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Abstract: Aggressive breast cancer has been shown to shift its metabolism towards increased lipid
catabolism as the primary carbon source for oxidative phosphorylation. In this study, we present a
technique to longitudinally monitor lipid metabolism and oxidative phosphorylation in pre-clinical
tumor models to investigate the metabolic changes with mammary tissue development and char-
acterize metabolic differences between primary murine breast cancer and normal mammary tissue.
We used optical spectroscopy to measure the signal of two simultaneously injected exogenous fluo-
rescent metabolic reporters: TMRE (oxidative phosphorylation surrogate) and Bodipy FL C16 (lipid
catabolism surrogate). We leverage an inverse Monte Carlo algorithm to correct for aberrations result-
ing from tissue optical properties and to extract vascular endpoints relevant to oxidative metabolism,
specifically oxygen saturation (SO2) and hemoglobin concentration ([Hb]). We extensively validated
our optical method to demonstrate that our two fluorescent metabolic endpoints can be measured
without chemical or optical crosstalk and that dual measurements of both fluorophores in vivo faith-
fully recapitulate the measurements of each fluorophore independently. We then applied our method
to track the metabolism of growing 4T1 and 67NR breast tumors and aging mammary tissue, all
highly metabolic tissue types. Our results show the changes in metabolism as a function of mammary
age and tumor growth, and these changes can be best distinguished through the combination of
endpoints measured with our system. Clustering analysis incorporating both Bodipy FL C16 and
TMRE endpoints combined with either SO2 or [Hb] proved to be the most effective in minimizing
intra-group variance and maximizing inter-group differences. Our platform can be extended to
applications in which long-term metabolic flexibility is important to study, for example in tumor
regression, recurrence following dormancy, and responses to cancer treatment.

Keywords: optical spectroscopy; tumor metabolism; fatty acid uptake; murine tumor lines;
mitochondrial metabolism; tumor vascular environment

1. Introduction

Dysregulated cellular metabolism is recognized as a core hallmark of cancer [1]. Tu-
mor cells upregulate metabolic activity to sustain continuous proliferative growth, protect
against damage from reactive oxygen species, sustain an acidic immunosuppressive envi-
ronment, and generate cancer stem cells [2,3]. One of the foundational insights into cancer
metabolism has been tumors’ propensity to increase the uptake of glucose and convert it
into lactate via glycolysis rather than shuttling it into the Citric Acid Cycle and proceeding
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with oxidative phosphorylation [4]. As rapid proliferation outstrips angiogenesis, large
portions of tumors exist in a hypoxic state. Subsequently, cancer cells upregulate aero-
bic glycolysis, diverting amino acids and lipids to biosynthetic processes [5]. Increased
glycolysis is favorable as increased lactate production contributes to an acidified environ-
ment, promoting immune escape and decreasing mitochondrial activity [5]. Known as
the Warburg effect, high rates of aerobic glycolysis have been exploited clinically for can-
cer diagnosis, staging, and monitoring (18F-deoxyglucose-positron emission tomography,
FDG-PET).

Cancers are metabolically flexible and adaptive, often utilizing multiple metabolic
pathways including oxidative phosphorylation, glycolysis, amino acid metabolism, the pen-
tose phosphate pathway, and fatty acid β-oxidation [5,6]. Cancer cells can also reprogram
their metabolism in response to metabolic stress from a changing tumor microenvironment,
allowing them to escape treatment, lie dormant, and recur [7]. Metabolic reprogramming,
including reliance on fatty acid β-oxidation and oxidative phosphorylation, is an underly-
ing mechanism of chemo-resistance [8–11]. Dysregulated lipid metabolism is an important
mechanism for tumor recurrence following therapy [12,13]. Triple Negative Breast Cancers
(TNBC), a subtype with particularly poor clinical outcomes [14,15], show increased reliance
on fats as an energy source compared to other subtypes of breast cancer [16]. Higher
dependence on both oxidative phosphorylation and fatty acid β-oxidation has been demon-
strated in Doxorubicin-resistant TNBC cells [17]. An increase in enzymes related to fatty
acid β-oxidation has been documented in triple negative breast tumors of chemo-resistant
patients [18]. Given that recent work has also pointed to an oncogene-driven dependence
of fatty acid metabolism in certain other tumor types [14,19], methods allowing for the
in vivo study of tumor lipid metabolism are pertinent for further metabolic studies.

To quantify the key metabolic features described above, we have previously shown
that rhodamine derivative Tetra Methyl Rhodamine Ethyl ester (TMRE) and 4,4-Difluoro-
5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Hexadecanoic Acid (Bodipy FL C16) are
two fluorescent indicators that report on mitochondrial membrane potential (oxidative
phosphorylation surrogate) and fatty acid uptake (fatty acid β-oxidation surrogate), respec-
tively. We and others showed TNBCs bearing the MYC oncogene have a high dependence
on fatty acid β-oxidation and that the Bodipy FL C16 fluorescence signal can track changes
in lipid metabolism following oncogene downregulation or chemical perturbation [14,20].
Further, we used TMRE in a separate study to image mitochondrial membrane potential
(MMP) as an oxidative phosphorylation surrogate and a fluorescent glucose analog 2-(N-
(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) in an in vitro model
of human epidermal growth factor receptor 2 (HER2)-positive breast cancer following
HER2 oncogene withdrawal [21]. We showed that mammospheres expressing the HER2
oncogene have high glucose uptake and low MMP [21]. Upon oncogene downregulation, a
significant decrease in glucose uptake and a significant increase in MMP persisted over the
course of regression, dormancy, and recurrence [21].

