene i is

SODPðyiÞ ¼

Pm
k¼m0þ1

gkðyiÞ

Pm0

k¼1

fkðyiÞ
; (1)

where gkð�Þ is the alternative likelihood and fkð�Þ is the null likeli-
hood for gene k. The numerator and denominator can be viewed as
the cumulative likelihoods under the alternative and null models, re-
spectively, across all hypotheses , where the likelihoods most related
to gene i contribute the most to the above statistic. Storey (2007)
shows that this test statistic maximizes the number of expected true
positives (ETP) for a fixed number of expected false positives
(EFP)—a quantity closely related to the FDR, in that
FDR � EFP

EFPþETP. Therefore, by leveraging information across differ-
ent hypotheses, the ODP achieves the optimal significance ranking
of test statistics. Moreover, the improvements in statistical power
are sometimes substantial compared to the standard likelihood ratio
test based on the NP lemma (Storey, 2007).

Evaluating equation (1) requires making assumptions on the
data-generating process and the hypothesis status for each test. In
this work, the alternative and null densities follow a Normal distri-
bution with some mean vector l ¼ ðl1; l2; . . . ; lnÞ and standard de-

viation r, denoted by ðl1
i ; r

1
i Þ and ðl0

i ;r
0
i Þ for genes i ¼ 1; 2; . . . ;m,

respectively. However, it is not known a priori which tests are from
the alternative and null models. Instead an approximation to the
true ODP statistic is estimated (Storey et al., 2007), i.e.,
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ŜODPðyiÞ ¼
Pm
k¼1

gkðyi;
l1

k
;r1

k
ÞPm

k¼1

fkðyi ;l
0
k
;r0

k
Þ
. Another complication is that the

theoretical null distribution of the ODP test statistic is unknown and
so P-values cannot be analytically calculated. Therefore, a bootstrap
procedure must be implemented to generate an empirical null distri-
bution of the test statistics. This estimated ODP has been shown to
provide similar power to the true ODP (Storey et al., 2007).

However, calculating the test statistics involves 2m2 computations
and so it is computationally demanding for genomic datasets where
m can range anywhere from 103 to 105.

Woo et al. (2011) proposed a computationally efficient approxi-
mation to the ODP called the modular ODP (mODP). Similar to the
estimated ODP, the mODP assumes that the data yi are generated
from a Normal distribution with parameters ðl1

i ;r
1
i Þ and ðl0

i ;r
0
i Þ for

genes i ¼ 1; 2; . . . ;m under the alternative and null models, respect-
ively. These parameters are estimated from the data on a gene-by-
gene basis using maximum likelihood, which can be calculated by a
least squares fit in the Normal distribution case. A clustering algo-
rithm then assigns genes to k ¼ 1;2; . . . ;K modules based on the
symmetric Kullback–Leibler distance dik (only the alternative model
is used to determine gene-module assignments). Using the module
assignments, the parameter estimates are updated and genes are
reassigned to new modules; the above steps continue until a conver-
gence criterion is met. The final module parameters are denoted by
ðc1

k; t
1
kÞ and ðc0

k; t
0
kÞ under the alternative and null models, respective-

ly (Algorithm 1).
Given the module parameters, the mODP test statistic can be

expressed as

ŜmODPðyiÞ ¼

PK
k¼1

gkðyi; c1
k; t

1
kÞjRkj

PK
k¼1

fkðyi; c0
k; t

0
kÞjRkj

; (2)

where gkð�Þ is the alternative likelihood and fkð�Þ is the null likeli-
hood under module k, and jRkj is the number of genes assigned to
module k. A bootstrap algorithm is implemented to generate the em-
pirical null distribution of the test statistics (described in
Supplementary Material). The mODP reduces the number of calcu-
lations from 2m2 to 2 Km where K� m. Thus, the time complexity
of the mODP is linear with the number of genes. In the study by
Woo et al. (2011), the authors demonstrate that the mODP has simi-
lar power to the estimated ODP and is robust to the number of mod-
ules when K � 50.

