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1 Institute of Neuroscience and Medicine 4, INM 4, Forschungszentrum Jülich, Jülich, Germany, 2 Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH

Aachen University, Aachen, Germany, 3 JARA – BRAIN – Translational Medicine, RWTH Aachen University, Aachen, Germany, 4 Department of Neurology, RWTH Aachen

University, Aachen, Germany, 5 Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland

Abstract

Electroencephalography (EEG) frequencies have been linked to specific functions as an ‘‘electrophysiological signature’’ of a
function. A combination of oscillatory rhythms has also been described for specific functions, with or without predominance
of one specific frequency-band. In a simultaneous fMRI-EEG study at 3 T we studied the relationship between the default
mode network (DMN) and the power of EEG frequency bands. As a methodological approach, we applied Multivariate
Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) and dual regression analysis for
fMRI resting state data. EEG power for the alpha, beta, delta and theta-bands were extracted from the structures forming the
DMN in a region-of-interest approach by applying Low Resolution Electromagnetic Tomography (LORETA). A strong link
between the spontaneous BOLD response of the left parahippocampal gyrus and the delta-band extracted from the
anterior cingulate cortex was found. A positive correlation between the beta-1 frequency power extracted from the
posterior cingulate cortex (PCC) and the spontaneous BOLD response of the right supplementary motor cortex was also
established. The beta-2 frequency power extracted from the PCC and the precuneus showed a positive correlation with the
BOLD response of the right frontal cortex. Our results support the notion of beta-band activity governing the ‘‘status quo’’ in
cognitive and motor setup. The highly significant correlation found between the delta power within the DMN and the
parahippocampal gyrus is in line with the association of delta frequencies with memory processes. We assumed ‘‘ongoing
activity’’ during ‘‘resting state’’ in bringing events from the past to the mind, in which the parahippocampal gyrus is a
relevant structure. Our data demonstrate that spontaneous BOLD fluctuations within the DMN are associated with different
EEG-bands and strengthen the conclusion that this network is characterized by a specific electrophysiological signature
created by combination of different brain rhythms subserving different putative functions.
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Introduction

Resting state network (RSN) activity can be defined as coherent

and spontaneous fluctuations of human brain activity in distinct

and spatially separate networks of varying granularity when

subjects are not engaged in a particular task or superior cognitive

processes. The concept was developed as a consequence of

evaluating the functional connectivity among brain regions

displaying spontaneous functional magnetic resonance (fMRI)

activity recorded at rest [1–4]. Biswal et al. took the first steps when

they demonstrated a high correlation and temporal synchrony of

the blood oxygenation level dependent (BOLD) contrast in series

of relatively distant brain regions [5]. The existence and

characteristics of the RSNs have been further studied in a series

of magnetic resonance imaging and positron emission tomography

studies [6–8] and their abnormalities have been related to

neurological and psychiatric conditions [9]. Changes in the

connectivity and patterns of the RSNs have also been described

during normal human sleep [10,11]. Additionally, RSN changes

have been described in normal aging [12]. The importance of

RSN activity is also highlighted by the physiological energy

demand of the brain during ‘‘rest’’: 60% to 80% of the brain’s

energy usage is used to support communication among neurons

and basal activity; the additional energy burden associated with

transient demands such as evoked activity is as little as 0.5% to 1%

of the total energy [13].

One of the most frequently studied and robustly measurable

RSN is the default mode network (DMN), which is thought to

characterize basal neural activity [13–15]. It comprises the

precuneus, anterior cingulate cortex (ACC), posterior cingulate

cortex (PCC) and lateral parietal inferior gyri [9,16,17]. The

activity of the DMN has been linked to introspection, self-

referential thought and integration of cognitive and emotional

processing [2]. RSNs are referred to as ‘‘low frequency’’ signals in

reference to their spectral power distribution [18]. The actual
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neuronal basis of the low frequency BOLD signal oscillations is not

completely understood and has spawned a debate about the

possibility that these BOLD signals arise from respiratory or

cardiac oscillations [19–23].

