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The Yeast Metabolic Cycle (YMC) is a model system in which levels of around 60% of

the yeast transcripts cycle over time. The spatial and temporal resolution provided by

the YMC has revealed that changes in the yeast metabolic landscape and chromatin

status can be related to cycling gene expression. However, the interplay between histone

modifications and transcription factor activity during the YMC is still poorly understood.

Here we apply an innovative statistical approach to integrate chromatin state (ChIP-seq)

and gene expression (RNA-seq) data to investigate the transcriptional control during

the YMC. By using the multivariate regression models N-PLS (Partial Least Squares)

and MORE (Multi-Omics REgulation) methodologies, we assessed the contribution

of histone marks and transcription factors to the regulation of gene expression in

the YMC. We found that H3K18ac and H3K9ac were the most important histone

modifications, whereas Sfp1, Hfi1, Pip2, Mig2, and Yhp1 emerged as the most relevant

transcription factors. A significant association in the co-regulation of gene expression

was found between H3K18ac and the transcription factors Pip2 (involved in fatty acids

metabolism), Xbp1 (cyclin implicated in the regulation of carbohydrate and amino acid

metabolism), and Hfi1 (involved in the formation of the SAGA complex). These results

evidence the crucial role of histone lysine acetylation levels in the regulation of gene

expression in the YMC through the coordinated action of transcription factors and lysine

acetyltransferases.
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1. INTRODUCTION

The Yeast Metabolic Cycle (YMC) is defined by robust periodic
oscillations of gene expression that appear in continuous
culture systems under aerobic glucose-limited conditions. These
cycles last about 4–5 h and exhibit respiratory oscillations
alternating between periods of high oxygen consumption (HOC)
and low oxygen consumption (LOC), and factors as glucose
concentration and external stimuli can affect period length and
amplitude (Klevecz et al., 2004; Tu et al., 2005). The nature of
the YMC has been extensively studied and is associated with
other biological rhythms such as redox cycles and the cell cycle
(Mellor, 2016). However, there are still many aspects of the YMC
that are unknown or poorly understood due to the complexity of
the molecular connections that coordinate the cellular metabolic
state, molecular landscape and physiological response during
cycling.

Gene expression during the YMC has been characterized
using microarrays (Klevecz et al., 2004; Tu et al., 2005; Slavov
et al., 2011) and RNA-Seq (Kuang et al., 2014). Transcriptional
analyses identified three main phases of expression during the
YMC: an Oxidative phase (OX), a Building phase (RB) and
a Charging phase (RC). The RB phase was first defined as a
reductive phase (Tu et al., 2005), but recent works (Murray
et al., 2007; Mellor, 2016) have highlighted its oxidative state
and proposed it to be part of the HOC phase. Functional
profiling of these phases revealed an orchestration of gene

expression, which fluctuates in response to environmental
conditions, drives the cellular physiological changes and prepares
the molecular mechanisms necessary for cycling. Metabolomics
studies have shown that metabolite profiles also follow a periodic
cycle across the YMC (Tu et al., 2007; Mohler et al., 2008),
highlighting their importance in enzymatic allosteric regulation
and synchronization of yeast ultradian rhythms (Mellor, 2016).

Cycling of histone modifications during the YMC confirms

that they constitute cellular sensors of the metabolic conditions.
For example, cycling levels of acetyl-CoA (a cofactor for histone
acetylation) reflect alternative high and low energy states of

yeast cells (Cai et al., 2011) and might be key to coordinate
gene expression (Kuang et al., 2014). Kuang and co-authors
showed that chromatin changes have a temporal association with
transcripts, as both present similar oscillations. They correlated
gene expression clusters with histone modifications to reveal
the contribution of each histone modification to the regulation

of the different YMC phases, and showed sequential regulation
of genes involved in transcription, mitochondrial activity, cell
cycle and different metabolic processes along the YMC. However,
in their study, no significant relationships were established
between histone modifications and the expression of specific
genes or transcriptional regulators, which are still open questions
regarding the functional orchestration of the system.

Few studies have investigated the potential role of
transcription factors (TFs) in the regulation of the YMC.
Rao and Pellegrini (2011) analyzed the periodic activities of TFs
to explain the regulation of the YMC phases, while Kuang et al.
(2017) inferred the spatio-temporal DNA binding of important
TFs across the cycle. While it is reasonable to assume that

regulation during the YMC consists of a combination of histone
modifications coupled with TF control, these two regulatory
layers have never been jointly studied. Such combined analysis
would help to understand the contribution of each regulatory
layer to the transcriptional dynamics observed in the YMC, and
to decipher the significance of the interaction between specific
histone marks and TFs in controlling gene expression.

