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Abstract: To improve the prognosis of glioblastoma, we developed an adjuvant treatment 

directed to a neglected aspect of glioblastoma growth, the contribution of nonmalignant mono-

cyte lineage cells (MLCs) (monocyte, macrophage, microglia, dendritic cells) that infiltrated 

a main tumor mass. These nonmalignant cells contribute to glioblastoma growth and tumor 

homeostasis. MLCs comprise of approximately 10%–30% of glioblastoma by volume. After 

integration into the tumor mass, these become polarized toward an M2 immunosuppressive, 

pro-angiogenic phenotype that promotes continued tumor growth. Glioblastoma cells initiate 

and promote this process by synthesizing 13 kDa MCP-1 that attracts circulating monocytes to 

the tumor. Infiltrating monocytes, after polarizing toward an M2 phenotype, synthesize more 

MCP-1, forming an amplification loop. Three noncytotoxic drugs, an antibiotic – minocycline, 

an antihypertensive drug – telmisartan, and a bisphosphonate – zoledronic acid, have ancillary 

attributes of MCP-1 synthesis inhibition and could be re-purposed, singly or in combination, to 

inhibit or reverse MLC-mediated immunosuppression, angiogenesis, and other growth-enhancing 

aspects. Minocycline, telmisartan, and zoledronic acid – the MTZ Regimen – have low-toxicity 

profiles and could be added to standard radiotherapy and temozolomide. Re-purposing older 

drugs has advantages of established safety and low drug cost. Four core observations support 

this approach: 1) malignant glioblastoma cells require a reciprocal trophic relationship with 

nonmalignant macrophages or microglia to thrive; 2) glioblastoma cells secrete MCP-1 to 

start the cycle, attracting MLCs, which subsequently also secrete MCP-1 perpetuating the 

recruitment cycle; 3) increasing cytokine levels in the tumor environment generate further 

immunosuppression and tumor growth; and 4) MTZ regimen may impede MCP-1-driven 

processes, thereby interfering with glioblastoma growth.

Keywords: cognition-sparing, high-grade glioma, immunosuppression, macrophage, microglia, 

monocyte

Introduction
Re-purposing of older, already-marketed drugs is not a new concept. With technological 

advances giving us a greater understanding of molecular pathways in cancer cells, 

the idea of re-purposing (redirecting, repositioning, etc) a previously approved drug, 

with a known safety/toxicity profile for lower cost, risk, and time, compared with 

developing novel pharmaceuticals has appeal.1–4

Our paper represents a contribution to the ongoing efforts in developing treatments 

for glioblastoma, one of the most treatment-refractory of all human cancers. Challenges 

to treatment include difficulty in drug delivery across the blood–brain barrier, the wide 

heterogeneity of glioblastoma cells within individual tumors,5–7 and the multiplic-

ity of essential signaling and metabolic pathways within individual tumor cells, the 

so-called “Nile Distributary Problem”.4,8 One area of growing interest is modifying 
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tumor–immune system signaling pathways, specifically the 

cross talk between the tumor cells and the immune cells resi-

dent in the tumor microenvironment including monocytes, 

dendritic cells, macrophages, and microglia, collectively 

termed monocyte lineage cells (MLCs).

Early in development, the embryonic brain becomes 

populated by bone marrow-derived MLCs, to finally com-

prise ~10%–20% of the adult brain, appearing as microglia. 

Circulating marrow-derived monocytes can also populate an 

adult brain, particularly during pathological states, including 

glioblastoma, but also in the setting of infection, trauma, or 

inflammatory disease such as multiple sclerosis, appearing 

then in brain as either macrophages or microglia (described 

in the magisterial review of microglia by Harry9). Some of 

the first micrographs of microglia by Klatzo from 1952 have 

not been surpassed.10 Although normal steady-state microglia 

have been called “quiescent”, they are in fact physiologically 

active in multiple homeostatic roles essential to brain function 

by scavenging dead cell remnants, phagocytosis, antigen 

presentation, synaptic maintenance, neurite pruning, repair 

and angiogenesis, and extracellular signaling.11,12 Microglia 

are in continuous reciprocal humoral communication with 

nearby neurons and astrocytes. Importantly for understanding 

glioblastoma, microglia are normally sessile but become 

motile on activation.