2.2 Regression splines
The general framework for modeling non-linear responses in com-
plex study designs follows from the study by Storey (2005).
Consider an experiment with gene expression measurements yij and
explanatory variables xj for i ¼ 1; 2; . . . ;m genes and j ¼ 1; 2; . . . ; n
observations. In non-static (e.g., time course) studies, there can be
multiple measurements of xj for observation j, denoted by xjt where
t ¼ 1; 2; . . . ;Tj; for example, xjt can be multiple time points or dif-
ferent dosage levels for a particular observation. The observed ex-
pression for gene i can be modeled as

yijt ¼ liðxjtÞ þ cij þ �ijt; (3)

where lið�Þ is the population average curve, cij is the individual-
specific random deviation from the population average curve, and
�ijt is a random error that follows a Normal distribution with mean
zero and variance r2

i . Here, we assume that the individual-specific
random deviations follow a Normal distribution with mean zero
and variance s2

i .
The population average curve can be flexibly modeled using a re-

gression spline. A regression spline is a piecewise polynomial func-
tion continuous at d specified points (or ‘knots’). We only consider
natural cubic splines, which are third-order polynomial functions
that are linear beyond the boundary knots. In this case, the popula-
tion average curve can be parameterized by a d-dimensional basis:

liðxÞ ¼ ai1þ sðxÞ bi where 1is a vector of 1’s, x ¼ ðxjtÞ is theset of
explanatory variables, sðxÞ ¼ ðs1ðxÞ; s2ðxÞ; . . . ; sdðxÞÞ is a matrix of
the explanatory variables evaluated on a prespecified d-dimensional
basis, and the parameters ai and bi ¼ ðbi1; bi2; . . . ; bidÞT are esti-
mated by least squares on a gene-by-gene basis (described in more
detail in Supplementary Material). The parametric model for liðxÞ
enables testing of parameters ai and bi, which do not depend on spe-
cific xjt. This simplification allows for inferences of general sampling
designs (Storey et al., 2005). We apply this framework to a static
sampling study, two independent sampling non-static studies, and a
longitudinal sampling study.

In a static sampling study, subjects are independently sampled
across one or more biological groups with no functional (e.g., time)
component. As an example, in the smoker study, xj is a dichotomous
variable taking values 0 or 1 indicating the smoking status of indi-
vidual j and yij is the RNA-seq count for gene i (Fig. 1a). Equation
(3) can be simplified by modeling the population average curve as
liðxÞ ¼ ai1þ bix for the dichotomous variable x ¼ ðx1; x2; . . . ; xnÞT
where the t index is dropped because implicitly Tj ¼ 1. In this study,
we are interested in determining whether gene expression is differen-
tially expressed between groups (the alternative hypothesis) or
remains unchanged (the null hypothesis). Therefore, the null hypoth-
esis model (dashed line) is fit under the constraint of bi ¼ 0 and the
alternative hypothesis model (solid line) allows this parameter to be
unconstrained.

In an independent sampling study, subjects are independently
sampled across a continuous variable (similar to cross-sectional sam-
pling). The observed population average curve can be expressed as
liðxÞ ¼ ai1þ sðxÞbi for the continuous variable x ¼
ðx1;x2; . . . ;xnÞT where Tj ¼ 1. There are two studies analyzed with
independent sampling designs. The first is a kidney aging study
where human subjects are independently sampled at various ages
(Fig. 1b). The second is a dose–response study where 17b-estradiol
is introduced to breast cancer cells at various dosage levels (Fig. 1c).
In both of these studies, the objective is to determine whether gene
expression is differentially expressed across time or dosage level (the
alternative hypothesis) or remains unchanged (the null hypothesis).
Therefore, the null hypothesis model (dashed line) is fit under the
constraint of bil ¼ 0 for l ¼ 1; 2; . . . ;d and the alternative hypothesis
model (solid line) allows these parameters to be unconstrained.