In order to shed light into the regulatory mechanisms behind
the YMC, we present here a novel strategy for the integrative
analysis of the chromatin state and gene expression in this
process. We used data from Kuang et al. (2014), that contains
ChIP-seq experiments for 8 different histone modifications and
matching RNA-seq data. In addition, we included a ChIP-seq
dataset on an additional histone modification (H3K18ac), which
turned out to be a key regulator of YMC.We specifically analyzed
the interplay between chromatin status, transcription factor
binding and gene expression, and identified a core set of TFs that
are relevant to the synchronization between histone marks and
transcriptional regulation. Our results revealed the impact of the
different histonemodifications on YMCprogress and pointed out
different TFs that might contribute to the molecular regulation
of the cycle. Overall, this integrative analysis unravels regulatory
mechanisms controlling switches in cellular processes that allow
yeast to respond to factors affecting the metabolic cycle.

2. MATERIALS AND METHODS

2.1. Omic Data Sets
Gene expression and histone modification data from Kuang
et al. (2014) were retrieved from the GEO repository (accession
number GSE52339). We also included in our study an additional
histone modification ChIP-seq experiment for H3K18ac,
provided by Dr. Mellor’s laboratory, which was uploaded
to GEO repository with accession number GSE118889. We
complemented Kuang’s data with this histone modification
because of its relevance in transcriptional regulation (Cui et al.,
2011; Weiner et al., 2015). All omic measurements were obtained
from YMC experiments as described in Tu et al. (2005). As the
duration of the different phases of the YMC is not the same,
samples were unevenly taken at each phase to result in an equal
number of time points in each phase of the cycle (Kuang et al.,
2014). The number of sampling points was 16 for both RNA-seq
and histone modification data.

Gene expression was measured by RNA-seq, Illumina HiSeq
2000, single-end reads, 50 bp long, at 16 sampling points. RNA-
seq reads were pre-processed as in Kuang et al. (2014), where
expression data had been normalized by sequencing depth, log-
transformed and centered per gene. Histone modifications were
measured by ChIP-seq using antibodies against eight different
marks: H4K16ac, H3K36me3, H3K4me3, H4K5ac, H3K9ac,
H3K56ac, H3K14ac, H3K18ac, and H3 that was used as a
control. These data had also been collected at 16 time-points
along the YMC. 10 biological samples per time point were
obtained in two different batches, and H3K9ac was measured in
both of them. H3K18ac samples were extracted in one of these
batches. The samples were sequenced using three different ChIP-
seq technologies (Illumina HiSeq 2000 ChIP, Illumina Genome
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Analyzer ChIP, and AB SOLiD System), which provided different
read lengths from 35 to 51 bps. ChIP-seq data were analyzed as
detailed in next sections.

2.2. ChIP-Seq Data Pre-processing
The quality of ChIP-seq fastq files was assessed with FastQC
software (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). Reads were quality-filtered and trimmed to discard
low quality reads before mapping to the reference genome. The
Trimmomatic software v0.32 (Bolger et al., 2014) was applied
with more restrictive filters for the highest quality sequencing
samples. Minimum quality was set to 30 (restrictive) or 25
(non-restrictive) at the beginning and end of the read, with a
sliding window of 5 and a minimum length of 28 bp (restrictive)
or 25 bp (non-restrictive). As a result, H3K36me3 and H4K16ac
histonemodifications were discarded due to their low sequencing
quality.

Sequencing reads for the remaining histone modifications
were mapped to the Ensembl database (release 91) S. cerevisiae
reference genome (Langmead et al., 2009) using Bowtie (Zerbino
et al., 2017). Multimapped reads were discarded. For AB SOLiD
reads, reference genome was first converted to color space coding
using bowtie-build with parameter –c. Duplicated reads were
removed with Samtools software (Li et al., 2009).

2.3. ChIP-Seq Quantification
In order to obtain ChIP-seq quantification values, coverage
per nucleotide was calculated for the whole genome with the
program genomecov from the bedtools suite (Quinlan and
Hall, 2010), specifying the parameter –d. After an exploratory
analysis of the coverage across different genomic regions, we
defined two genomic regions per histone modification and gene,
corresponding to either the 300 bp upstream or downstream
regions from the gene transcription start site (TSS). For each
gene and region, the average of the coverage was computed
using in-house Python scripts and the yeast genome annotation
(gtf file) obtained from Ensembl (release 91) (Zerbino et al.,
2017). Consequently, two quantification matrices were generated
for each histone modification, one for upstream and one for
downstream data.

The H3 ChIP-seq data were used as control to normalize
quantification values. Each histone modification sample was
first corrected by its sequencing depth, then divided by the H3
sample at matching time point, log-transformed and centered.
This normalization was proven to be effective to remove batch
effects as verified by histone modification H3K9ac (measured in
both batches). After this correction, the H3K9ac dataset with the
highest quality was selected for further analyses.