MLCs, including microglia, have activation states termed 

M1 or M2, but these might be better viewed as spectral 

extremes. The M1-phenotype is associated with high levels 

of cytokine interleukin (IL)-1beta, IL-12, IL-23, TNF-alpha, 

nitric oxide synthase, CD40, MHC I, and MHC II expression; 

these M1 cells are traditionally called pro-inflammatory state/

activated microglia. In contrast, M2 cells have low levels of 

these inflammatory mediators, are profibrotic, synthesize 

transforming growth factor-beta and IL-10, tend to suppress 

inflammation, and promote neovascularization.11,12 In relation 

to cancer, the M1 phenotype functions more in an immune-

boosting/antitumor role, whereas the M2 phenotype is more 

anti-inflammatory and tumor-supportive.

The critical importance of this tumor–microglia rela-

tionship to tumor growth has been observed in a number 

of recent papers.12–17 Furthermore, this ongoing “reciprocal 

supportive interplay”17 facilitates more than just enhanced 

vigor of tumor cell division and enhanced blood supply 

but potentially also contributes to glioblastoma migra-

tory invasion into the surrounding brain.18 Hewedi et al 

recognize “glioblastoma therapies should address this key 

CD68-positive [ie, monocyte/macrophage] population”.19 

We propose targeting MCP-1, a 13 kDa signaling peptide, 

synonymous with CC-chemokine ligand 2, which binds to 

outer cell membrane receptors CCR2 and/or CCR4 on MLCs 

and facilitates glioblastoma–microglia interaction.

This paper reviews and extends this concept, fills in 

details, and draws the following simple and straightforward 

conclusions:

a) The “reactive gliosis”20 seen involved with and surrounding 

the main glioblastoma tumor mass is not an epiphenom-

enon but rather is a crucial core element of glioblastoma 

pathology.

b) It is primarily the malignant glioblastoma cell that gener-

ates pathological signals, including MCP-1, to systemic 

monocytes/microglia.

c) Otherwise normal but pathologically activated MLCs are 

important for robust glioblastoma cell growth; these cells 

are attracted by increased MCP-1 signaling within the 

tumor mass. MCP-1 is also an important signal for pre-

ferred MLC differentiation to the M2 anti-inflammatory/

tumor-promoting phenotype.

d) These tumor-infiltrating and pathologically functioning 

MLCs contribute to a feedback loop involving MCP-1 

secretion which further perpetuates glioblastoma produc-

tion of MCP-1.

e) MCP-1 represents a critical mechanism of tumor–microglia 

communication which contributes significantly to tum-

origenesis and potential invasion and is a potential 

therapeutic target.

f) Three noncytotoxic drugs, minocycline, telmisartan, and 

zoledronic acid, the MTZ Regimen, are all approved for 

use in humans for noncancer conditions, are all lipophilic 

and highly brain-penetrant, are all capable of targeting the 

pathologic MCP-1 secretion, and together will provide 

MCP-1 and consequently MLC-focused treatment.

A well-developed research database supports each of the 

three MTZ Regimen drugs’ ability to block or reduce MCP-1 

signaling and thus MLC trophic functions and pathologic 

activation. Additionally, each of these drugs is relatively 

nontoxic in humans, with significant post-marketing data 

available, and does not appear to have significant drug–

drug interactions alone or in combination. We propose this 

approach either alone or in combination with other anticancer 

therapies as a novel glioblastoma treatment approach.

Glioblastoma are heavily infiltrated 
by blood monocytes
Glioblastomas are heavily infiltrated by cells of the immune 

system, and these cells are pathophysiologically active. In 

his seminal 1952 paper describing glioblastoma histology, 

Klatzo observed, “In the majority of tumors studied there 

was extensive microglial reaction […] resting forms were 
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infrequently seen”.10 We have more recently come to under-

stand that these immune cell populations are composed 

of bone marrow-origin monocytes,21,22 monocyte-derived 

macrophages, and microglia,19,23–29 and neutrophils.21,30–35 

Estimates vary that these bone marrow-derived cells or 

nonmalignant microglia comprise 10%–30% of the total 

glioblastoma tumor mass,12,23,26,36,37 but there is general agree-

ment that MLCs make up a considerable percent of total 

mass38 and MLCs have an established role in glioblastoma 

growth.39 The monocyte-related component arrives both by 

migration of circulating monocytes/macrophages27 and by 

mitoses or centripetal migration of brain-resident microglia40 

and monocytes.38

Reactive gliosis in brain tissue adjacent to a growing 

glioblastoma20 is not an incidental finding or epiphenomenon. 

