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Abstract

The basolateral complex of the amygdala (BLA) is a critical component of the neural circuit regulating fear learning. During
fear learning and recall, the amygdala and other brain regions, including the hippocampus and prefrontal cortex, exhibit
phase-locked oscillations in the high delta/low theta frequency band (,2–6 Hz) that have been shown to contribute to the
learning process. Network oscillations are commonly generated by inhibitory synaptic input that coordinates action
potentials in groups of neurons. In the rat BLA, principal neurons spontaneously receive synchronized, inhibitory input in
the form of compound, rhythmic, inhibitory postsynaptic potentials (IPSPs), likely originating from burst-firing parvalbumin
interneurons. Here we investigated the role of compound IPSPs in the rat and rhesus macaque BLA in regulating action
potential synchrony and spike-timing precision. Furthermore, because principal neurons exhibit intrinsic oscillatory
properties and resonance between 4 and 5 Hz, in the same frequency band observed during fear, we investigated whether
compound IPSPs and intrinsic oscillations interact to promote rhythmic activity in the BLA at this frequency. Using whole-
cell patch clamp in brain slices, we demonstrate that compound IPSPs, which occur spontaneously and are synchronized
across principal neurons in both the rat and primate BLA, significantly improve spike-timing precision in BLA principal
neurons for a window of ,300 ms following each IPSP. We also show that compound IPSPs coordinate the firing of pairs of
BLA principal neurons, and significantly improve spike synchrony for a window of ,130 ms. Compound IPSPs enhance a
5 Hz calcium-dependent membrane potential oscillation (MPO) in these neurons, likely contributing to the improvement in
spike-timing precision and synchronization of spiking. Activation of the cAMP-PKA signaling cascade enhanced the MPO,
and inhibition of this cascade blocked the MPO. We discuss these results in the context of spike-timing dependent plasticity
and modulation by neurotransmitters important for fear learning, such as dopamine.
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Introduction

The basolateral complex of the amygdala (BLA) is a critical part

of the neural circuit regulating fear learning [1–5], and recent

evidence suggests that oscillatory activity of neurons in this region

plays a key role in regulating affect in awake, behaving animals (for

review, see [6]). More specifically, it is now evident that the

amygdala, hippocampus, and prefrontal cortex produce coordi-

nated high delta/low theta (4–5 Hz) oscillations during acquisition

[7] and retrieval [8] of learned fear, which then diminish over the

course of subsequent extinction learning. Significantly, phase-

locked theta stimulation applied simultaneously to the amygdala

and hippocampus disrupts fear extinction and prolongs the

expression of learned fear [9], further supporting a role of

synchronized neural activity in the processes of fear learning and

extinction. Moreover, synchronous theta oscillations during REM

sleep in the period between fear acquisition and retrieval correlate

with changes in fear expression, suggesting that theta oscillations

are critical for successful consolidation of fear memory [10].

Despite the importance of these low frequency oscillations to

amygdala function and emotional learning, the mechanisms by

which the BLA circuit generates rhythmic activity are largely

unknown.

A common mechanism for generating network oscillations

utilizes coordinated inhibitory input across multiple neurons to

synchronize their action potential firing [11–17]. The BLA is

organized to exploit this phenomenon through the rhythmic

interaction of excitatory principal neurons and inhibitory
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interneurons. BLA principal neurons exhibit compound, rhythmic,

inhibitory postsynaptic potentials (IPSPs) that occur at a baseline

frequency of 0.5–4 Hz that is sensitive to modulation by dopamine

and serotonin [18–20]. These rhythmic IPSPs are driven by action

potentials in local, burst-firing interneurons, which we have

previously shown to express parvalbumin (PV+) [21]. PV+

interneurons have several characteristics that enable them to

influence the activity of large networks of BLA principal neurons

synchronously: first, these interneurons make up approximately

40% of the total interneuron population and are distributed

throughout the BLA; second, each PV+ interneuron can innervate

the soma and axon hillock of approximately 150 principal neurons

[22]; finally, these interneurons are coupled electrically by gap

junctions to create a functional syncytium [23–25]. Significantly,

we and others have shown that, in paired recordings of rat BLA

principal neurons, spontaneous IPSPs are highly synchronized

[26,27], suggesting that the output of PV+ interneurons may

coordinate the activity of large numbers of principal neurons.

Synchronous IPSPs in large groups of BLA principal neurons

could also facilitate network oscillations by interacting with

intrinsic oscillations in principal neurons to promote rhythmic

firing. Intrinsic membrane potential oscillations (MPOs) have been

shown to improve spike-timing precision [28], which is, in turn,

important for spike-timing dependent plasticity [29] and signal

processing in neural networks [30]. BLA principal neurons display

a highly consistent MPO [31,32] and an intrinsic resonance [33],

both in the same high delta/low theta frequency band as network

oscillations observed during fear learning. If these MPOs were to

occur synchronously in groups of BLA neurons, network activity

should be promoted at this highly relevant frequency. Considering

that groups of cells can have their firing activity entrained by

synchronized IPSPs [34], we chose to investigate the possibility

that synchronized, rhythmic IPSPs entrain and phase-lock MPOs

and coordinate firing activity in BLA principal neurons.