2.4. Differential Expression and Clustering
Differential expression analysis of RNA-seq data was performed
with R maSigPro package (Conesa et al., 2006; Nueda et al.,
2014), which applies a polynomial regression model to analyse
time-course gene expression data. A polynomial degree of 3 was
selected as this provided the model with the highest adjusted R2

(results not shown). Differentially expressed genes (DEGs) were
called by having a significant model (False Discovery Rate (FDR)

adjusted p-value < 0.05) and a minimum R2 value of 0.6. DEGs
were clustered within maSigPro using the k-means method and
setting the total number of clusters to 3.

2.5. N-PLS
Partial Least Squares regression (PLS) is a multivariate regression
method commonly used to study the relationship between a
response matrix and a predictor matrix (Wold et al., 1983;
Geladi and Kowalski, 1986). These two matrices have two
dimensions which are, typically, observations (e.g., time points)
in rows and variables (e.g., genes) in columns. However, in
some studies, a third dimension could be considered when
having several treatments, different experiments, etc. In our
case, the different histone modifications can constitute the third
dimension, for instance. For these 3-dimensional structures, a
multi-way extension of PLS method called N-PLS (Bro, 1996)
can be applied. In N-PLS, the dimensions are called modes so,
in our data, we will have three modes: first for genes, second for
time-points and third for histone modifications.

Both PLS and N-PLS approaches are considered dimension
reduction techniques because they identify a set of new variables
(components) that are a linear combination of the original
variables maximizing the covariance between the response and
predictor matrices. Therefore, high-dimensional data can be
graphically displayed in a much lower dimension space. The
loadings are defined as the projections of the old variables,
observations, etc. on each of the components of the new low
dimensional space. The interpretation of these components is
achieved through the information provided by the so-called core
matrix, which indicates which combinations of components from
the different modes explain most of the variability of the response
dataset.

Up to our knowledge, there is no R library available to
compute N-PLS models on data where the response Y is a
bidimensional matrix (genes and time points in our case), while
the predictor X structure is 3-dimensional (genes, time points
and histone modifications). Thus, we programmed ourselves the
N-PLS method following the algorithm described in Bro (1996).

2.6. MORE Regression Models
MORE (Multi-Omics REgulation) (https://bitbucket.org/
ConesaLab/more) is an R method for omics integration based
on Generalized Linear Models (GLMs) that aims to explain
gene expression as a function of potential gene regulatory
elements. MORE can identify the most relevant gene regulators
from a large subset of putative regulators, by finding those
that significantly associate to changes in their expression
levels. MORE first filters out the regulators with low variability
and reduces multicollinearity by grouping highly correlated
regulators, Secondly, two different variable selection procedures
are applied: Elastic Net penalized regression (Zou and Hastie,
2005) and stepwise regression (Draper and Smith, 2014), and a
final regression model is then provided for each gene.

We generated two MORE regression models for each DEG.
The first model included histone modifications as potential
regulators. In this case, the predictors for each gene were the
two regions defined for each of the six considered histone
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modifications, resulting in an initial model that included 12
regulatory variables. The second MORE model considered
differentially expressed TFs as predictors. The potential target
genes of TFs were retrieved from the Yeastract database (Teixeira
et al., 2017). After model adjustment, significant regulators of
genes were selected by having regression coefficient p-values <

0.05. The final result of this analysis is a gene-histone mark/TF
association file indicating if there is a significant relationship
between the gene and the regulatory factor.

2.7. Functional Enrichment Analysis
In order to evaluate the functional impact of each histone mark
or TF in relation with the different phases of the YMC, we
performed a functional enrichment analysis on the set of genes
significantly regulated by each regulatory factor as obtained
from MORE models. Functional terms were retrieved from
Gene Ontology (GO) (Ashburner et al., 2000; Consortium, 2016)
and from Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa and Goto, 2000; Kanehisa et al., 2016) databases, and a
Fisher’s Exact test was applied to select the significantly enriched
functional categories (p-value < 0.05). The genes regulated by
each histone modification were grouped according to the YMC
cluster they belong to and the functional enrichment analysis was
performed on each of the three groups. For TFs, the number of
regulated genes was much lower and the enrichment analysis was
done without YMC phases separation.

2.8. Selection of the Most Relevant
Regulations
The MORE analysis returns a large number of significant factors
involved in gene regulation. An enrichment analysis approach
was applied to select most relevant regulators during the YMC.
We considered a TF to be relevant if the proportion of MORE
significant models involving this TF was significantly higher
than the proportion of the TF regulations in Yeastract database.
Additionally, we selected most relevant histone modification-TF
pairs as those co-regulating a proportion of genes higher than
expected by chance. Both analyses were done with a Fisher’s Exact
test (FDR adjusted p-value < 0.05, and odds ratio > 1).