Reactive gliosis is rather an integral feature of glioblastoma 

and a crucial link in glioblastoma’s growth.20 Brain-resident 

microglia infiltrate and become integrated with malignant 

glioblastoma cells41 as do circulating MLCs.

M1 versus M2 phenotypes
Macrophages can be divided into M1 and M2 subtypes, 

which have contrasting activity. M1 macrophages are 

traditionally thought of as immunostimulatory with potential 

antitumor activity, whereas M2 exhibit an immunosuppres-

sive phenotype with tumor-promoting and angiotrophic 

activity.17 Human glioblastomas are richly infiltrated by 

MLCs expressing both M1 and M2 markers.14,24 Although 

some studies indicate that these MLCs are more of M2 

immunosuppressive, tumor trophic class,26 other studies show 

that these tissue macrophages are of indeterminate class, 

with some having attributes of both M1 and M2 phenotypes, 

whereas others have attributes of neither phenotype.24,42

Furthermore, these M1/M2 phenotypes are not terminally 

differentiated cells; in glioblastoma cell-conditioned culture 

medium, M1 macrophages can be induced to transform to 

an M2 phenotype,43 a finding that was later independently 

confirmed.28 A differentiation to M2-phenotypic macrophages 

has also recently been described to be promoted by glioma 

cell-derived extracellular vesicles.44

In another set of experiments, it has been shown that 

doxycycline (chemically similar, but more hydrophilic and 

less brain-penetrant compared with minocycline) inhibits 

M2-type polarization of human and bone marrow-derived 

mouse macrophages.45 Clearly in viral infections of the 

brain, for example, West Nile virus, circulating monocytes 

are recruited to brain tissue by virus-mediated increases 

in MCP-1, and these monocytes appear in brain tissue as 

microglia.46

Disproportionate 
immunosuppression of glioblastoma
“Gliomas attract brain-resident (microglia) and peripheral 

macrophages and reprogram these cells into immunosuppres-

sive, proinvasive cells.”40 Myeloid cell infiltration and the 

function changes induced in them after contact with or prox-

imity to malignant glioblastoma cells form a central element 

of the otherwise unexplained immunosuppression common 

in glioblastoma patients.22,32,34,47,48 Of particular note, normal 

human monocytes exposed in vitro to glioblastoma cells take 

on an immunosuppressive M2 phenotype, synthesizing IL-10 

and transforming growth factor-beta.49,50

The MCP-1 amplification loop
MCP-1 agonism at CCR2 stimulates migration of monocytes/

macrophages. Glioblastoma cells themselves synthesize and 

release MCP-1.51,52 While MCP-1 remains important in MLC 

recruitment and M2 phenotype promotion, there are other 

molecules which appear to contribute to these processes as 

well. One molecule that appears to be primarily secreted from 

the stem cell subpopulation of glioblastoma cells is periostin, 

which contributes to M2 differentiation.27 Several other 

studies have demonstrated that malignant glioblastoma cells 

will also synthesize and secrete granulocyte–macrophage 

colony-stimulating factor that can also drive transformation 

from M1 to M2 tumor-infiltrating MLCs.40 That said, while 

it is difficult to compare relative contributions of different 

molecules having similar effects, it appears that MCP-1 

encompasses MLC recruiting, M2 transformation, and 

generation of a positive feedback loop to the glioblastoma 

tumor cells, while the others promote only portions of the 

larger process. Brain-resident microglia have been shown 

to migrate into a growing glioblastoma tumor; this migra-

tion is driven in part by granulocyte–macrophage colony-

stimulating factor synthesized by glioblastoma malignant 

cells themselves,40,53–58 and in part by MCP-1 synthesized 

by other already-resident microglia.