In contrast to the indirect character of the BOLD signal,

electroencephalography (EEG) is a direct measure of neuronal

activity, and provides an effective means of measuring neuronal

firing [24,25]. It requires the synchronous activity of a large

number of neurons to generate measurable electric potentials at

the scalp. It thereby poses the problem of source localization (an

inverse problem), in which only surface measurements are made of

signals originating inside a conductive volume [26]. In this sense,

simultaneous fMRI-EEG has gained attention due to the

complementary temporal and spatial resolutions inherent to each

technique [27]. This simultaneous multimodal approach has the

potential to control for confounding factors such as the arousal

level and the differences of the physiological state at rest.

The relationship between EEG and fMRI signals is still a topic

of ongoing research. Based on a study in anaesthetised monkeys

undergoing fMRI and microelectrode recordings by Logothetis et

al., it was suggested that the BOLD signal is governed by local field

potentials [28]. However, the exact mechanism of coupling

between the hemodynamic response measured by BOLD-fMRI

and the underlying neuronal activity is poorly understood and is

an area of intensive discussion and research [6,29,30].

Previous simultaneous fMRI-EEG studies have focused on the

alpha and beta frequency bands and they suggest that the BOLD

signal in visual regions and other cortical areas is negatively

correlated with posterior alpha fluctuations observed in the EEG

data [25,31]. Laufs et al. observed that ‘‘positive correlation with

alpha power (and the BOLD signal) was sparse and restricted to

two foci in the cingulate gyrus and occipital cortex’’, although they

observed a ‘‘widespread negative correlation with alpha power in a

bilateral fronto-parietal network’’ [31]. For the beta-band, Laufs et

al. report positive correlations with structures belonging to the

DMN network [25,31]. Moosmann et al. reported, in a combined

fMRI-EEG and near infrared spectroscopy (NIRS) study, an

inverse relationship between alpha activity and BOLD signal in

the occipital cortex. The NIRS-EEG results showed a positive

correlation in the occipital cortex between alpha activity and

fluctuations of deoxygenated haemoglobin with a temporal shift of

about 8 seconds. Moosmann et al. proposed that alpha activity in

the occipital cortex is associated with metabolic deactivation [32].

Furthermore, Goldman et al. showed in an early fMRI-EEG study

at 3 T, that increased alpha-band power was correlated with

decreased BOLD signal in the occipital, superior temporal,

inferior frontal and cingulate cortex, and with increased signal in

the thalamus and insula [33].

Several other studies have investigated the functional link

between EEG oscillations and RSNs using different approaches.

Mantini et al. concluded that the sensorimotor RSN is primarily

associated with beta-band oscillations, and that the visual RSN is

associated with all frequency bands except gamma [34]. Jann et al.

proposed that EEG frequency bands and their topographies can

be seen as electrophysiological signatures of the underlying

distributed neuronal RSNs, and they reported that the activity

of DMN was associated with increased alpha activity in occipital

electrodes and beta activity in parietal electrodes [35]. Knyazev et

al. found, via independent component analysis (ICA), that only the

spatial patterns of the alpha-band showed an overlap with the

DMN, suggesting that the primary function of alpha oscillations is

the synchronization of internal mental processes [36]. In a recent

study, Sadaghiani et al. [37] used simultaneous fMRI-EEG to

analyse the relationship between a given frequency band in EEG

and the BOLD signal, although focusing on phase synchroniza-

tion. Based on the hypothesis that alpha-band oscillations function

as an ‘‘active inhibitory mechanism that gates and controls sensory

information processing’’, a positive correlation was found between

upper alpha-band phase synchrony and the BOLD signal in

prefrontal and parietal regions [37].