3. RESULTS

3.1. Time Point Alignment
Kuang et al. (2014) measured gene expression and histone
modifications at 16 sampling points as shown in Figure 1A,
where it can be observed that not all the time points are
equivalent for both data types. For instance, RNA-seq RB phase
has 7 time-points, while ChIP-seq has only 6 time-points. Since
the omics integrative analysis requires matchable observations,
that is, the same time points for both types of data, we had
to “align” them. For that, oxygen consumption levels were
used as a cellular metabolic state indicator to compare the two
experiments and match disagreeing time-points. As a result,
time-points 10 and 11 from RNA-seq were averaged, as well
as time-points 13 and 14 from ChIP-seq, resulting in final
data matrices with 15 rather than the original 16 time points
(Figure 1B).

3.2. Gene Clustering Into YMC Phases
First of all, we selected the genes with significant changes
across YMC and we clustered them according to their temporal
profile in order to assign them to one of the YMC phases.
For that, we applied the maSigPro R package, which returned
the differentially expressed genes (DEGs) and clustered them.
A total of 2,552 out of the 5,992 genes in the initial RNA-seq
dataset were declared as DEGs. Principal Component Analysis
(PCA) on these DEGs showed a clear separation of the time
points according to the different metabolic phases of the YMC
(Supplementary Figure 1), which corroborated the good quality
of the data and of the differential expression results.

The 2,552 DEGs were clustered according to their temporal
profiles into three groups to recapitulate the currently defined
phases of the YMC (Tu et al., 2005; Kuang et al., 2014).The
number of genes assigned to each of the clusters was 1428, 426,
and 698, respectively (Figure 3). Clusters were assigned to their
corresponding phase by matching expression peaks from the
gene profiles to their position in the time-course. We assessed
the quality of our clustering results with the Silhouette metric,
that indicates how well each gene fits in the assigned cluster,
and compared to the previously reported clusters in Kuang et al.
(2014). While clusters in our study and in Kuang et al. (2014)
largely agreed, a better clustering performance was obtained with
our analysis strategy (Supplementary Figure 2).

3.3. Expression Changes in YMC Were
Mostly Driven by H3K9ac and H3K18ac
After retrieving the histone modification data for DEGs, we
applied the N-PLS regression model, which allowed us to
integratively explore the relationship between gene expression
and chromatin status from a global perspective and to assess
the quality of the multi-omic data set. In our analysis, RNA-seq
data, with two dimensions or modes (genes and time points),
was used as response matrix. ChIP-seq data was taken as the
predictor variable. This dataset consists of three dimensions or
modes: two of them are coincident with RNA-seq and the third
mode captures the different histone modifications and genomic
regions (Figure 2).

The idea of N-PLS method is to generate new variables
(components) that are linear combinations of the original
variables and collect most of the covariance between the response
and the predictors. In this case, we selected a model with
two components that are represented in the X and Y axes of
Figure 2, respectively. To understand the relevance of these
components and their relationship with the original modes
(genes, time points and histone modifications), we must look
at the core matrix (Supplementary Table 1). The first element
of the N-PLS core revealed that the combination of the second
components for each of the three modes (genes, time points
and histone modifications) captured most (60.7%) of the gene
expression variability. The second most important core element
connected component 2 of the first and second modes (genes
and time points), with component 1 for the third mode (histone
modifications), explaining 23.9% of the variability in the data.
Therefore, more than 80% of the variance was explained with
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FIGURE 1 | Time points sampled during the YMC. On the (A), the original time points sampled for RNA-Seq data (top) and ChIP-Seq data (bottom) at each YMC

phase are shown. On the (B), the 15 time points after the alignment of the two time series are displayed: time-points 10 and 11 from RNA-seq were averaged, as well

as time-points 13 and 14 from ChIP-seq. On the Y axis the percentage of oxygen in the environment is indicated.

FIGURE 2 | N-PLS model. Structure of response (Y) and predictor (X)

matrices.

these two elements of the core. Figures 4A–C show the loading
plots for the three modes, that is, the projections of genes, time
points and histone modifications onto the new space formed by
the N-PLS components.

N-PLS loading plots of mode 1 (genes) and mode 2 (time
points) at both RNA-seq and ChIP-seq followed the phases of
the YMC, as expected (Figures 4A,B). The second component
of the second mode separated time-points 6 to 11 from time-
points 1 to 5 and 13 to 15, which correspond to high and low
oxygen consumption stages of the YMC, respectively. The second
component of the first mode showed separation of genes at RB
phase from genes associated to OX and RC phases, and that these
differences were more pronounced in RNA-seq than in ChIP-seq
data, as gene selection and clustering into YMC phases was done
on the transcriptomics data.