In a longitudinal sampling study, subjects are sampled multiple
times across a continuous variable. Here, the observed population
average curve can be expressed as liðxÞ ¼ ai1þ sðxÞbi for the con-
tinuous variable x ¼ ðxjtÞ where there are j ¼ 1; 2; . . . ; n observa-
tions and t ¼ 1; 2; . . . ;Tj measurements of the jth observation. As an
example, the endotoxin study compares two different classes across
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Fig. 1. Fitting regression splines to general study designs: (a) static, (b, c) independ-

ent sampling and (d) longitudinal studies. The null (dashed) and alternative (solid)

models are shown for a significant gene. In (d), the endotoxin-treated and control

groups are denoted by a triangle and cross, respectively
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time, namely, endotoxin-treated versus control-treated. For this
case, yijt is the gene expression measurement for gene i in individual
j at time point t and xjt indicates the time individual j was sampled
(Fig. 1d). The alternative hypothesis is that there is differential ex-
pression between classes while the null hypothesis is that there is no
difference in gene expression. Thus, the null hypothesis model fits
one curve to both classes combined (dashed line) and the alternative
hypothesis model fits two separate curves to each class (solid line).

Algorithm 2 summarizes the procedure for choosing the dimen-
sionality of the regression spline. The natural cubic spline—or any
polynomial spline—can be parameterized by a B-spline basis. The
B-spline requires choosing the location of d knots to anchor the
basis functions. We utilize the cross validation algorithm by Storey
et al. (2005) to automatically choose the optimal d̂. First, we apply
a singular value decomposition to extract the top i ¼ 1; 2; . . . ;E
eigen-genes (or right-singular vectors) which represent directions of
maximal variation. The eigen-genes are used for choosing a reason-
able dimensionality to model the non-linear gene expression
responses. We then regress these eigen-genes onto
sðxÞ ¼ ðs1ðxÞ; s2ðxÞ; . . . ; sdðxÞÞ, where we use a d ¼ 1; 2; . . . ;D di-
mensional B-spline bases. The knots are placed at evenly spaced
quantiles, i.e., the 0; 1

d�1 ;
2

d�1 ; . . . ; d�2
d�1 ;1 quantiles. Finally, the basis

dimension used for model fitting is chosen by applying a cross-
validation procedure to select the an estimated optimal d̂ across all
eigen-genes. Using the selected d̂, a least squares model fit is applied
to estimate the population average curve and variance for all genes
under the alternative and null models.

3 Materials and methods

Our algorithm introduces regression splines into the ODP frame-
work to extend it to complex study designs. To do so, the ODP test
statistic must be extended to incorporate non-linear responses.
Suppose the expression values are yijt and the explanatory variables
are xjt where there are i ¼ 1; 2; . . . ;m genes, j ¼ 1; 2; . . . ; n observa-
tions and t ¼ 1;2; . . . ;Tj measurements of the jth observation.
Consider two different models, namely, the null model with parame-
ters ðl0

i ðxÞ; r0
i Þ and the alternative model with parameters

ðl1
i ðxÞ;r1

i Þ, where the null model is a restricted version of the alter-
native model (detailed in Supplementary Material). The objective is
to test the null hypothesis H0 : liðxÞ ¼ l0

i ðxÞ versus the alternative
hypothesis H1 : liðxÞ ¼ l1

i ðxÞ. In this work, the population average
curves are flexibly modeled using a regression spline. The

parameters under both models can then be estimated by least
squares, i.e., ðl̂1

i ðxÞ; r̂1
i Þ and ðl̂0

i ðxÞ; r̂0
i Þ.