ICA in fMRI data analysis has been demonstrated to be a

reliable tool for identifying patterns of activation, image artefacts

and RSNs [14,38,39]. The resulting activation maps that

correspond to RSNs differ significantly from the maps of major

blood vessels and motion artefacts. Additionally, the method of

‘dual regression’ was recently introduced, which permits the

identification of inter-subject differences in resting functional

connectivity based on inter-subject similarities within the frame-

work of multi-subject-ICA analysis [40].

The present study investigates EEG power correlates of the

BOLD signal arising in the DMN in simultaneous fMRI-EEG

using ‘dual regression’ as method for assessing inter-subject

variations. In order to investigate whether different EEG

frequency bands correlate with the DMN, frequency and source

localization analyses were performed. We hypothesize that

different frequency bands correlate with BOLD signal fluctuations

of the brain at rest within the DMN.

Materials and Methods

Subjects
During a single session measurement, EEG was recorded

simultaneously with fMRI at 3 T from 15 healthy volunteers (10

males, 5 females, mean age: 28.26 years SD: 7.35) using MR

compatible devices. Written, informed consent was obtained from

all subjects and the study was approved by the Ethics Committee

of the Medicine Faculty of the Rheinisch-Westfälischen Tech-

nischen Hochschule Aachen (RWTH Aachen University). The

study was conducted according to the Declaration of Helsinki.

EEG data were recorded by Brain Vision Recorder (Brain

Products, Gilching, Germany) using a 64-channel MR compatible

EEG system including an MR compatible amplifier and a

synchronisation box (Brain Products, Gilching, Germany). The

EEG cap (BrainCap MR, EasyCap GmbH, Breitbrunn, Germany)

consisted of 63 scalp electrodes distributed according to the 10–10

system and one additional electrode for recording the electrocar-

diogram (ECG). Data were recorded relative to an Fpz reference

and a ground electrode that was located at AFz (10–5 electrode

system) [41]. Data were sampled at 5000 Hz, with a bandpass of

0.016–250 Hz. Impedances at all recording electrodes were kept

below 10 kV.

Functional MRI data were recorded using a 3 T Siemens

Magnetom Trio scanner. Images were acquired using a T2*-

weighted EPI sequence (TR: 2.2 s, TE: 30 ms, FOV: 200 mm,

slice thickness: 3 mm and number of slices: 36). The functional

time series consisted of 165 volumes (6 minutes). Anatomical

images were acquired for every subject using a Magnetization-

Prepared, Rapid Acquisition Gradient-Echo (MP-RAGE) se-

quence (TR: 2250 ms, TE: 3.03 ms, field-of-view:

25662566176 mm3, matrix size: 2566256, flip angle: 9u, 176

sagittal slices with 1 mm slice thickness and GRAPPA factor of 2

with 70 autocalibration signal lines). The subjects were requested

to lie down, close their eyes and relax during the six minutes of

measurement.

EEG data analysis
The EEG data were processed using Brain Vision Analyzer

(Version 2.0. Brain Products, Munich, Germany). Gradient
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artefact correction was performed using the method proposed by

Allen et al. and included in Brain Vision Analyzer [42]. Data were

down-sampled to 250 Hz and a low-pass filter with a cut-off

frequency of 40 Hz was applied. Re-referencing of the data was

carried out including all EEG channels as a new reference. Pulse

artefact correction was achieved using ICA [43,44]. In order to

obtain independent components (ICs), the extended Infomax ICA

[45] with the Runica algorithm was applied to the whole data set.

The pulse artefact correction was accomplished by visual

identification of components contributing to the artefact and

rejecting them using the ‘Inverse ICA’ tool. ‘Complex demodu-

lation’ was performed in order to extract frequency power at each

data point. The complex demodulation works by transforming the

EEG signal continuously in such a way that the resulting signal

consists only of frequencies that lie within in the defined range

[46]. Complex demodulation is a local version of harmonic

analysis that enables the amplitude and phase of particular

frequency components of a time series to be described as functions

of time.