Regarding histone modifications, N-PLS loading plot
(Figure 4C) revealed that the two genomic regions defined

to quantify each histone modification (–300 bp to TSS and
TSS to +300 bp) were highly correlated, which suggests
that a unique region is informative of the chromatin state.
In addition, the histone marks plot also indicated that
no batch effects or outliers were noticeable in the data
(Supplementary Figure 3). Interestingly, N-PLS results also
pointed out the relevance of H3K9ac and H3K18ac histone
modifications on global gene expression regulation, since
the highest loadings in absolute value were obtained for
these marks. H3K4me3 was the least important histone
modification in global terms, while H3K14ac, H3K56ac
and H4K5ac presented intermediate relevance (phases in
which these histone modifications peak are displayed in
Supplementary Figure 4).

3.4. MORE Models Confirmed the
Relevance of H3K9ac and H3K18ac
In order to unravel the specificity of the histone mark-gene
expression regulation, MORE regression models were calculated
for each gene using as predictor variables the normalized
read count values at the genomic regions defined for each
histone mark ChIP-seq assay. We decided to use only significant
regulations having a positive regression coefficient, based on
previous studies showing that histone modifications have a
positive regulatory role on transcription activation (Berger,
2007). MORE results confirmed the relevance of H3K9ac and
H3K18ac, as they appear as significant in the highest number
of gene models, 780 and 815 respectively. H3K56ac, significantly
associated to 393 genes, followed. When analysing the significant
regulations per cluster (Figure 5 and Supplementary Figure 5),
we found that H3K9ac regulates the highest proportion of genes
in OX and RB phases (37 and 29%, respectively), followed
by H3K18ac (31 and 24%). Notably, H3K56ac regulates 21%
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FIGURE 3 | Genes clustering. Average profile of the differentially expressed genes in each of the three clusters obtained, which are in turn associated to each YMC

phase.

of genes in the RB cluster, a higher proportion than in the
other clusters (13–15%). In the RC cluster, H3K18ac is the
most significant histone modification, regulating 37% of the
genes.

In order to understand the impact of histone modifications
on the regulation of cellular functions associated to each
YMC phase, a functional enrichment analysis of the genes
significantly regulated by each histone mark according to
MORE was performed separately for each cluster. The results
per phase are described next and illustrated in Figure 6 and
Supplementary Figure 5.

3.4.1. OX Phase

OX phase showed a common trend of regulating translation,
ribosomal machinery and nucleotides metabolism. Except
H4K5ac, every other histone modification was involved in
amino-acid metabolism. H3K9ac, H3K18ac, H3K14ac and
H3K4me3 were specifically linked with one-carbon metabolism
and methylation through the terms Methyltransferase activity,
Asparagine biosynthetic process or Glutathione metabolism.
H3K56ac, H3K18ac and H4K5ac showed overrepresentation of
helicase activity genes. H3K18ac and H4K5ac were also enriched
in terms related to cell cycle regulation (Cell division andMitotic
recombination) but, contrary to our expectations, this was not
the case for mark H3K56ac, previously reported to be linked to
histone deposition in S-phase (Li et al., 2008).

3.4.2. RB Phase

RB phase was characterized by the regulation of sugar
metabolism, which is associated to all histone modifications,
coupled with a regulation of mitochondrial activity, from
which H3K4me3 and H3K56ac were excluded. Genes involved
in phospholipid metabolism were enriched in H3K9ac and
H3K18ac regulations, while cell cycle appeared to be controlled
by H3K18ac and H3K4me3 marks. H3K9ac, H3K14ac and
H4K5ac were significantly enriched in Biosynthesis of secondary
metabolites functionalities.

3.4.3. RC Phase

This phase was arguably the most diversified among the
histone modification regulatory landscape. The tricarboxylic
acid (TCA) cycle was regulated by all modifications through
Oxidative phosphorylation and Electron transport chain, whereas
Glycolysis was only enriched at H4K5ac, H3K18ac and
H3K14ac. H3K14ac and H3K4me3 appeared to coordinate
the regulation of ethanol metabolism genes, while H3K9ac
associated to fatty acid metabolism together with H3K18ac,
H3K56ac and H3K14ac. H3K18ac and H3K56ac combined to
target genes within cell division functionalities, while H3K56ac,
H3K9ac and H3K4me3 were related to amino-acid degradation
processes. H3K56ac seemed to be the only mark associated
to genes involved in Histone acetylation while H3K4me3 the
only histone modification enriched in one-carbon metabolism
genes.

3.5. MORE Identifies Most Relevant TFs for
YMC Regulation
TFs are believed to work tightly with histone modifications
to regulate gene expression. We used the MORE approach to
identify key TFs of the YMC that complement histone mark
regulation of gene expression. According to Yeastract database
(Teixeira et al., 2017), 109 transcription factors were present
among our DEGs. Yeastract database also provided the potential
target genes for each TF, and this information was used to
calculate MORE regression models. MORE results indicated that
105 TFs were significantly associated to 2480 genes. TFs that
were regulating a significantly higher proportion of genes in the
MORE models compared to Yeastract annotations were selected
for further analysis. These TFs included Sfp1, Hfi1, Asg1, Ppr1,
Ste12, Ylr278c, Cup9, and Dat1 at OX-phase, Yhp1 at the RB-
phase, and Mig2, Pip2, Xbp1, and Cin5 at the RC-phase, making
a total of 13 significantly over-represented (FDR adjusted p-value
< 0.05) TFs within MORE models.