Though these studies showed the significance of TMRE and Bodipy FL C16 as tools to
characterize metabolic flexibility, they were measured in isolation. Given the inextricable
link that lipid uptake and mitochondrial metabolism exhibit, we sought to develop an
optical spectroscopy platform to simultaneously quantify the contributions of Bodipy FL
C16 and TMRE as well as two endogenous endpoints relevant to oxidative phosphorylation
and vascularization: oxygen saturation (SO2) and hemoglobin concentration ([Hb]). We
demonstrate that all four endpoints can be measured simultaneously without chemical,
optical, or biological crosstalk. We set out to demonstrate the utility of collecting two fluo-
rescent metabolic endpoints simultaneously. We performed a principal component analysis
followed by a graph-based clustering method to determine the metabolic dependence of
different tissue phenotypes: mammary tissue by age and 4T1 and 67NR tumors (murine
breast cancers lines). The analyses showed that a decrease in TMRE and [Hb] contributes
to the clustering of older mammary groups (9–15 weeks of age) from their younger coun-
terparts (7–8 weeks of age) in normal tissue, reflecting a decrease in energy needs with
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age. Bodipy FL C16, TMRE, and [Hb] all contribute to the clustering of 4T1 tumors from
normal mammary, suggesting the importance of the lipid palmitate as a substrate. None of
the four variables strongly described the clustering of 67NR tumors from corresponding
normal mammary tissues in age-matched mice. Taken together, this study shows that our
methodology can describe the metabolic dependence of different tissue phenotypes and
longitudinally track these features in vivo. Our platform can be extended to applications in
which long-term metabolic flexibility is important to study, for example in tumor regression
and recurrence following dormancy, as well as responses to cancer treatment including
metabolic inhibitors.

2. Results
2.1. There Is No Chemical Crosstalk between TMRE and Bodipy FL C16

TMRE and Bodipy FL C16 do not chemically react when combined in solution; this was
confirmed using a triple quadruple liquid chromatography mass spectrometer (LCMS-QqQ)
to analyze individual and mixed solutions of TMRE and Bodipy FL C16. A third fluorescent
metabolic probe, 2-NBDG, was included in the mixture as an individual compound and
showed no chemical crosstalk with TMRE or Bodipy FL C16. Although not discussed
further in this paper, 2-NBDG may be used in future metabolic studies. Figure 1 shows
chromatograms of four solutions prepared with methanol as a solvent: (i) 100 µM TMRE,
(ii) 100 µM 2-NBDG, (iii) 100 µM Bodipy FL C16, and (iv) a mixture of all three compounds
each at 100 µM. All features from individual solutions were maintained upon mixing and
incubation. Percent recovery of individual and mixed solutions, normalized to the peak
area of the internal standard, demonstrate less than 2% variation (within experimental
variability) at 0, 1, and 24 h after mixing, confirming that there is no chemical crosstalk
between compounds.
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Figure 1. There is no chemical crosstalk between TMRE and Bodipy FL C16. Chromatograms (in
descending order) of 100 mM TMRE, 2-NBDG, Bodipy FL C16, and a mixture of all three at t = 0, the
mixture at t = 1 h, and the mixture at t = 24 h. All solutions contained Glafenine (20 µg/mL) as an
internal standard with methanol as a solvent. The peak area was normalized to that of the internal
standard. Change in peak area per compound was within 2% (within experimental variability),
indicating no chemical change occurs after incubation of the compounds.
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2.2. The Fluorescence of TMRE and Bodipy FL C16 along with Optical Properties Can Be
Extracted from Turbid Phantoms with No Optical Crosstalk

Figure 2 shows two sets of phantom experiments where one fluorophore concentration
was varied while the other fluorophore concentration was fixed. Figure 2a,b shows the raw
and inverse Monte Carlo corrected Bodipy FL C16 fluorescence spectra at concentrations
of 200, 400, and 600 nM, with no TMRE, a fixed absorption coefficient (µa) of 0.3 cm−1,
and either a high (20 cm−1) or low (10 cm−1) reduced scattering coefficient (µs

′) in each.
Figure 2c,d shows the inverse Monte Carlo corrected spectra of Bodipy FL C16 and TMRE,
respectively, from solutions that have both metabolic indicators. The Bodipy FL C16
concentrations were 0, 200, 400, 600, 800, and 1000 nM. Each concentration was evaluated
with or without a fixed concentration of 12 nM TMRE. The TMRE concentrations were 0, 3,
6, 9, 12, and 15 nM. Each concentration was evaluated with or without a fixed concentration
of 200 nM Bodipy FL C16. Each phantom had a fixed absorption coefficient (µa) of 0 cm−1

and a reduced scattering coefficient (µs
′) of 10 cm−1.
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Figure 2. There is no optical crosstalk TMRE and Bodipy FL C16 in mixed samples. (a) Measured and
(b) corrected fluorescence spectra at three Bodipy FL C16 concentrations, each with a fixed absorption
coefficient (µa) of 0.3 cm−1 and a high (20 cm−1) or low (10 cm−1) reduced scattering coefficient
(µs
′). The Bodipy FL C16 concentrations are 200 nM, 400 nM, and 600 nM, respectively. (c) Corrected

Bodipy FL C16 spectra with (solid lines) and without (dashed lines) 12 nM TMRE. Bodipy FL C16
concentrations are 200, 400, 600, 800, or 1000 nM and (d) corrected TMRE spectra with (solid lines)
and without (dashed lines) 200 nM Bodipy FL C16. TMRE concentrations are 3, 6, 9, 12, or 15 nM.
In each phantom in (c,d), the reduced scattering coefficient (µs

′) is 10 cm−1 and there is no absorber
present. Intensity is reported in arbitrary units (a.u.) prior to correction and in corrected units (c.u.)
after correction. The color indicates the same fluorophore concentration; dashed line = high scatter,
dotted line = low scatter, and solid line = true fluorescence in a non-turbid solution. All fluorescence
intensities are reported in corrected units (c.u.).
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Upon examination of Figure 2a, it is evident that identical Bodipy FL C16 concen-
trations yield varying magnitudes of fluorescence emission intensities depending on the
scattering properties of the phantom. Figure 2b compares the spectra corrected with the
inverse Monte Carlo algorithm to true values from a non-turbid phantom (no scatterer).
The corrected spectra have comparable magnitudes to that of the same fluorophore in
a turbidity-free medium. Figure 2c shows that there is excellent concordance between
varying concentrations of corrected Bodipy FL C16 with (solid line) and without 12 nM
TMRE (dashed lines). Similar results are observed in the corrected TMRE spectra with
(solid lines) and without 200 nM Bodipy FL C16 (dashed lines) as shown in Figure 2d.