The frequency bands were defined as follows: delta (0.5–

3.5 Hz), theta (4–7 Hz), alpha-1 (7.5–9.5 Hz), alpha-2 (10–

12 Hz), beta-1 (13–23 Hz) and beta-2 (24–34 Hz), according to

the conventional International Federation of Clinical Neurophys-

iology guideline [47]. For the construction of covariants, EEG

power was extracted from regions-of-interest (ROI) using the Low-

Resolution Electromagnetic Tomography (LORETA) [48] tool

included in Brain Vision Analyzer. LORETA uses a three-shell

spherical head model registered to a standardized stereotactic

space available as digitized MRI data from the Brain Imaging

Centre (Montreal Neurological Institute, MNI305) [49–51].

Registration between spherical and realistic head geometry used

EEG electrode coordinates as implemented in LORETA [52].

The cortical structures comprising the DMN were chosen as

anatomic ROIs: ACC, PCC, precuneus and lateral parietal

inferior gyri. All ROIs were extracted according to the Talairach

atlas coordinates of the Montreal Neurological Institute’s MRI

average of 305 brains [51]. Time courses of EEG activity within

these ROIs were exported as mean activity and used as covariants

in the analysis of the fMRI data. In order to give more validity to

the approach, an additional source localisation analysis of the

alpha-band oscillations (7.5–12 Hz) was performed using LOR-

ETA in search of an occipital source for these oscillations [53].

Additionally, sleep scoring was performed for each individual

using pulse artefact corrected data. This was accomplished

according to the visual scoring of sleep in adults of the American

Academy of Sleep Medicine [54]. The data from all 15 subjects

were segmented in 30 seconds epochs and visually inspected in

search of alpha attenuation in the occipital electrodes. Further-

more slow eye movements and K-complexes were sought in

frontal channels in order to define the wake-sleep stages [54].

Functional MRI data analysis
Functional data were analysed using Multivariate Exploratory

Linear Optimized Decomposition into Independent Components

(MELODIC), included in FSL (FMRIB’s Software Library, www.

fmrib.ox.ac.uk/fsl/). Data pre-processing per subject consisted of

motion correction, brain extraction, spatial smoothing using a

Gaussian kernel with a full-width at half maximum (FWHM) of

6 mm, and high-pass temporal filtering of 100 s. FMRI volumes

were registered to the individual’s structural scan and standard

space (MNI152) images using FMRIB’s Nonlinear Image

Registration. Temporal concatenation ICA was performed across

all functional datasets from each subject using automatic

dimensionality estimation. The resulting ICA maps were thre-

sholded at a mixture-modelling p,0.5. The DMN was identified

by visual inspection and comparison to previously published data

[16,55]. Finally, the dual regression algorithm [40] was applied to

the ICs in order to identify the individual contribution of every

subject to the resting state networks using the spectrum EEG

regional power as a covariant in the dual regression analysis. Here,

the individual’s frequency powers, sampled in the regions stated

above, were tested for correlation with the individual’s z-values of

the IC representing the DMN. The different component maps

were collected across subjects into single 4D files and tested voxel-

wise for statistically significant correlation using nonparametric

permutation testing (10000 permutations) [56]. This resulted in

spatial maps characterizing the voxels whose connection strength

within or to the DMN correlates with the EEG regional power at

each frequency. In order to correct for multiple comparisons

across voxels and maps, the IC maps were thresholded using the

local false discovery rate (FDR) method tolerant to dependency

[57] at p,0.05. The FDR threshold itself was again corrected for

multiple comparisons using the Bonferroni correction method,

resulting in a final significant threshold of p set to ,0.00833 (0.05

divided by 6 due to six frequency bands tested). A graphic

representation of this method is presented in Figure 1.

Results

Sleep scoring of the EEG data recorded from the volunteers

revealed that none of them fulfilled criteria for sleep boundary

[54].

Source localisation of the alpha-band using LORETA con-

firmed an occipital source in all subjects. An average of the signal

across the volunteers is presented in Figure 2.