A functional enrichment analysis on the genes significantly
regulated by each of these 13 over-represented TFs (Figure 7)
showed that these genes were involved in functions related to
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FIGURE 4 | N-PLS loading plots for each mode and omic data type. The loading values are the original values of genes, time points and histone modifications

projected onto the new spaced formed by component 1 (X axis) and 2 (Y axis). Left and right columns display the information for ChIP-seq and RNA-Seq data,

respectively. (A) Genes loadings. (B) Time points loadings. (C) Histone modifications loadings.
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FIGURE 5 | Gene expression regulation by histone modifications per YMC phase. Y axes show the percentage of genes in the cluster that was significantly regulated

by each histone modifiation according to MORE models.

metabolic sensing, chromatin structure, and cell cycle regulation.
Sfp1 appeared to be involved in the transcription of ribosome,
nutrient response, G2/M transitions, DNA damage, and histone
exchange. Hfi1 played a role in translation, aminoacid and
nucleotides biosynthesis and nucleotide cleavage via Helicase
activity. Pip2 was associated to lipid metabolism, amino-
acid and carbohydrate metabolism and citrate cycle. Mig2
contributed to carbohydrate and amino-acid metabolism as
well as TCA cycle, and was involved in endonuclease cleavage,
mitotic cell cycle and endocytosis. Yhp1 enriched functions
were ribosome, helicase activity and cell cycle regulatory
control. Xpb1 and Ppr1 were involved in the cell cycle
via cyclin regulation, but also in ethanol metabolism and
showed regulation of various metabolic pathways, including
carbohydrate and amino-acids metabolism. Cin5 was involved
in stress response and metabolic response, in the context of
the YMC this is mostly related to redox changes, and the
regulation of glycolysis, and amino-acid metabolism. Ste12 was
also involved in the DNA replication and fatty acid metabolism,
Cup9 showed enrichment of glycolysis-related functionalities
and Dat1 was involved in metabolic regulations in response
to hipoxia, with nucleotide metabolism upregulated, which
was also linked to Asg1. Ylr278c showed association with
chromatin remodeling functionalities (RSC complex among
others), as well asHelicase activity and other nucleotide repairing
properties.

3.6. Gene Expression Co-regulation by
Histone Modifications and TFs
After separately studying the role of histone modifications and
TFs on gene expression regulation, the results were combined
to search for co-regulatory activity between these two types
of regulation. First, an independence test (section 2.8) was
applied to study if a given pair TF-histone modification
was significantly present in a common set of genes. TFs

considered for this analysis were the 13 over-represented factors
previously described. Three of all the tested combinations gave
significant results: histone modification H3K18ac associated
with transcription factors Hfi1, Pip2 and Xbp1 (FDR adjusted
p-values < 0.05).

Next we compared the functional enrichment results obtained
independently for histone modifications and TFs (Figure 8). For
this analysis, we compared the 5most relevant TFs (FDR adjusted
p-value < 1.1e − 9) with all studied histone modifications.
Figure 8 includes bar plots indicating the proportion of genes
regulated within each YMC phase by each regulator in the
table. In general, it is expected a higher proportion of regulated
genes for histone modifications. This is simply due to the fact
that all genes have their corresponding histone modification
measurement but not all the genes have an associated TF
according to Yeastract database. In OX phase, we found a relative
higher number of genes regulated by Sfp1 and Hfi1 together
with H3K9ac and H3K14ac. For RB phase, Yhp1 and H3K56ac
seemed to be more important, while the number of significantly
regulated genes for Mig2 and H3K18ac was higher in RC
phase.

Comparative functional analysis revealed functionalities
shared between histone modifications and TFs, most of which
were consistent with the functions individually attributed to
each regulatory element. For instance, H3K9ac, H3K18ac and
H3K56ac share OX phase-related functionalities with all the TFs,
including Ribosome biogenesis, Translation or Helicase activity
among others. H3K14ac also shared some of these functionalities
but only with TFs Hfi1, Pip2 and Yhp1. RB-phase did not
show high overlap between histone modifications and TFs
associated processes, H3K56ac shared Ribosomal and Translation
functions with Hfi1 and Pip2, while H4K5ac sharedCarbohydrate
metabolic process with Mig2. Pip2 seemed to be the TF with
the highest functional cooperation with histone modifications
in RC-phase, showing common functionalities with H3K9ac,
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FIGURE 6 | Functional enrichment of the genes that were significantly regulated by each histone modification according to MORE results. For each YMC phase, a

diagram summarizes the enriched processes found for each color-coded histone modification. The order or the length of the colored lines present in a particular

process has no special meaning, just that the processed was significantly enriched for those histone modifications. The diagrams represent the core metabolic

pathways enriched for the different chromatin modifications.