For non-linear responses, the estimated ODP statistic is

ŜODPðyiÞ ¼
Xm

k¼1

gkðyi;
l̂1

kðxÞ; r̂
1
kÞ

Pm
k¼1

fkðyi; l̂
0
kðxÞ; r̂

0
kÞ;

(4)

where the likelihoods are assumed to follow a Normal distribution.
It is evident that l̂0

i ðxÞ is not of interest in the testing procedure.
This ancillary information can be removed by transforming the data
to y0i ¼ yi � l̂0

i ðxÞ. Under this transformation, the hypotheses are
H0 : l1

i ðxÞ ¼ 0 versus H1 : l1
i ðxÞ 6¼ 0. This modified version of the

estimated ODP statistic is

ŜODP y�
i

� �
¼
Xm

k¼1

gkðy�
i;

l̂
�1
kðxÞ; r̂

1
kÞ

Pm
k¼1

fkðy�
i; 0; r̂0

kÞ
: (5)

Similar to the original implementation of the ODP, the above
test statistic requires 2m2 calculations which makes it computation-
ally slow for genomic datasets. Instead, we can utilize the mODP
statistic according to

ŜmODP y�
i

� �
¼

PK
k¼1

gkðy�
i; c1

kðxÞ; t1
kÞjRkj

PK
k¼1

fkðy�
i; 0; t0

kÞjRkj
; (6)

where there are k ¼ 1;2; . . . ;K modules, the membership size of
module k is jRkj and the module parameters are estimated by apply-
ing the mODP clustering algorithm (described in Algorithm 1).

Our proposed method is summarized in Algorithm 3: The inputs
are the observed dataset (x,Y), the alternative and null models, the
number of modules K and the number of bootstrap iterations B.
First, we apply Algorithm 2 to choose the dimensionality d for the
population average curves, i.e., liðxÞ ¼ ai1þ sðxÞbi where
sðxÞ ¼ ðs1ðxÞ; s2ðxÞ; . . . ; sdðxÞÞ. The data are then transformed by
subtracting the null model fit from the observed dataset. This
adjusted gene expression response variable y0i is regressed onto the
alternative model to get updated parameter estimates of ðl01i ðxÞ; r1

i Þ.
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Finally, we apply the mODP clustering algorithm to determine the
parameters ðc1

kðxÞ; t1
kÞ and ð0; t0

kÞ for the k ¼ 1; 2; . . . ;K modules
under the alternative and null models, respectively (see Algorithm
1). Using the parameter estimates from the clustering algorithm, the
mODP statistic is calculated for all genes. A bootstrap algorithm is
implemented to calculate the empirical null distribution of the test
statistics (described in Supplementary Material). For the datasets
analyzed here, there are B¼500 bootstrap iterations (B¼5000 for
the smoker study) and K¼800 modules.

Prior applications of ODP have focused on microarray studies
where it is common to assume that the gene expression response
variable is approximately Normal and homoscedastic (i.e., a single
variance per gene). However, in sequencing studies, this assumption
is no longer valid because the observations are heteroscedastic. To
apply the ODP to sequencing studies, we implement a similar
strategy detailed by Law et al. (2014) where RNA-seq data are log-
transformed to model the observed mean–variance relationship.
Using this model, weights capturing the heteroscedasticity across
observations are estimated. These weights are then incorporated in a
weighted least squares regression and are easily integrated into the
mODP framework. Given a set of inverse variance weights wijt for
i ¼ 1;2; . . . ;m genes, j ¼ 1;2; . . . ; n observations and t ¼ 1;2; . . . ;Tj

measurements of the jth observation, the data are transformed as
yijt ¼

ffiffiffiffiffiffiffiffi
wijt
p

yijt and s iðxjtÞ ¼
ffiffiffiffiffiffiffiffi
wijt
p

sðxjtÞ. An ordinary least squares al-
gorithm can then be applied to this transformed data. Thus,
Algorithm 3 can be appropriately adjusted to accommodate these
weights.

4 Results

The generalized mODP was applied to four different genomic
experiments. The performance of mODP was compared to an F-test
and a moderated F-test (Smyth, 2004) using the number of discov-
eries and enriched gene sets. Finally, we validated our findings
through comprehensive simulations.

4.1 Datasets
Kidney study. To elucidate the transcriptional response from aging
in the kidney, the kidney study collected cortex samples from 72
patients with ages ranging from 27 to 92 years (Rodwell et al.,
2004). The samples were hybridized onto U133a and U133b
GeneChips with 44 928 probes. Following similar filtering steps in
Storey (2005) to control for potential confounding, only 38 833
probes were used for analysis and the expression values were log-
transformed for variance stabilization.