An oddity of human glioblastoma tissue is that it attracts 

immunosuppressive, regulatory T-cells (Tregs).59 Tregs 

express CCR2 receptors and are tropic along an increasing 

MCP-1 gradient.59 Glioma cell lines D-54, U-87, U-251, 

and LN-229 synthesize large amounts of MCP-1 that was 

shown to be chemotactic to Tregs.60 Glioblastoma patients 

with higher circulating plasma MCP-1 titers have a poorer 

prognosis and faster disease course compared to patients with 

low plasma titers.61 Human glioblastoma biopsy tissue over-

expresses MCP-1.62 Glioblastoma cell lines overexpressing 

MCP-1 demonstrated enhanced motility in response to 

MCP-1 exposure.62
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Having established the likely importance of MCP-1 in 

macrophages’ promotion of glioblastoma growth, the next 

section discusses how several currently marketed noncyto-

toxic drugs can defeat this growth-facilitating aspect.

Resident peritumoral microglia secrete ample MCP-1 

which in turn is chemotactic for circulating monocytes, 

thereby recruiting yet more MLCs. Thus, MCP-1 synthesis 

by glioblastoma-resident macrophages/microglia forms 

a positive amplification loop.62 Since glioblastoma cells 

themselves express MCP-1 receptors, MCP-1 mRNA, and 

MCP-1 protein,62–65 they thereby initiate this pathological 

amplification loop. Wurdinger et al rhetorically wonder 

“how to break [this] vicious cycle […] the interactive pro-

cess between glioma cells and microglia and macrophages 

[…]?”66 The MTZ Regimen now attempts to simply answer 

that question (Figure 1).

Preclinical experiments pointed to tumor-associated 

macrophages as a primary mediator of escape from antiangio-

genic therapies and prompted a study of the consequences of 

anti-VEGF monoclonal antibody bevacizumab treatment of 

recurrent glioblastoma.67 They found on autopsy that patients 

treated with bevacizumab had greatly increased numbers of 

glioblastoma tissue macrophages compared with those not 

exposed to bevacizumab.67 Of particular note to our intended 

use of macrophage-directed treatment, Lu-Emerson et al also 

found that extent of tumor infiltration with macrophages 

correlated with shorter overall survival.67

The drugs
Minocycline
Minocycline is a 457 Da, intermediate-half-life (10–20 hours), 

lipophilic, tetracycline class antibiotic68–70 with excellent 

blood–brain penetration and brain tissue levels.71 Mino-

cycline is active against a variety of Gram-positive and 

Gram-negative bacteria, Rickettsia, Chlamydia, as well as 

protozoans Plasmodia, Toxoplasma, and others.71 As an aside, 

significant neuroprotective attributes of minocycline have 

been the subject of dozens of reports in the last few years, this 

observation may provide future directions for research.72

In culture, normal microglia and glioma cell lines 

secreted ample MCP-1 which could be inhibited by 25 µM 

minocycline.73 Lipopolysaccharide-stimulated MCP-1 

protein production in monocytes was suppressed by mino-

cycline in vitro by inhibition of an IkB phosphorylation step, 

keeping NFkB within cytoplasm.74 The related tetracycline 

class antibiotic doxycycline inhibited M2 polarization in a 

laser injury model of choroidal neovascularization.45

MCP-1 levels are elevated in human Japanese enceph-

alitis-infected tissues from humans and experimentally 

infected animals.75 Correspondingly, high tissue infiltration 

of monocytes is seen, a process that can be suppressed by 

minocycline.75 Simian immunodeficiency virus-infected 

macaques had grossly upregulated cerebral MCP-1 and 

monocyte infiltration that were both partially but signifi-

cantly mitigated by minocycline.76 Ex vivo West Nile Virus 

Figure 1 MCP-1 driven, positive feedback loop between glioblastoma and MLCs.
Abbreviation: MLC, monocyte lineage cell.
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exposure stimulates microglia to synthesize several cytokines, 

including MCP-1. This finding was shown to be inhibited 

by minocycline.77 Retinal ischemia–reperfusion injury and 

cell death was not prevented by minocycline, but the injury-

associated centripetal migration of monocytes/macrophages 

and increase in MCP-1 both were abrogated.78

Empirical preclinical studies of minocycline in glioma 

models have provided evidence of benefit. Growth and 

core tumor hypoxia of the gliosarcoma line 9L was inhib-

ited by minocycline by unclear means.79 Weingart et al 

found that systemically administered minocycline did not 

extend survival of 9L gliosarcoma-implanted rats but local 

delivery after primary resection did,80,81 findings confirmed 

by others in 2014.82 Growth of C6 gliomas was inhibited 

by minocycline.83 An experimental alkylating drug was 

more effective in killing C6 orthotropic transplants when 

minocycline was given concomitantly.84 Minocycline alone 

inhibited growth in an orthotropic murine glioma model.85 

U-87 glioma orthotropic transplants in nude mice grew 

slower when mice were given intraperitoneal minocycline. 