H3K18ac, H3K14ac, H4K5ac and H3K4me3, that include Fatty
acid metabolic process, Long-chain fatty acid transport and
NADPH regeneration among others.

4. DISCUSSION

Temporal profiles of gene expression along the YMC have been

widely studied by different authors (Klevecz et al., 2004; Tu et al.,
2005; Slavov et al., 2011). However, little is still known about the
regulatory effect of histone modifications on gene expression in

the YMC. The pioneering study of Kuang et al. (2014) analyzed
chromatin state data and its impact on gene expression in YMC.

Their correlation analysis showed an association between histone

modifications and YMC phases, but did not identify which
particular genes were significantly regulated by each histone
mark.

In this work, we recovered RNA-Seq and ChIP-Seq data

from Kuang et al. (2014) study, and complemented them with
an additional histone modification (H3K18ac). We re-processed
ChIP-seq samples to obtain comparable chromatin state
measurements, and redid the RNA-seq differential expression
analysis to refine the clustering of the genes into the three
YMC phases. We applied, for the first time in this context,
an integrative strategy based on multivariate regression models
that allowed us to elucidate interplay of histone modifications
and TFs on the modulation of gene expression during
the YMC.

The differential gene expression analysis was the starting point

of the study and 2552 differentially expressed genes obtained

with maSigPro method constituted the set of genes used for

downstream analyses. The clustering of these genes into the three

YMC phases (Figure 2) outperformed the previous clustering
efforts (Kuang et al., 2014) according to the Silhouette quality
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FIGURE 7 | Heatmap from the functional enrichments of Transcription Factors. Rows display the different enriched GO and KEGG terms, and color intensity represent

the p-value of the significance test. Transcription factors are present in the columns, at the top of each column three colors represent the three YMC phases (red for

OX, green for RB and blue for RC).

indicator (Supplementary Figure 2), hence providing a solid
landscape to conduct the omics integration analyses.

The multi-omic exploratory approach using a N-PLS multi-
way regression model (Figure 4) confirmed the data was free of
outliers and batch effects, and also the expected distribution of
time points and genes in concordance with the YMC phases.

An important conclusion that can also be drawn from the
N-PLS results for histone modifications is that H3K9ac and
H3K18ac were the main marks involved in changes of gene
expression. Interestingly, these changes were mostly explained
by the components that best separated the RC phase from the
other YMC phases. As these differences corresponded to the
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FIGURE 8 | Co-regulation study for histone modifications and TFs. In rows, the studied histone modifications. In columns, the 5 most relevant TFs. Bar plots show the

proportion of genes significantly regulated by each histone modification or TF within each cluster (YMC phase). The table displays the common enriched functional

terms for each pair TF-histone modification. The color of the bullets refers to the cluster for which the functional term was enriched. Cells in gray color indicate that the

corresponding pair TF-histone modification was co-regulating a significant number of genes (see section 3.6).

Frontiers in Genetics | www.frontiersin.org 11 November 2018 | Volume 9 | Article 578

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Sánchez-Gaya et al. YMC Chromatin and Expression Integration

separation of high and low oxygen consumption, it could be
hypothesized that chromatin changes have the highest impact on
gene expression through the change in cellular redox state. These
results are in line with a YMC division into two phases (HOC
and LOC) based on the oxidative state of the cell as proposed in
Mellor (2016).

While N-PLS allowed to globally explore the relationship
between gene expression and histone modifications, the MORE
method provided the framework for studying the specifics
in the regulation of the expression of each particular gene.
Hence,MORE generalized linear models identified which histone
marks and TFs significantly associated to each gene along
the YMC. MORE models confirmed the N-PLS results that
revealed H3K18ac and H3K9ac as histone modifications with the
highest impact on gene expression, since they were significantly
regulating a larger proportion of genes with cycling transcripts.
While both of them show a similar relevance in OX and RB
phases, H3K18ac alone gains importance in the RC phase.
We can also highlight here the contribution of H3K56ac to
the regulation of the RB cluster. Additionally, our analyses
highlighted a set of 13 TFs as key for the YMC regulation.
We hypothesize that combination of histone modifications and
TFs are capable of shaping the YMC, and propose they act
cooperatively across the cycle to contribute to gene expression
regulation needs.