Endotoxin study. The endotoxin study analyzed transcriptional
regulation in human blood leukocytes from two experimental
groups: a treatment group receiving a bacterial endotoxin (an in-
flammatory stimulus) and a control group (Calvano et al., 2005).
There were four samples in each biological group and blood samples
were collected at 2, 4, 6, 9 and 24 h intervals. One control sample
had missing information at the 4 and 6 h time points. The samples
were hybridized onto U133 GeneChips with 44 924 probes. The ex-
pression values were log-transformed for variance stabilization.

Smoker study. The smoker study is a two group comparison be-
tween smoking and non-smoking humans (Ryan et al., 2014). There
are a total of 17 samples (10 non-smokers and 7 smokers) from
human airway basal cells in the epithelium: there is one female
smoker and the rest of the samples are males. The samples are
sequenced (paired-end) using Illumina HiSeq 2000, and the reads
are assembled using Bowtie: there are total of 65 217 genes with
mapped reads. After filtering genes with fewer than 10 reads across
all samples, only 26 268 genes remained for analysis. The R package
limma is used to estimate the inverse-variance weights for the
weighted least squares implementation. The expression values were
transformed to log2-counts per million (logCPM).

Dose study. The dose study is a dose–response experiment where
sensitivity to 17b-estradiol (E2) in breast cancer cells (BUS cells) was
examined (Coser et al., 2003). There are five biological replicates
for each E2 concentration, where the E2 concentrations considered

were 0, 10, 30, 60 and 100 pM (25 total samples). After 48 h
exposed to E2, RNA samples were hybridized onto U133a
GeneChips with 22 283 probes. The expression values were log-
transformed to stabilize the variance.

4.2 Determining the degrees of freedom
We implemented the cross-validation procedure detailed in
Algorithm 2 to determine the appropriate dimensionality d for the
B-spline basis. (The smoker study is a two-group comparison and so
regression splines are not necessary.) For each study, the first four
eigen-genes were determined by applying a singular value decom-
position to the dataset. In the endotoxin study, the control-treated
and endotoxin-treated groups were separated into two distinct data-
sets. Multiple regressions were fit to the eigen-genes using d ¼ 1, 2,
3, 4 for the endotoxin and dose studies and d ¼ 1; 2; . . . ; 10 for the
kidney study (an intercept term was included in the models). For
each eigen-gene, the d that minimized the leave-one-out cross-valid-
ation error was selected. Finally, the maximum d across all eigen-
genes was chosen as the estimated degrees of freedom. Applying the
above procedure, we find d̂ ¼ 4 for the endotoxin and kidney stud-
ies and d̂ ¼ 2 for the dose study (Fig. 2).

4.3 Method comparisons
We compared the mODP to two other popular test statistics, name-
ly, the F-statistic and the moderated F-statistic (described in
Supplementary Material). Compared to the F-statistic, the moder-
ated F-statistic shrinks the sample variance toward a pooled vari-
ance. This shrinkage allows for more stable inferences with low-
sample size studies (Smyth, 2004). Unlike the mODP which requires
an empirical null distribution, the F-statistic and moderated F-statis-
tic have theoretical null distributions. Therefore, we also estimate an
empirical null distribution for the F-test and moderated F-test using
a bootstrap algorithm (described in Supplementary Material). In
summary, the mODP is compared to an F-test, a moderated F-test, a
bootstrap F-test and a bootstrap moderated F-test.