A second phantom study was performed with phantoms composed of variable con-
centrations of hemoglobin, polystyrene spheres, TMRE, and Bodipy FL C16 to reflect the
variable contributions of all four components. Table 1 shows the composition of each
phantom. Figure 3a,b shows the extracted µa and µs

′ spectra, respectively, for each of the
ten phantoms. Figure 3c shows the extracted vs. expected µa (R2 = 0.9116). Figure 3d shows
the extracted vs. expected µs

′ (R2 = 0.9964). The deviation in the results of the measured µa
for the lowest two values is likely due to the low concentration of absorber in the phantom.
Figure 3e,f show the corrected Bodipy FL C16 and TMRE spectra, respectively, for all ten
phantoms. Figure 3g,h show the corrected fluorescence for Bodipy FL C16 and TMRE,
respectively. Bodipy FL C16 (Ex: 488 nm, Em: 510 nm) and TMRE (Ex: 555 nm, Em: 585 nm)
intensity were measured and reported as the average intensity of wavelengths within
2.5 nm of the emission peak. Fluorophore concentrations were chosen to be biologically
relevant based on empirical measurements reported previously [16,22]. As expected, both
Bodipy FL C16 and TMRE fluorescence increase linearly as the concentration of fluorophore
increases (R2 = 0.9721and R2 = 0.9183, respectively). The solid red line in Figure 3c,d is y = x.
The dashed black line in Figure 3g,h is the line of best fit for concentration vs. intensity
passing through the origin (0,0).

Table 1. A series of ten tissue-mimicking liquid phantoms containing Bodipy FL C16, TMRE,
hemoglobin, and microspheres at varying concentrations were prepared. Table 1 shows the ab-
sorption coefficient (µa, cm−1), reduced scattering coefficient (µs

′, cm−1), hemoglobin concentration
(µM), and fluorophore concentrations (nM) for each phantom.

Phantom µa
1

(cm−1)
µs’ 2

(cm−1)
[Hb]
(µM)

[Bodipy]
(nM)

[TMRE]
(nM)

1 0.14 16.72 15.09 1000 15

2 0.23 13.93 25.15 833.33 12.5

3 0.29 11.94 32.33 714.29 10.71

4 0.34 10.45 37.72 625 9.38

5 0.38 9.29 41.91 555.56 8.33

6 0.41 8.36 45.26 500 7.5

7 0.44 7.60 48.01 454.55 6.82

8 0.46 6.97 50.29 416.67 6.25

9 0.48 6.43 52.23 384.62 5.77

10 0.49 5.97 53.89 357.14 5.36
1 Mean absorption coefficient. 2 Mean reduced scattering coefficient.
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Figure 3. The fluorescence of TMRE and Bodipy FL C16 along with optical properties can be extracted
from turbid phantoms. (a) Extracted absorption coefficient (µa, cm−1) and (b) extracted reduced
scattering coefficient (µs

′, cm−1) across wavelengths 450 nm to 600 nm for each of ten phantoms.
(c) Expected vs. extracted absorption coefficient (µa, cm−1, R2 = 0.9116); (d) Expected vs. extracted
reduced scattering coefficient (µs

′, cm−1, R2 = 0.9964); the red line represents y = x. Inverted (e) Bodipy
FL C16 and (f) TMRE spectra for all ten phantoms. Extracted fluorescence signal vs. concentration
for (g) Bodipy FL C16 (R2 = 0.9721) and (h) TMRE (R2 = 0.9183). Points in (c,d,g,h) represent single
measurements. The dashed black line in (g,h) represents the line of best fit passing through the origin
(0,0). Intensity is reported in corrected units (c.u.).
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2.3. There Is No Biological Crosstalk between TMRE and Bodipy FL C16

Having demonstrated that there is neither optical nor chemical crosstalk between
TMRE and Bodipy FL C16, we next aimed to show that neither compound interfered
biologically with the other in vivo. Three cohorts of n = 9 BALB/c mice were injected
retro-orbitally with either individual TMRE, individual Bodipy FL C16, or a dual injection
of the two for in vivo spectroscopy. Figure 4a,b shows both measured and corrected
representative spectra of Bodipy FL C16 and TMRE, respectively. The results show that
there is excellent agreement between the dual probe and single probe measurements for
each fluorophore. While correction minimally impacts Bodipy FL C16 fluorescence, the
corrected TMRE fluorescence peak is left-shifted and corresponds to the actual peak of the
TMRE fluorophore [22]. Figure 4c,d show corrected Bodipy FL C16 and TMRE fluorescence,
respectively, at their peak wavelengths (Bodipy FL C16: 510 nm and TMRE: 585 nm), over a
period of 60 min post-injection, averaged over nine animals at each timepoint. The shaded
regions represent standard error. Dual and individual delivery curves for each fluorophore
were tested for significance by repeated measures ANOVA. The delivery curves of a single
injection were not significantly different from that of the dual injection for both TMRE and
Bodipy FL C16.
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Figure 4. There is no biological crosstalk between TMRE and Bodipy FL C16. 4T1 mammary tumors
were orthotopically injected into the fourth mammary fat pad in four cohorts of n = 9 Balb/c mice for
the experimental studies. (a) Bodipy FL C16 and (b) TMRE spectra were measured and corrected
with an inverse Monte Carlo algorithm and normalized to peak intensity for both individual and
dual injections. Representative spectra are shown. (c) Single 200 µM injections of Bodipy FL C16 and
dual injections of 200 µM Bodipy FL C16 and 75 µM TMRE over a 60-min period, post-injection, and
(d) a single 75 µM injection of TMRE and dual injections of 200 µM Bodipy FL C16 and 75 µM TMRE
for a 60 min period, post-injection. Intensities were averaged over nine animals, at each time point,
and the shaded region represents standard (SE). p = n.s. for both comparisons. Intensity is reported
in corrected units (c.u.).
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2.4. Bodipy FL C16-TMRE Spectroscopy Measurements Reveal Metabolic and Vascular Changes in
Normal Mammary Glands throughout Development