GL261 murine glioma cells grew slower in syngeneic mice 

when intraperitoneal minocycline was given.29

Two clinical studies are in progress, NCT01580969, a 

Phase II study using minocycline and bevacizumab with 

radiation for recurrent glioblastoma, and NCT02272270, a 

Phase I study adding minocycline to standard Stupp Protocol 

(temozolomide and radiation) for initial post-resection treat-

ment of primary glioblastoma.

Side effects
Skin and other structures can become hyperpigmented after 

cumulative doses exceed 100 g or duration .1 year.86 Auto-

immune disturbances such as serum sickness-like disease, 

drug-induced lupus, and autoimmune hepatitis occur but 

are rare.87 Autoimmune reactions tend not to occur until 

after .2 years of use.88

Telmisartan
Telmisartan is a brain-penetrant, highly lipophilic, 515 Da, 

intermediate-half-life (~24 hours) angiotensin II receptor 

blocker marketed to treat high blood pressure.89

Telmisartan profoundly downregulated fibronectin 

mRNA and suppressed MCP-1 over-synthesis in kidneys 

after experimental unilateral ureter obstruction.90 In 

similar fashion, telmisartan decreased elevated MCP-1 and 

fibronectin associated with diabetic kidneys.91

Cerebral MCP-1 increases with age in spontaneously 

hypertensive stroke-resistant rats well beyond the minimal 

increases seen in normotensive rats as they age. Low-dose 

telmisartan (in doses low enough to not alter hypertension) 

diminished this progressive increase in cerebral MCP-1 immu-

nohistochemical staining in these spontaneously hypertensive 

rats with normal aging.92,93 In other experiments, telmisartan 

given in higher doses to normalize these rats’ blood pressure 

lowered cerebral MCP-1 even further.92,93 Exposure to homo-

cysteine increased levels of MCP-1 mRNA in, and consequent 

monocyte binding to, human umbilical vein endothelial 

cells, an effect blocked by telmisartan and other peroxisome 

proliferator-activated receptor (PPAR)-gamma agonists.94

Hepatic MCP-1 and macrophage infiltration into diet-

induced steatohepatitis in susceptible mice was inhibited by 

telmisartan.95 Telmisartan diminished macrophage popula-

tion, MCP-1 protein, and CCR2 expression in the aorta of 

spontaneously hypertensive rats.96 It also lowered serum 

MCP-1 level.96

Hypertensive humans with increased carotid intima-

media thickness had increased serum MCP-1 (thought to 

contribute to the carotid inflammatory atherosclerotic pro-

cess) that diminished under telmisartan treatment.97 However, 

although confirming that hypertensive patients had elevated 

circulating MCP-1, others found no decrease in MCP-1 after 

successful telmisartan lowering of their blood pressure.98 

Tumor-infiltrating monocytes/macrophages, as defined by 

leukocytes that were CD14 and CD68 positive, are known to 

heavily infiltrate inflammatory breast cancer tissue.99 These 

monocytes/macrophages secreted significant amounts of 

MCP-199 forming thereby a macrophage amplification circuit 

that as we indicate here is also operative in glioblastoma. 

Telmisartan attenuated the elevated myocardial MCP-1 in 

streptozotocin diabetic rats.100 Telmisartan decreased MCP-1 

mRNA in tumor necrosis factor-alpha-stimulated human 

umbilical vein endothelial cells.101

Ex vivo lipopolysaccharide-stimulated circulating human 

monocytes secreted MCP-1 and other inflammation mediators 

that were decreased by co-incubation with telmisartan.102,103 

Otherwise normal people with arterial hypertension treated 

with telmisartan exhibited lowered gene expression of both 

MCP-1 and PPAR-gamma in circulating monocytes com-

pared to pretreatment levels.104 In other in vitro experiments, 

patients with essential hypertension treated for 3 months with 

telmisartan exhibited reduced circulating monocyte MCP-1 

mRNA compared to their pretreatment starting values.104

Angiotensin II signals via angiotensin 1 receptors. 