We applied the above testing procedures to our four chosen stud-
ies and calculated the number of differentially expressed genes at
various FDRs (Fig. 3). At each FDR threshold, the mODP finds sub-
stantially more differentially expressed genes compared to the other
methods. For example, when applying a FDR of 0.1, mODP detects
1481, 297, 6637 and 887 more differentially expressed genes in the
kidney, smoker, endotoxin and dose studies, respectively. In add-
ition, the mODP finds nearly all of the differentially expressed genes
detected by the other methods (Fig. 4). Finally, we find that the
mODP has the lowest estimated proportion of true nulls across all
studies (Supplementary Table S1). This suggests that the mODP esti-
mates a higher expected number of alternative genes.
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Fig. 2. Cross-validation error versus degrees of freedom for the first four eigen-

genes. The dotted line indicates the chosen degrees of the freedom in the study
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To compare the testing procedures, we also performed an enrich-

ment analysis using the hallmark gene sets from the MSigDB data-
base. These gene sets contain highly curated genes with clear
expression for well-defined biological states or processes (Liberzon

et al., 2015, 2011). We developed a simple procedure to detect im-
portant gene sets by assigning the proportion of true positives to

each. These values range from 0 to 1, with important gene sets hav-
ing largest values (see Supplementary Material for additional
details). We find that the mODP has the largest proportion of true

positives across all gene sets compared to other methods (Fig. 5).
Thus the mODP has more power to detect gene sets with enriched

true positives.

4.4 Simulations
Comprehensive simulations were performed to verify the observed
differences between mODP and other methods. We generated 500

representative datasets of the observed studies as follows. For each
study, the F-testing procedure was used to separate genes into two

distinct classes (alternative and null) based on a FDR threshold of
0.1. We then sampled from the population of alternative genes to
get unique gene expression profiles. In total, we considered 5, 10,

50, 100 and 200 unique gene expression curves in our simulation
studies. These curves defined the signal for the alternative genes.

(Note the smoker study is a static experiment and so ‘unique gene
expression profile’ refers to the mean differences between the two
conditions.) The signals for the null genes were sampled from the

null population. Random noise was added to maintain the signal-to-
noise ratio and to match the observed power. Finally, the total num-
ber of alternative and null genes was chosen to keep the observed

proportion of true nulls fixed. For more details, see Supplementary
Material.

To compare the testing procedures in the simulated datasets, we
calculated the estimated FDR and the total number of discoveries.

We find that the mODP controls the FDR in all simulated studies
(Fig. 6b). Furthermore, substantially more differentially expressed
genes were detected relative to the other testing procedures (Fig. 6a).

We also find that the moderated F-test identifies a similar number of
differentially expressed genes compared to the F-test. This is unsur-

prising as the moderated F-test only outperforms the F-test when
there are small sample sizes. When the number of unique gene ex-
pression patterns is increased, the power of the mODP decreases

while the F-test and moderated F-test remain unchanged. This
occurs because the number of unique gene expression curves does

not change the power of the F-test and moderated F-test.

4.5 Implementation in the edge package
The mODP described above is implemented in an R package called
edge. When applying the edge package to a dataset, the first step is
to formulate an alternative and null hypothesis to test. Our software
has a function called build_study to help users formulate hypoth-
eses for static, longitudinal or independent sampling designs. Once
the two hypotheses are specified, the next step is to input the design
matrices into the odp function to apply the mODP procedure out-
lined here. (Note that the clustering and bootstrap algorithms are
executed internally with default parameters that can be changed.)
The odp function returns significance results such as P-values, local
FDRs, q-values, and the proportion of truly null tests. These results
can then be visualized using the plot and hist functions in a statis-
tical analysis.

There are many other features included in our software: (i) the
gene-module assignments are available for additional analyses (e.g.
enrichment analysis) using the kl_clust function, (ii) the model
fits under the alternative and null hypotheses can be accessed using
the fit_models function and (iii) integrations of other popular
tools such as surrogate variable analysis (SVA) (Leek and Storey,
2007, 2008) and jackstraw (Chung and Storey, 2015) are available
for more comprehensive biological analyses. Additional information
can be found in the vignette at http://bioconductor.org/packages/re
lease/bioc/html/edge.html.