The bar graph in Figure 5a shows the relationship between average TMRE intensity
and animal age. TMRE intensity at weeks 10 and 15 are significantly decreased from
weeks 7 and 8. Further, TMRE intensity significantly decreases from weeks 8 to 9. On the
other hand, the bar graph in Figure 5b shows there is no significant change in average
Bodipy FL C16 intensity between any of the groups. Similar to that observed in Figure 5a,c,
a significant decrease in [Hb] in older compared to younger mammary tissue is shown.
Specifically, [Hb] at weeks 9, 10, and 15 are significantly different from week 7, and weeks
9 and 10 are significantly different from week 8. As shown in Figure 5d, no statistically
significant change was observed in SO2. Together, these data reflect age-related changes in
metabolism and vascular endpoints of normal mammary tissue.
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Figure 5. Bodipy FL C16-TMRE spectroscopy measurements reveal metabolic and vascular changes
in normal mammary glands throughout development. (a) Comparison of mean TMRE fluorescence
intensity for mammary tissue at different ages. (b) Comparison of mean Bodipy FL C16 fluorescence
intensity for mammary tissue at different ages. (c) Comparison of total hemoglobin concentration
([Hb]) for mammary tissue at different ages. (d) Comparison of oxygen saturation ([SO2]) for
mammary tissue at different ages. Error bars represent the standard error (SE) of the mean along
each axis. For each timepoint n = 5, except for weeks 8 and 15 where n = 4. Statistical analysis was
performed using a Wilcoxon rank-sum test to compare means. * Is p < 0.05 for all comparisons. n.s. is
not significant.

We performed principal component analysis (PCA) on each group of interest separately
(Mammary by age, 4T1 vs. mammary, and 67NR vs. mammary) and the results are shown
in Figures 6–8. We then applied spectral clustering to the PCs describing combinations of
three of our four endpoints ((i) TMRE, SO2, [Hb]; (ii) Bodipy FL C16, SO2, [Hb]; (iii) TMRE,
Bodipy FL C16, [Hb]; (iv) TMRE, Bodipy FL C16, SO2). Figure 6a shows the results of
spectral clustering using all three PCs (total variance = 100%). Plots are projections of
the first two PCs. Figure 6b shows the variance in each PC. To characterize how well
each variable described our data, we performed information gain calculations for each
endpoint on three different subsets of data. Figure 6c shows the results of the information
gain calculations for our longitudinal mammary data. As expected, most information
gain lies in TMRE and [Hb]. We then performed spectral clustering to demonstrate how
two fluorescent metabolic measurements better describe the dataset compared to a single
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measurement. To quantify the results of clustering, we calculated a silhouette score for
each data point to report how well that point fits in its assigned cluster. Silhouette scores
measure how similar a data point in a cluster is to its own cluster (cohesion) compared
to other clusters (separation). Silhouette scores range from −1 to 1, with a higher score
indicating that clusters are well distinguished. Clusters with a score of 0.5 or higher are
considered well separated. Figure 6d shows the average silhouette scores by cluster and
by tissue type. Here, all average silhouette scores are comparable, pointing to the ease
of separation of this dataset. The silhouette plots shown in Figure 6e, demonstrate that
the clustering analyses using TMRE and [Hb] most consistently separate data points into
young (week 7–8) or old (week 9–15) clusters. Conversely, clustering using Bodipy FL C16,
[Hb], and SO2 results in clusters containing data points from each age (young or old) with
high silhouette scores in each cluster.

2.5. Bodipy FL C16 and TMRE Fluorescence Measurements Combined with Extracted Vasculature
Parameters Show the Clustering of Tumors and Mammary Tissues in Age Matched Mice

We next attempted to cluster tumor and normal tissue, specifically, 4T1 measurements
and mammary measurements from age-matched mice at weeks 7 and 8; and 67NR mea-
surements and mammary measurements from age-matched mice at weeks 7 and 8. As
shown in Supplementary Figure S1, there is no statistically significant difference observed
between any groups. Inverse Monte Carlo corrected fluorescence spectra for Bodipy FL
C16 and TMRE at the 60 min post-injection timepoint for mammary tissue, 4T1 tumors,
and 67NR tumors are shown in Supplementary Figures S2–S4, respectively.

We performed PCA on these groups using all combinations of three of our four
endpoints ((i) TMRE, SO2, [Hb]; (ii) Bodipy FL C16, SO2, [Hb]; (iii) TMRE, Bodipy FL
C16, [Hb]; (iv) TMRE, Bodipy FL C16, SO2). The first three PCs for the 4T1 vs. mammary
group and 67NR tumors vs. the mammary group were used for the clustering analysis
(Figures 7 and 8).

Figure 7a shows the clustering of the first two PCs from different combinations of
metabolic and vascular inputs; plots are projections of the first two PCs. Figure 7b contains
the variance described by each PC. For 4T1 tumors, Bodipy FL C16 and [Hb], and to a
lesser extent TMRE, have the highest information gain, shown in Figure 7c. The average
silhouette scores for each cluster and each tissue type are shown in Figure 7d. Here, clusters
generated from TMRE, Bodipy FL C16, and [Hb] produce higher mean silhouette scores
than the other endpoint combinations. From the individual silhouette scores (Figure 7e), we
see that the clusters formed based on this set of endpoints are more effective at separating
the 4T1 tumors from normal mammary tissue types.

We performed the same analyses to differentiate mammary (week 7–8) and 67NR
tumor data. Figure 8a shows the clustering results of the PCs for each subset of metabolic
endpoints. Plots are projections of the first two PCs. Figure 8b contains the variance
described by each PC. Figure 8c shows that for 67NR tumors vs. mammary tissue, [Hb] and
TMRE have the highest information gain, similar to that in normal mammary tissues from
7–8 weeks of age, which is likely why there are no discernible differences between 67NR
tumors and mammary tissues. Figure 8d shows average silhouette scores for each subset
of metabolic endpoints. Figure 8e shows that silhouette scores generated with Bodipy FL
C16, TMRE, and SO2 produced multiple negative silhouette scores, suggesting a lower
separation in the group that lacked [Hb] information. In total, we further illustrate the
value of having multiple metabolic endpoints and the added benefit of extracting vascular
properties from diffuse reflectance data.
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Figure 6. Bodipy FL C16-TMRE spectroscopy measurements reveal longitudinal changes in normal
mammary glands throughout development. (a) Projections of the first two PCs show spectral cluster-
ing results for four different combinations of the following endpoints: Bodipy FL C16 fluorescence
intensity, TMRE fluorescence intensity, total hemoglobin concentration ([Hb]), and total oxygen
saturation (SO2). Fluorescence intensity is reported as the average intensity within 2.5 nm of the
emission peak. (b) Table containing the variance described by each PC, by endpoint combination.
(c) The calculated information gained from each variable. (d) The mean silhouette scores for cluster 1,
cluster 2, data points with a true label of 7–8-week-old mammary, and data points with a true label of
9–15 week-old mammary. Error bars are SE. (e) Silhouette plots for each endpoint combination.
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Figure 7. Bodipy FL C16 and TMRE fluorescence measurements combined with extracted vascular
parameters separate clusters of normal and 4T1 tumor tissue. (a) Projections of the first two PCs show
spectral clustering results for four different combinations of the following endpoints: Bodipy FL C16
fluorescence intensity, TMRE fluorescence intensity, total hemoglobin concentration ([Hb]), and total
oxygen saturation (SO2). Fluorescence intensity is reported as the average intensity within 2.5 nm of
the emission peak. (b) Table containing the variance described by each PC, by endpoint combination.
(c) The calculated information gained from each variable. (d) The mean silhouette scores for cluster 1,
cluster 2, data points with a true label of 4T1 tumors, and data points with a true label of healthy
mammary tissue. Error bars are SE. (e) Silhouette plots for each endpoint combination.
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3. Discussion