Angiotensin II binding to angiotensin 1 receptors induces 

rat glomerular endothelia to increase synthesis of MCP-1.105 

This was blocked by telmisartan.105
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Zoledronic acid
Zoledronic acid is a long-half-life, 272 Da bisphosphonate, 

that although not a low-side effect drug,106 has seen increasing 

use as treatment adjuvant in a variety of cancers.107 Bispho-

sphonate drugs are commonly known and clinically used 

for inhibition of osteoclast activity with consequent reduc-

tion in bone resorption. Zoledronic acid use in advanced 

cancer patients has been shown to reduce bone events and 

hypercalcemia.107,108 Zoledronic acid depressed normal osteo-

blast secretion of MCP-1.109

In human osteosarcoma, tumor growth directly correlates 

with and occurs commensurately with osteoclast activa-

tion with corresponding osteolysis. Both cell line and 

human osteosarcomas secrete MCP-1 that forms one of the 

osteoclast-stimulating paths. Zoledronic acid inhibits both 

synthesis and secretion of osteosarcoma MCP-1 with con-

sequent diminution of peritumoral osteoclast activity.110 Of 

particular note to our thinking about glioblastoma, zoledronic 

acid inhibition of macrophage/osteoclast function reduced 

growth of the malignant osteosarcoma clone itself.110 Clinical 

trials of zoledronic acid in breast cancer have prolonged 

overall survival.111

The following four data sets are paradigmatic of our sug-

gested use of zoledronic acid in glioblastoma:

1) Rietkotter et al showed that zoledronic acid reduced 

viability of circulating monocytes and central nervous 

system microglia112 and microglia exposure to zoledronic 

acid in ex vivo brain slices also reduced invasion by 

breast cancer cells without affecting the breast cancer 

cells themselves.112

2) Indicative of our view of cancer generally as a systemic dis-

ease, Hiroshima et al showed that peritoneal macrophages 

from mice bearing flank-injected pancreatic tumor cells 

enhanced this cancer’s growth when in vitro and in vivo 

when injected into other tumor-bearing mice.113

3) Ohba et al showed that MCP-1-secreting osteosarcoma cells 

were blocked from secreting MCP-1 by zoledronic acid.110

4) In discussing the correlation between increased tumor-

infiltrated macrophages and poorer prognosis, Rogers 

and Holen presaged our views, stating in 2011, “Tumor 

cells communicate with the cells of their microenviron-

ment via a series of molecular and cellular interactions to 

aid their progression to a malignant state and ultimately 

their metastatic spread”. They reviewed data collected 

prior to 2011 supporting their contention that zoledronic 

acid exerted an anti-breast cancer effect by defeating 

MLC’s promotion of the malignant clone’s growth.114 

In this paper we make a similar argument in the setting 

of glioblastoma.

The MTZ trial
We are planning a pilot clinical trial of the MTZ Regimen 

in primary glioblastoma, using oral minocycline 100 mg 

three times daily, oral telmisartan 80 mg twice daily, and 

intravenous zoledronic acid 4 mg once every 28 days to be 

given starting postprimary resection, to run concurrent with 

standard radiation and temozolomide. The primary end points 

will be tolerability and time to progression, and secondary 

end point, overall survival.

Discussion
This paper recounts past research data establishing that nor-

mal host monocytes are pathologically recruited to and by 

the glioblastoma tumor. Glioblastomas synthesize and secrete 

MCP-1 that recruits these monocytes among other effects. 

Glioblastoma, like other tumors, is not simply a growing 

autonomous parasitic entity, although it does have elements 

of this. Glioblastoma is more accurately understood as a 

malignant clone that secretes cytokines and other hormone-

like molecules that signal to normal host cells and organs to 

support the malignant clone’s survival and growth. Glioblas-

toma is thus integrated into total body physiology.

Given that MCP-1 plays an important role in the destruc-

tive inflammatory process of nonalcoholic steatohepatitis,115 

we could consider MTZ Regimen or elements of this as part 

of its treatment.