The functional enrichment analysis revealed that H3K9ac
and H3K18ac target genes were mostly involved in ribosome
activity and translation in OX phase, in mitochondrial activity
and glycolysis in RB phase, and in fatty acid degradation during
the RC phase. Results for H3K9ac are in agreement with those
reported in Kuang et al. (2014) (H3K18ac was not included in
that study), which were derived from the functional enrichment
of genes within each YMC phase. Thus, our findings support
these two histone marks as primarily responsible for driving
clusters functionalities. Previous studies have pointed to the
relevance of acetyl-CoA in coordinating gene expression through
protein acetylation levels (Wellen et al., 2009), which peak toward
the end of OX phase (Cai et al., 2011). This correlates with
positive regulation of CHO metabolism as cells enter the RB
phase. Interestingly, although activation of glycolysis has been
linked to acetylation of genes involved in this metabolic pathway,
the RB phase presents the lowest number of acetylated genes in
the YMC.

Association analysis between histone modifications and TFs
suggested Pip2 and Hfi1 to combine with H3K9ac and H3K18ac
to drive the OX phase. Interestingly, H3K56ac also shared
ribosome functionalities with Sfp1, Hfi1, Mig2 and Yhp1 in the
OX phase, and translation functionalities with Hfi1 and Pip2
in RB phase. This putative function in transcription control is
likely to be related to its role in histone turnover at promoters
(Rufiange et al., 2007) whereas H3K56ac role in cell division
in the RC phase is more associated to its role in compaction
of DNA into chromatin following DNA replication and repair
(Kurdistani and Grunstein, 2003), linked to peak levels of
H3K56ac in S phase of the cell cycle; the role of H3K56ac in
replication was previously linked to the RB phase of the YMC
(Cai et al., 2011). Pip2 is the main regulator of RC phase in

coordination with the histone modifications (Figure 8), which
presumably drive the fatty acid metabolic capabilities of this
phase, consistent with the fatty acid response functionalities
associated to Pip2 (Karpichev et al., 1997; Baumgartner et al.,
1999). Overlapping functionalities for H3K9ac and H3K18ac
with Pip2 revealed a possible coordination of the marks and the
transcription factor to drive fatty acid metabolic processes in
RC phase, while Pip2 association with H3K14ac, H4K5ac and
H3K4me3 is more consistent with the response to changes in
redox conditions.

Co-regulation analysis revealed that H3K18ac shared a
significant number of genes precisely with Pip2 and Hfi1. Pip2
triggers the regulation of genes required for beta-oxidation
(Karpichev et al., 1997), while Hfi1 is required for the acetylation
mechanisms of SAGA complex. Thus, our results capture the
central concept of the YMC, the link between metabolism and
the mechanism for driving chromatin structural changes via
lysine acetyl transferases leading to the expression of genes
that drive metabolism. This can also be observed at the
H4K5ac and Mig2 pair, which share the common function
of carbohydrate metabolic process (Figure 8), which is an
important RB phase pathway, possibly driven by the glucose-
response activities previously described forMig2 (Fernández-Cid
et al., 2012). Pip2, Xbp1, Cin5, Ste12, and Cup9 also showed
involvement in metabolic response, mostly through fatty acid
and glucose metabolism, but they were not associated with
any of the histone modifications. Other major cell functions
such as the cell cycle were associated with transcription factors
(Yhp1, Asg1, Ste12, Cin5) and histone modifications (H3K18ac,
H3K56ac, H4K5ac), although no associations between themwere
detected.

Although H3K4me3 was not associated with the regulation
of a high number of genes (Howe et al., 2017), it is
worth mentioning this modification is associated to genes
involved in synthesis of amino acids, and specifically one-
carbon metabolism. Histone methylation dynamics have been
related to availability of methionine and regulation of one-
carbon metabolism, which in turn is the main supplier of S-
adenosyl methionine for protein methylation (Mentch et al.,
2015). H3K4me3 did not show a substantial overlap with any
of the TFs, which might suggest a role independent from the
selected TFs.

All together, the present study reveals the interplay between
transcription factors and histone modifications in the regulation
of YMC gene expression. The usage of multivariate and
regression models has helped to improve the conclusions
gathered in previous studies with more detailed functional
characterization of the YMC, and allowed to identify H3K9ac and
H3K18ac as themain histonemodification drivers that define this
biological cycle, being the main contributors to the regulation of
fatty acid and aminoacids metabolism, glycolysis and TCA. The
present study also identified 10 TFs that may be important for
YMC regulation. Many associations were found between cellular
functions enriched at TFs and histone mark regulatory models,
offering a possible landscape in which these two molecular levels
might cooperate to drive changes in gene expression that shape
the YMC phases. Although metabolomic data was not analyzed
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here, we were able to capture the relationship between histone
modifications and cellular metabolic state through functional
analyses, suggesting that a future incorporation of metabolomics
and chromatin accessibility data will contribute to further
understand the set of molecular regulatory mechanisms behind
the YMC.
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