Measuring multiple metabolic endpoints from a single tissue sample provides a more
holistic understanding of how metabolic pathways change over time. We demonstrate that
both our fluorescent and vascular endpoints all provide information to describe the data
depending on the context. Although different combinations of three of the four endpoints
could be used, incorporating both Bodipy FL C16 and TMRE endpoints in any combination
of three proved to be the most effective in minimizing intra-group variance and maximizing
inter-group differences. We saw that collectively analyzing multiple endpoints effectively
delineated clusters of normal mammary and tumor tissues. These observations underscore
the importance of examining the relationship between the metabolic and vascular vari-
ables within a tissue or tumor group rather than using individual endpoints that may by
themselves not fully describe these features.

Others have also shown that increasing the number of optical endpoints allows for
a better classification of tumors. Autofluorescence metabolic imaging, stimulated Raman
scattering (SRS), Coherent anti-Stokes Raman scattering (CARS) imaging, and spectroscopy
utilize multiple laser sources to report on key biomolecules and pathways in tissue such
as lipid uptake [23], protein metabolism [24], and glycolysis [25]. For instance, previous
groups have combined information related to the optical redox ratio (quantification of FAD
and NADH fluorescence) and fluorescence lifetime to identify metabolic trends in cultured
cells experiencing perturbations such as hypoxia and hypothermia [26]. Similar to our
technique, redox imaging can draw conclusions about the use of oxidative phosphorylation
compared to other metabolic pathways. Others have shown the value of using multiple
Raman peaks to measure a large number of biomolecules (lipids, nucleic acids, and collagen)
to better categorize radiation resistant tumor lines [27]. In each of these cases, the inclusion
of multiple metabolic endpoints enabled higher dimensional analyses with clustering or
classification tools.

Our study also provided insight into how the age of mammary tissue affects the inter-
pretation of studies comparing tumor and healthy mammary tissue. From approximately
3 weeks of age to approximately 10–12 weeks of age, the mammary gland undergoes
rapid development including infiltration and elongation of the ductal tree and adipocyte
development near ductal structures [28,29]. This should lead to a change in metabolism as
a function of energy demands from cellular proliferation. Our longitudinal fluorescence
spectroscopy measurements revealed a statistically significant decrease in TMRE uptake
in animals aged 9–15 weeks compared to those at 7–8 weeks of age. We also observed a
decrease in [Hb] over this period. Interestingly this was not observed for either Bodipy
FL C16 or SO2. Though studying the molecular mechanisms of these changes is beyond
the scope of this work, these results underscore the importance of studying metabolism in
age-matched controls and tumors.

Multi-parametric metabolic measurements improve the ability to distinguish tissue
types. Previously, we have not observed statistically significant differences in TMRE or
Bodipy uptake between 67NR and 4T1 tumor lines [16,30,31] using our optical toolbox. The
findings in this study match previous work. While it is possible to observe differences in
fluorescence signal between tumors and healthy dorsal skin or flank muscle, we observed
here that normal developing mammary tissue exhibits similar levels of fatty acid uptake and
mitochondrial membrane potential compared to a tumor. By simultaneously analyzing our
four metabolic endpoints, it is possible to better differentiate tumor and normal mammary
tissue types. Information gain analysis of data from normal mammary tissue and 4T1 and
67NR tumor tissue reveals that [Hb] and, for 4T1 tumors, Bodipy FL c16 are important to
describing our tumor tissue. Clustering analysis supports this conclusion by separating
tumor and normal tissue with combinations of [Hb] and metabolic endpoints.

Understanding the importance of glucose as a substrate for cancer metabolism is im-
portant and it would be beneficial to have a method to collect longitudinal measurements
of all three endpoints in vivo. Our group has previously validated the use of glucose ana-
log 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) with TMRE
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to report on glucose uptake and mitochondrial membrane potential to provide insight
into tumor reliance on glycolysis or oxidative phosphorylation or both for fuel [22,31,32].
Further, we have developed a method to measure 2-NBDG and TMRE simultaneously
in a single pre-clinical tumor [32] and used it to study relationships between the uptake
of the two probes for tumors of different metastatic potential and at different stages of
growth [22,31,32]. Therefore, future optical studies similar to those described in this paper
to minimize optical and biological crosstalk between these three indicators should lead
to a versatile multi-parametric platform for tissue metabolic spectroscopy well suited to
pinpoint metabolic dependence and plasticity of cancer. These measurements can inform
on windows for in-depth tissue analysis, using assays such as next generation sequencing
or omic-based methods to quantify entire metabolic pathways and identify molecular
mechanisms of disease progression.

We have developed an optical toolkit to characterize major relevant axes of cancer
metabolism longitudinally in vivo. Simultaneous spectroscopy of TMRE and Bodipy FL 16
along with vascular endpoints is well poised to provide insight into metabolic plasticity
and, therefore, can be readily applied to longitudinal studies of treatment resistance and
recurrence—two outstanding challenges in cancer therapy [33]. With work pointing to
the increased role of lipid metabolism in residual tumor cells [13] and the plasticity of
mitochondrial function throughout tumor progression [34], simultaneous, longitudinal
measurements of these two critical endpoints will allow for a more complete understanding
of the interplay of these two processes.