5 Discussion

The ODP is a test statistic that provides substantial improvements in
statistical power compared to other testing procedures. While previ-
ous work on the ODP is limited to static microarray studies (Storey
et al., 2007; Storey, 2007; Woo et al., 2011), here, we extend its ap-
plication to complex experimental designs and sequencing studies.
Our proposed algorithm is applied to two time-series studies, a
dose–response study and an RNA-seq study. For each study, our
method detects more differentially expressed genes and improves the
statistical power for gene set enrichment analysis. These improve-
ments in power are validated through comprehensive simulations,
where data are simulated to closely resemble the observed datasets.
Therefore, the ODP allows for a more thorough investigation of
underlying biological mechanisms in downstream analysis.

The gained improvements in power from the ODP have import-
ant biological implications. In a genome-wide gene expression study,
genes are commonly co-expressed and share similar patterns of gene
expression. The ODP leverages this information across genes to
strengthen the evidence for or against differential expression. To ex-
plore how the ODP depends on the ‘degree’ of co-expression, we
varied the number of unique gene expression profiles with simulated
data. We find that the ODP loses power as the number of unique
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shown
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gene expression profiles increases; there are fewer related genes and
so there is less information that can be leveraged in the test statistic.
As an extreme case, suppose genes are not co-expressed and every
gene follows a unique expression pattern. In this scenario, the ODP
has been shown to perform similar to the F-test (Storey et al., 2007).
While this example is unlikely in biological studies, it provides intu-
ition for the observed power improvements compared to other test-
ing procedures.

There are a few considerations to note when applying our
extended framework to genomic datasets. First, the computationally
efficient implementation of the ODP, called the modular ODP
(mODP), involves specifying the number of modules. While previous
work has recommended 50 modules for static microarray studies,
we found choosing at least 200 modules to capture the complex rela-
tionships among genes provides the best results. Second, there needs
to be an adequate number of observations in the study. This is due
to the constraints of the mODP: it requires accurate estimates of the
mean and variance. Furthermore, the bootstrap algorithm imple-
mented in the procedure requires a minimum number of observa-
tions per biological condition to generate a valid empirical null. In
the studies considered here, there are at least four biological repli-
cates per condition. Finally, the appropriate degrees of freedom
need to be carefully chosen to avoid overfitting the spline. To this
end, we implemented a procedure from the study by Storey et al.
(2005) that chooses the degrees of freedom based on the leave-one-
out cross validation algorithm.

An interesting aspect of the mODP implementation is that a clus-
tering algorithm assigns genes to modules, where the modules are
representative of shared gene expression patterns. These modules
provide valuable information that can be utilized in an exploratory
data analysis. For example, we can calculate the proportion of true
positives for each module and rank modules based on true-positive
enrichment. Modules enriched with true positives can then be fur-
ther analyzed to understand functional relationships among genes.
Thus the clustering algorithm provides information of potential use
in other biological analyses.

There are a number of ways the ODP can be further extended
for genomic studies. One enhancement is incorporating prior
weights on each hypothesis test. For example in sequencing data,
higher per-gene read counts are more reliable than lower per-gene
read counts. This information can be included into a weighted ODP,
where weights are generated by estimating the functional proportion
of true nulls based on some informative variable (Chen et al., 2017).
Another enhancement is to extend the ODP to generalized linear
models where the response variable follows an exponential family
distribution.

As the cost of generating biological samples decreases, the preva-
lence of complex study designs will increase. The key motivation be-
hind these studies is to capture inherently non-linear transcriptional
responses. Therefore, there is demand for statistically rigorous meth-
odologies that can be applied to such settings. In this work, we de-
velop a framework to model non-linear gene expression responses
while optimally utilizing biological correlations among genes to im-
prove statistical power. Our method can thus uncover important
biological insights across a wide range of applications in functional,
translational and clinical genomics.

6 Software and data

An implementation of the algorithm described in this article is avail-
able as an R package called edge. The package can be downloaded
at https://github.com/StoreyLab/edge (most recent version) or

https://bioconductor.org/packages/release/bioc/html/edge.html (re-
lease). The data and code used to produce the figures in this manu-
script can be found at https://github.com/StoreyLab/odp_general_
studies.
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