Psychiatry also is intently interested in microglia–neuron 

interactions potentially modifiable by minocycline.116 

A single case report of minocycline 50 mg po twice daily 

stopping difficult-to-control seizures in a grade III glioma 

was interpreted as evidence of its anti-inflammatory effects.117 

Going on data and theory that glial activation contributes to 

pathophysiology of psychotic disorders, three studies, one 

from 2010 and two from 2014, independently confirmed 

that minocycline reduced the negative sign/symptom picture 

that is commonly seen as residue in otherwise well-treated, 

“schizophrenia”.118–120 “Schizophrenia” is mentioned in 

quotes because it is an outmoded term comprising a dozen 

different pathophysiological entities with prominent psycho-

sis that, as yet, remain unnamed.121

The malignant MCP-1-centered synergy between the 

glioblastoma cell and infiltrating microglia or circulating 

monocytes goes some of the way toward explaining the rar-

ity of metastases outside the central nervous system, even 

though circulating malignant glioblastoma cells have been 

easily demonstrated in human disease.122

It is standard military doctrine to destroy a pathway cru-

cial to the enemy along several points along that pathway. 

Hitting such a pathway at one point only allows too many 
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chances for the enemy to develop repairs, workarounds, or 

alternatives that can substitute for or reconstitute the blocked 

pathway. Destroying multiple points along a crucial pathway 

significantly impedes an enemy from doing this.

In reviewing the trophic and permissive function of brain 

microglia for breast cancer metastases Pukrop et al observed 

“inhibition of proinvasive microglia as a promising anti-

metastatic strategy”.123 We provided it here.

MCP-1-triggered hypoxia-related gene transcription and 

translation via a signal transducer and activator of transcrip-

tion 3 phosphorylation represents an intermediate step in 

pluripotent epiblast cells (outer embryonic layer destined to 

later differentiate into ectoderm and mesoderm layers).124 The 

potential importance of this in glioblastoma and other cancers 

is that MCP-1 has hypoxia-adapting signaling attributes to 

cells other than MLCs. In accord with these findings are those 

of Jung et al who found that minocycline inhibited hypoxia 

induction factor-1α transcription and translation.125

Baer et al recount details of a reciprocal feedback system 

between MLCs and tumor-associated new vessel formation, 

where “physical contact of macrophages with growing blood 

vessels coordinates vascular fusion of emerging sprouts”.126 

This feedback (feed-forward) system between MLCs and 

developing blood vessels is reminiscent of the feed-forward 

system of Schruefer et al who describe a vessel formation 

enhancing reciprocal relationship between centripetal-

migrating neutrophils and the developing tumor vessel 

neo-intima that was based on IL-8.31,127 We can expect inter-

ventions directed against both MLCs and neutrophils each to 

contribute to suppression of tumor neoangiogenesis.

Radiation of brain tissue during initial glioblastoma treat-

ment often results in memory or intellectual impairments of 

varying degree.128 As a potential added benefit, minocycline 

reduced memory impairment in radiated rats129 and might do 

so in brain-radiated glioblastoma patients.

As an added benefit of telmisartan, Januel et al showed 

empirically that those glioblastoma patients coincidentally 

taking angiotensin-blocking drugs or angiotensin-converting 

enzyme inhibitors have longer overall survival than those 

not on these antihypertensive drugs.130

Conclusion
Malignant cells co-opt normal cells and physiological sys-

tems to serve and enhance growth of the malignant clone/

clones. Glioblastoma, like other cancers, can be thought of 

as an organ system, actively and reciprocally interacting and 

coordinating with other organ systems of the body, includ-

ing the immune system. In this case, this collaboration has 

destructive consequences for the host, yet the elements of 

this pathologic relationship incorporate normal physiological 

systems and communication molecules such as MCP-1.

Current thinking in oncology is not oriented to considering 

a) the collective effects of drugs or b) effect on and treating 

contributions of nonmalignant helper cells of the body – in this 

case MLCs. We tend rather to think of individual effects of the 

various drugs in a mix. We now propose a paradigm shift to 

reflect reality more accurately. The reality is that glioblastoma 

like other cancers has a multiplicity of cross-covering growth 

paths, most of which must be addressed for successful treat-

ment. Malignant clone-directed treatments must be augmented 

by simultaneous different treatments directed at halting or lim-

iting the participation of normal host cells and organ systems 

that subserve and enhance growth of the malignant clone.

Our paper reviewed data showing that growth of glioblas-

toma cells is connected with and facilitated by surrounding 

normal microglia and other MLCs, abnormally recruited to 

and activated by the malignant clone. Our views are in accord 

with data and views of others. We offer the MTZ Regimen 

to defeat the role of MLCs that have been abnormally stimu-

lated by MCP-1.
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