4. Materials and Methods
4.1. Ethics Statement

All animal work was carried out in accordance with the recommendations in the
Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The
protocol was approved by the Duke University Institutional Animal Care and Use Commit-
tee (protocol number A038-21-02). All experiments were performed under isoflurane gas
anesthesia, and all efforts were made to minimize suffering.

4.2. Liquid Chromatography-Mass Spectrometry of Fluorophore Samples

Quantitative liquid chromatography-mass spectrometry (LCMS) was performed on
samples of 2-NBDG, TMRE, and Bodipy FL C16 with Glafenine as an internal standard
to analyze fluorophore stability and to allow for quantitative analysis. All metabolic
compounds were dissolved in dimethyl sulfoxide (DMSO) and diluted in methanol. Four
solutions were prepared: (i) 100 µM 2-NBDG, 20 µM Glafenine; (ii) 100 µM TMRE, 20 µM
Glafenine; (iii) 100 µM Bodipy Fl C16, 20 µM Glafenine; and (iv) 100 µM 2-NBDG, 100 µM
TMRE, 100 µM Bodipy FL C16, and 20 µM Glafenine. The concentration was chosen to be a
greater concentration than would be used experimentally for animal studies such that any
possibility for chemical reactions between compounds would be captured by the system’s
dynamic range. All solutions were analyzed immediately upon preparation and after 1
and 24 h. LCMS analysis was performed using an Agilent 6460 Triple Quadrupole LC-MS
unit (Agilent Technologies, Santa Clara, CA, USA) and the ultraviolet/visible (UV-vis)
absorption spectrum was measured at 345 nm. Chromatography was performed on a
Phenomenenx Luna C18 column, 2 mm × 100 mm, 3 µ particle, with 5 µL injection volume,
using solvents A: 100:3:0.3 water:MeOH:formic acid and B: 100:3:0.3 MeCN:water:formic
acid. The gradient separation method was 0–100% B over 9 min, with a flow rate of
0.5 mL/min. All UV absorption peaks related to fluorophores and Glafenine were manually
integrated and normalized to the peak area of Glafenine to determine percent recovery.
Peak area was compared between individual solutions (i), (ii), (iii), and mixed solution (iv)
at 0, 1, and 24 h to determine percent change.
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4.3. Optical Measurements

Optical measurements for all studies were collected using a previously developed,
validated, and reported optical spectroscopy system and optical fiber-based probe [22,35].
Briefly, the system consists of a 450 W Xenon lamp, a monochromator, a spectrograph, and
a 2D CCD camera (Jobin Yvon Horiba, Edison, NJ, USA). The probe consists of 19 fibers for
excitation illumination and 18 for emission detection (RoMack Inc., Irving, TX, USA). Each
fiber had a numerical aperture of 0.22 and the sensing depth of the system has previously
been estimated to be 1.5 mm. To account for day-to-day variations in the system, reflectance
and fluorescence spectra were calibrated to a 20% reflectance standard (Spectralon, Lab-
sphere) and a fluorescence standard (USF 210-010, Labsphere Inc., North Sutton, NH, USA),
respectively. Diffuse reflectance measurements were collected by illuminating the tissue
with broadband white light and scanning the emission monochromators across the wave-
length range of interest (350–700 nm). Fluorescence measurements were collected by fixing
the source monochromator to provide the required excitation wavelength while scanning
the detection monochromator over the desired spectral range. The intensity calibrated
fluorescence spectra were also scaled wavelength-by-wavelength with a correction factor
determined by the fluorescence spectrum of a NIST-approved tungsten calibration lamp
(Optronic Laboratories Inc., Orlando, FL, USA).

All measurements were acquired in a dark room. Optical spectroscopy measurements
on both the phantoms and animal models were conducted after adequate time was allowed
for system warm-up (>30 min). Reflectance spectra were acquired from 420–760 nm (acqui-
sition time: 0.025 s); Bodipy FL C16 fluorescence spectra were acquired from 505–635 nm
(acquisition time: 2 s) using excitation at 488 nm; TMRE fluorescence spectra were acquired
from 575–705 nm (acquisition time: 5 s) using excitation at 555 nm. Background spectra
were collected for both phantoms and animals before the addition of fluorophore.

4.4. Inverse MC Models for Reflectance and Fluorescence

The measured reflectance and system response calibrated fluorescence spectra for both
phantom and pre-clinical studies were input into a scalable inverse Monte Carlo model.
Previous work has validated the ability of this model to extract optical properties and
intrinsic fluorescence signals from both liquid phantoms and tissue [36–39]. To correct
the measured fluorescence spectrum for effects of tissue optical properties, it is necessary
to know the optical absorption and scattering properties of the medium. The inverse
Monte Carlo first extracts the absorption coefficient and reduced scattering coefficient
from a diffuse reflectance spectrum. These extracted optical properties are then used by
the inverse Monte Carlo fluorescence model to correct for the effects of scattering and
absorption on the measured fluorescence spectrum to provide the intrinsic fluorescence.
A measured “reference” phantom with known optical properties is used to generate the
calibration factor to appropriately scale the outputs of the inverse Monte Carlo algorithm.
The reference phantom was selected to minimize the error of extraction both absorption
and scattering as previously described [36].