Twenty-six independent components were found after decom-

position of the functional data by means of ICA; 10 were

neurologically meaningful and 16 were related to noise, head

motion and vascular artefacts. The DMN was identified by visual

inspection as the network comprising the ACC, precuneus, PCC

and lateral parietal inferior gyri [16,55] (Figure 3).

The statistical correlation maps display voxels with significant

correlation values (p,0.00833) with the power of delta, beta-1 and

beta-2 frequencies and spontaneous BOLD signal in the DMN in

several areas in the brain. There were no significant correlations

between BOLD signal in the DMN and power of the theta, alpha-

1 and alpha-2 frequencies after FDR correction.

The delta power extracted from the ACC showed voxels with

positive correlation with the DMN signal in the left parahippo-

campal gyrus and the left temporal pole (Figure 4, a).

The beta-1 frequency power extracted from the PCC showed

voxels with positive correlation with the DMN signal in the right

supplementary motor cortex (Figure 4, b).

The beta-2 frequency power extracted from the PCC and the

precuneus showed voxels with positive correlation with the DMN

signal in the left frontal pole (Figure 4, c–d).

All results are summarized in Table 1.

Discussion

A simultaneous fMRI-EEG study was performed at 3 T in

healthy volunteers to investigate the relationship between the

BOLD signal of the DMN and the power of EEG frequency bands

originating from within anatomical components of the DMN. To

this end, we used a combination of dual regression analysis

(MELODIC) for fMRI and Low Resolution Electromagnetic

Tomography (LORETA) for EEG data. A strong correlation

between the activity of the left parahippocampal gyrus to the

DMN and the delta-band extracted from the ACC was found.

The Default Mode Network and EEG Spectral Power
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Furthermore a positive correlation between the beta-1 frequency

power extracted from the PCC and the connectivity values of the

right supplementary motor cortex was established. In addition, the

beta-2 frequency power extracted from the PCC and the

precuneus showed a positive correlation with DMN connectivity

to right frontal cortex. Furthermore, we verified that such

Figure 1. Methodological approach: LORETA analysis was performed after correction and demodulation for a specific frequency.
The extracted average power was included into the dual regression analysis in order to identify brain structures whose BOLD signal variation
correlates with the power of EEG-frequencies. The image below shows voxels in which alpha power extracted from the ACC was positively correlated
(p,0.00833) with the activity of the DMN.
doi:10.1371/journal.pone.0088214.g001
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correlations were not due to sleep, since the arousal state of our

volunteers was checked via EEG using the visual scoring of sleep in

adults of the American Academy of Sleep Medicine [54].

We consider the source localisation approach as adequate due

to the fact that there was a clear occipital source of the alpha-band

during eyes closed resting state [53], also suggesting that the

artefact correction of the EEG data permitted a successful

application of LORETA (Figure 2).

EEG frequencies have been linked to specific functions as an

‘‘electrophysiological signature’’ of a function, and on the other

hand, a combination of oscillatory rhythms that has been related

to specific functions, with or without predominance of one specific

frequency band. In this sense, gamma-band oscillations have been

related to attention, stimulus selection and integration, movement

preparation, memory formation and conscious awareness [58–63].

Delta-band has been linked to learning, motivation and reward

processes [64,65], as well as to memory encoding and retrieval

[66]. The activity of theta-band has been linked to working

memory, emotional arousal and fear conditioning [64]. The

frontal middle theta has been observed during various cognitive

tasks requiring attention or working memory [67]. The alpha-

band has been associated with working memory functions and

short-term memory. The role of activity in the beta-band,

however, has been less clear and is less well understood. In a

comprehensive review, Engel and Fries suggested that beta-band

activity might be associated to maintenance of motor sets and

cognition [68].