4.5. Tissue Phantoms

Three sets of liquid phantoms were created to demonstrate (i) the inverse Monte
Carlo algorithm can reliably extract the intrinsic Bodipy FL C16 signal from phantoms
with different optical properties, (ii) Bodipy FL C16 and TMRE exhibit no optical crosstalk
when combined in solution, and (iii) differing levels of Bodipy FL C16, TMRE, and tis-
sue optical properties can be reliably extracted from optical spectra using the inverse
Monte Carlo algorithm. Liquid phantoms with tissue-mimicking properties were pre-
pared using varying absorber, scatterer, and fluorophore concentrations. Hemoglobin
(H0267, Sigma-Aldrich Co., St. Louis, MO, USA) was used as the non-fluorescent ab-
sorber, and 1-µm monodisperse polystyrene spheres (1-µm diameter, Catalog No. 07310,
Polysciences, Warrington, PA, USA) were used as the scatterer. Mixing known volumes
of stock hemoglobin and microsphere suspensions in deionized (DI) water with stock
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fluorophore solution allowed accurate control of the final absorption, scattering, and fluo-
rescence properties in each phantom. The absorption spectra of the stock hemoglobin were
measured using a spectrophotometer (Cary 300, Varian, Inc., Palo Alto, CA, USA) and were
used to determine the final absorption of the phantom, while the values of the reduced
scattering coefficients in the phantoms were calculated from the Mie theory for spherical
particles using freely available software [40]. Bodipy FL C16 dissolved in DMSO exhibited
a previously characterized red-shift [41] in the emission spectrum. Therefore, Bodipy FL
C16 was diluted in 0.02 g/mL bovine serum albumin (Life Technologies/Thermo Fisher
Scientific, Waltham, MA, USA) in PBS, with an expected protein-bound emission peak of
510 nm. Reflectance and fluorescence measurements from the phantoms were obtained by
placing the optical probe just beneath the surface of the liquid with the phantom being well
mixed by repeated pipetting before each measurement.

To demonstrate the ability of the inverse Monte Carlo algorithm [38,39] to correct for
the effects of tissue optical properties (scattering and absorption) of the measured Bodipy
FL C16 spectra, we constructed three pairs of liquid phantoms, with each pair containing a
fixed concentration of fluorophore and both a high (ms’ = 20 cm−1) and low (ms’ = 10 cm−1)
concentration of scatterer. Phantom pairs contained Bodipy FL C16 at 200 nM, 400 nM,
and 600 nM. Concentrations are based on biologically relevant fluorophore concentrations
in previous in vivo microscopy studies [16]. To appropriately compare non-turbid and
turbid phantoms, a scaling factor was applied to all non-turbid spectra based on a ratio
of the peak intensity of the phantom containing Bodipy FL C16 at 200 nM, low-scatter
phantom spectrum, and the fluorophore in a non-turbid phantom containing Bodipy FL
C16 at 200 nM, no-scatter phantom spectrum.

To confirm that TMRE and Bodipy FL C16 do not exhibit optical crosstalk, four sets of
phantoms were constructed containing either (i) Bodipy FL C16 at concentrations 0, 200,
400, 600, 800, and 1000 nM, (ii) TMRE at concentrations 0, 3, 6, 9, 12, and 15 nM, (iii) Bodipy
FL C16 at the same concentration range with a fixed concentration of 12 nM TMRE, or
(iv) TMRE at the same concentration range with a fixed concentration of 200 nM Bodipy FL
C16. These phantoms contained fluorophore and polystyrene microspheres as the scatterer.
No absorber was included. All concentrations were chosen to be in the biologically relevant
range and within the dynamic range of the optical spectroscopy system.

In the final phantom study, a set of phantoms were created to emulate tissue optical
properties. Each of the phantoms had different absorber and fluorophore concentrations
and scatterer densities over a range typically found in breast tissues. The purpose of this
phantom study was to demonstrate that reflectance and fluorescence measurements made
at the same time with a single instrument can quantify all four endpoints: fluorescence
intensities of Bodipy FL C16 and TRME, [Hb], and SO2. A series of ten phantoms were
constructed as shown in Table 1. The diffuse reflectance from each phantom with TMRE
fluorescence at 555 nm and Bodipy FL C16 fluorescence at 488 nm was measured.

4.6. In Vivo Murine Breast Cancer Model Studies

Three sets of animal experiments were performed to validate and demonstrate simul-
taneous Bodipy FL C16 and TMRE measurements. The first study aimed to demonstrate
that simultaneous measurements of Bodipy FL C16 and TMRE produced equivalent results
as measurements of either Bodipy FL C16 or TMRE alone in murine 4T1 solid tumors. The
second aimed to analyze longitudinal changes in normal mammary tissue metabolism
over an 8-week period. The third analyzed two tumor lines (4T1 and 67NR) with different
metastatic potentials over a 1-week period. Seven- to fifteen-week-old female BALB/c
mice (Charles River Laboratories, Raleigh, NC, USA) weighing 25 to 30 g were used in all
animal studies. Animals were housed in an onsite facility with ad libitum access to food
and water and standard 12-h light/dark cycles. All animal experiments were conducted
during the day, and mice were fasted for at least two hours prior to optical measurements.
Fasting ensured glucose in the body did not compete with metabolic probe uptake and
good signal contrast from the tumor compared to normal tissue [35]. Fasting was confirmed
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by measuring blood glucose levels with glucose test strips (Abbott, Alameda, CA, USA). To
collect reflectance and fluorescence spectra from animals, the probe was pushed gently to
contact the tumor or healthy mammary fat pad, without compressing the surface or leaving
an air gap, and stabilized in the same place for the duration of imaging (up to 60 min) using
a custom holder. Animals were anesthetized via isoflurane breathing (1.5% isoflurane gas
mixed with oxygen) throughout the course of the optical measurements.

For tumor studies, either 4T1 or 67NR murine breast cancer cell lines were used
to grow orthotopic mammary tumors. The 4T1 cells were acquired from the American
Type Culture Collection, and the 67NR cells were generously provided by Dr. Fred Miller
(Karmanos Cancer Institute, Detroit, MI, USA) through Dr. Inna Serganova and Dr. Jason
Koucher (Memorial Sloan Kettering Cancer Center, New York, NY, USA). At five weeks
of age, each mouse received a 100 µL subcutaneous injection of 30,000 cells in the fourth
right mammary fat pad. Tumors were monitored every other day and allowed to grow to
a volume (0.5 × Length ×Width2) of 125 mm3, a volume that is palpable and provides a
sufficient surface for spectroscopy, without resulting in ulcerations. Additionally, a 125 mm3

tumor volume also allows our mice to be age-matched to our normal mammary cohort
at an age of seven-eight weeks. For biological crosstalk studies, a total of twenty-seven
4T1-tumor-bearing animals were divided into three groups of nine. One cohort (n = 9) was
injected with Bodipy FL C16 (200 µM), another cohort (n = 9) was injected with TMRE
(75 µM), and the final cohort (n = 9) was injected with a mixed preparation of TMRE and
Bodipy FL C16 (75 µM TMRE and 200 µM of Bodipy FL C16). Cages were randomized
to minimize batch effects. All fluorophores were diluted in PBS. For longitudinal studies,
a total of fifteen animals were divided into three groups of five each. One cohort (n = 5)
received orthotopic 4T1 tumor cells, another cohort (n = 5) received orthotopic 67NR tumor
cells, and the final cohort did not receive any tumor cells. Each cohort was injected with a
mixed preparation of TMRE and Bodipy FL C16 (75 µM TMRE and 200 µM of Bodipy FL
C16). All injection volumes were 100 µL.

The fluorophores were injected retro-orbitally and measurements were obtained at 2,
4, 6, 8, 10, 20, 30, 40, 50, and 60 min post-injection to quantify probe delivery. At each time
point, three measurements were collected: TMRE fluorescence at 555 nm excitation and
585 nm emission, Bodipy FL C16 fluorescence at 488 nm excitation and 510 nm emission,
and diffuse reflectance spectra. Bodipy FL C16 and TMRE signals at 60 min post-injection
were used in all analyses [35] unless noted otherwise. The inverse Monte Carlo algorithm
extracted intrinsic Bodipy FL C16 fluorescence; intrinsic TMRE fluorescence; scattering (µs

′)
absorption coefficients (µa’), and SO2 and ([Hb]) from µa.

Fluorescence and reflectance measurements were measured over 7–15 weeks to de-
termine any changes in the metabolic profile of normal tissue which might be impacted
by animal age. Spectra were measured at 7, 8, 9, 10, and 15 weeks of age. Normal mam-
mary tissue measurements were performed on the fourth mammary fat pad of seven- to
fifteen-week-old female BALB/c mice, using the nipple as a landmark to consistently collect
measurements from approximately the same anatomical location on the fat pad. For each
timepoint, n = 5 animals were used, except at week 8 where one animal was determined to
be a statistical outlier using a Grubbs’ test and at week 15, where one animal passed away.
We also wanted to demonstrate that simultaneous measurements of Bodipy FL C16 and
TMRE are useful in studying metabolic dependence in murine breast tumors of different
metastatic potential. Fluorescence and reflectance spectroscopy was performed on each
animal at 4-day intervals to collect three measurements from each tumor over the course of
tumor growth (animals were 7 weeks of age by end of the study).

4.7. Data Analysis

All in vivo optical spectral data were processed using our previously developed
scalable inverse Monte Carlo model [38,39]. The Monte Carlo model analyzed TMRE and
Bodipy FL C16 fluorescence (without absorption and scattering distortions) at different time
points and was used to create kinetic uptake curves. Measurement at the 60-min time point
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was used to quantify TMRE and Bodipy FL C16 uptake. Statistical differences between
uptake curves were tested with a repeated measures analysis of variance (ANOVA). The
fluorescence intensities, SO2, and [Hb] among different animal groups were compared
using a Wilcoxon rank-sum test. A p-value of 0.05 or less was considered statistically
significant. Pearson’s correlation coefficients and p-values were calculated to assess the
relationship between variables. Principal component analysis (PCA) was performed on
extracted metabolic measurements. The output of PCA was clustered using a built-in
spectral clustering algorithm (MATLAB 2021) for both longitudinal mammary and tumor
tissue data. Three separate PCAs were performed for each group of interest (mammary
by age, 4T1 vs. mammary, and 67NR vs. mammary) and all principal components were
included for clustering. Graphs generated show the clustering on the first two dimensions
(a 2D projection onto PC 1 and PC 2 of clustering performed in 3D space on all three
PCs). To quantitate the appropriateness of clustering, we calculated silhouette scores for
each point using a MATLAB built-in function. Silhouette scores are calculated by the
following equation:

S(i) =
b(i)− a(i)

max{a(i), b(i)} (1)

where a(i) is the average distance between each point and other points in their own cluster,
and b(i) is the average distance between each point and the points in the opposite cluster.
We calculated the mean silhouette score for each cluster and each true data label and
plotted the silhouette score for each point in a silhouette plot. We also performed an
information gain calculation to determine the relative information contribution of each
individual input. Information gain is calculated as the difference between the Shannon’s
entropy of the entire dataset and the average Shannon’s entropy for each class within the
dataset. Information gain was calculated using open-source data analysis software R Studio
CORElearn Library (R version 4.1.2). MATLAB (Mathworks, Natick, MA, USA) was used
to perform all statistical analysis and calculations unless otherwise noted.

5. Conclusions

The goal of this work was to develop a non-invasive method to simultaneously
measure exogenous reporters of fatty acid uptake and metabolic membrane potential and
endogenous contrast related to hemoglobin concentration and tissue oxygenation. We
demonstrated the feasibility of this method by showing that Bodipy FL C16 and TMRE
do not crosstalk chemically, optically, or biologically, and that these probes are compatible
with an inverse Monte Carlo algorithm to extract tissue optical properties and intrinsic
fluorescent signal. In vivo optical spectroscopy measurements of our simultaneously-
injected fluorophores revealed decreases in both TMRE uptake and total hemoglobin
concentration in the mammary fat pads of healthy mice over the course of fifteen weeks.
This provides new insights into how the age of mammary tissue affects the interpretation
of studies comparing tumor and healthy mammary tissue. We further observed that
combinations of metabolic and vascular endpoints effectively delineated clusters of normal
and tumor tissues where individual endpoints could not. These observations underscore
the importance of examining the relationship between the metabolic and vascular variables
instead of looking at individual endpoints in isolation. This work has broad implications in
tracking metabolism in vivo to study disease progression and therapy resistance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12050369/s1. Supplementary Figure S1. Bodipy FL
C16 and TMRE spectroscopy measurements reveal metabolic and vascular changes in the normal
mammary gland, 4T1 tumor, and 67NR tumor at 7 weeks of age. Supplementary Figure S2. Inverse
Monte Carlo corrected spectra collected from normal mammary tissue. Supplementary Figure S3.
Inverse Monte Carlo corrected spectra collected from 4T1 tumor tissue. Supplementary Figure S4.
Inverse Monte Carlo corrected spectra collected from 67NR tumor tissue.

https://www.mdpi.com/article/10.3390/metabo12050369/s1
https://www.mdpi.com/article/10.3390/metabo12050369/s1
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