The highly significant correlation between delta power within

the DMN and the parahippocampal gyrus is in line with the

association of delta frequencies with memory processes. We

assumed ‘‘ongoing activity’’ of the volunteer during ‘‘resting state’’

in bringing events from the past to the mind, wherein the

parahippocampal gyrus is a relevant structure [69,70]. Hlinka et al.

reported that in an inter-subject experimental design, a strong

relationship was established between functional connectivity in the

DMN and delta power.

In addition, a robust positive correlation between functional

connectivity in the DMN and beta power was demonstrated [71].

Maintenance of the ‘‘status quo’’ modulated by beta-band activity

has been proposed for the sensorimotor system and for cognition.

It has also been proposed as a function of the DMN. Engel et al.

hypothesized that resting state networks should be distinguished by

beta frequencies [59]. Our multimodal data corroborate these

proposed functions. They show a significant correlation between

beta-band power extracted from the PCC with the frontal pole

providing a mutual link on how the DMN sets the status quo via

frontal input for cognitive functions.

According to the review by Engel et al. ‘‘enhancement or

decrease of beta-band activity may relate not only to the

involvement of top-down processing but also to the contents of

the top-down signal: beta-band activity may be enhanced if the

status quo is given priority over new signals’’ [59]. The link to the

motor system is displayed in our data by significant correlations

between beta-band power extracted from the PCC and the

supplementary motor area (SMA). Engel et al. describe the role of

beta-band activity not in the sense of signalling in the absence of

movement but in indicating the sensorimotor system in order to

maintain the current motor settings.

Our results also suggest that the DMN associates with different

EEG bands as reported by Jann et al. [35] and supports the

conclusion of Mantini et al. according to which a functional

network is characterized by a specific electrophysiological signa-

ture created by the combination of different brain rhythms [34].

Conclusions

In summary, we show that separate frequency domains

originating in distinct subsets of the DMN are correlated with

equally distinct connectivity patterns of the DMN to other cortical

areas. This again highlights the multi-modal role of the DMN,

which therefore cannot be regarded as a homogeneous entity. We

propose fMRI-EEG studies using MELODIC/dual regression and

LORETA as suitable tools to examine these connections in the

Figure 2. Alpha-band source localisation from the averaged
signal across the 15 subjects using LORETA.
doi:10.1371/journal.pone.0088214.g002

Figure 3. DMN identified from the group analysis of the 15 subjects.
doi:10.1371/journal.pone.0088214.g003
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Figure 4. Statistical correlation maps of the EEG frequencies with the DMN signal. Significant voxels thresholded at p,0.00833 for (a)
delta-band extracted from the ACC (b) beta-1 frequency extracted from the PCC, (c) beta-2 frequency extracted from the PCC and (d) beta-2
frequency extracted from the precuneus.
doi:10.1371/journal.pone.0088214.g004

Table 1. MNI coordinates of clusters with minimal correlation p values with the DMN signal. Structures defined according to the
Harvard-Oxford Cortical Structural Atlas.

EEG frequency
and area

Regions of minimum p value according to the Harvard-Oxford
Cortical Structural Atlas Min. p value MNI coordinates

x y z

Delta extracted from
the ACC

34% Left Parahippocampal Gyrus, anterior division, 6% Left Temporal
Fusiform Cortex, anterior division, 2% Left Temporal Fusiform Cortex,
posterior division

0.005 230 22 232

77% Left Temporal Pole 0.008 242 10 240

Beta-1 extracted from
the PCC

60% Right Juxtapositional Lobule Cortex (formerly Supplementary
Motor Cortex), 7% Left Juxtapositional Lobule Cortex (formerly
Supplementary Motor Cortex), 3% Right Precentral Gyrus

0.004 2 26 64

Beta-2 extracted from
the PCC

16% Left Frontal Pole 0.001 222 50 4

Beta 2 extracted from
the precuneus

16% Left Frontal Pole 0.003 222 50 4

doi:10.1371/journal.pone.0088214.t001
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normal brain and in other conditions such as ageing and

neuropsychiatric diseases.
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