Furthermore, we examine the underlying currents and intracellu-

lar signaling cascades regulating these phenomena and discuss

potential links to synaptic plasticity and fear learning.

Materials and Methods

Animals and housing conditions
Whole cell patch clamp recordings were obtained from 76

neurons from 48 rodents, and 46 neurons from 13 primates.

Rodent experiments were conducted on tissue from male Sprague-

Dawley rats at 5–7 weeks of age. All rats were group-housed 4 per

cage in Plexiglas cages with corn cob (Bed-O-Cob) bedding. Rats

had access to food and water ad libitum, and were maintained in a

temperature controlled colony room on a 12:12 light:dark cycle.

The primate tissue for this study was obtained from juvenile (18–

36 months) Macaca mulatta monkeys of both genders. Primates used

in this study were born into the breeding colony housed at the

Yerkes National Primate Research Center Field Station and raised

in normal social groups. They were provided with ad libitum access

to food and water and monitored by the Yerkes Veterinary Staff.

Animals used in this study were selected for sacrifice by the

veterinary staff for failure to thrive and/or chronic diarrhea

Figure 1. Spontaneous, compound IPSPs in the BLA were synchronized across principal neurons and with bursts in inhibitory
interneurons. (A) A representative pair of primate BLA principal neurons, held at 260 mV, showing compound IPSPs that are rhythmic and highly
synchronized, observed during gap-free recordings. (B) A histogram plotting instantaneous frequency of compound IPSPs during 30-second
recordings from 12 primate BLA principal neurons. (C) Paired recordings in the primate BLA of a principal neuron receiving compound IPSPs and a
burst-firing parvalbumin interneuron, both held at 260 mV. (D) An example of a burst-IPSP pair shown at higher temporal resolution. (E) A
compound IPSP can be induced in a BLA principal neuron by using current injection to drive bursting activity in the interneuron.
doi:10.1371/journal.pone.0035320.g001
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refractory to treatment as part of the animal care end-points

approved for our monkey colony. Once identified, the animals

were moved to the Yerkes Main Station and scheduled for sacrifice

within the week.

Experiments for Figures 1 & 2 were performed in both rat and

primate tissue, and the remainder of experiments were performed

exclusively in rat tissue (see figure legends for details). The care of

the animals and all anesthesia and sacrifice procedures in this

study were performed according to the National Institutes for

Health Guide for the Care and Use of Laboratory Animals and

were approved by the Institutional Animal Care and Use

Committee of Emory University.

Electrophysiological procedures
Preparation of acute BLA slices. To obtain slices from the rat

basolateral amygdala, animals were decapitated under isoflurane

anesthesia (Abbott Laboratories, North Chicago, IL). The brains

were rapidly removed and placed in ice-cold kynurenic acid-based

artificial cerebrospinal fluid (KA-ACSF), which contained (in

mM): NaCl (130), KCl (3.5), KH2PO4 (1.1), MgCl2 (6.0), CaCl2
(1.0), NaHCO3 (30), glucose (10), thiourea (0.8), sodium pyruvate

(2), ascorbic acid (0.4), and kynurenic acid (2). The glutamatergic

antagonist kynurenic acid was included in the KA-ACSF to

suppress any excitotoxic effects of glutamate release that may

occur due to tissue slicing. A block of tissue containing the BLA

was then mounted in a Leica VTS-1000 vibrating microtome

(Leica Microsystems, Bannockburn, IL), and 350 mm coronal

slices were cut. Slices were hemisected and hand-trimmed to

remove excess tissue dorsal to the amygdala. For the primate

basolateral amygdala, the animals were sacrificed with an overdose

of pentobarbital (100 mg/kg) and hand-cut blocks of tissue from

the medial temporal lobe were mounted in a vibratome and

400 mm coronal slices were cut as previously described [19]. Slices

from both species were transferred to a holding chamber

containing KA-ACSF at 32uC and gassed with a 95%/5% O2/

CO2 mixture for 40 min before being placed in oxygenated

regular ACSF (ACSF) at room temperature containing (in mM):

NaCl (130), KCl (3.5), KH2PO4 (1.1), MgCl2 (1.3), CaCl2 (2.5),

NaHCO3 (30), glucose (10), thiourea (0.8), sodium pyruvate (2),

and ascorbic acid (0.4).

Recording procedures. For recording, slices were placed in a Warner

Series 20 recording chamber (Warner Instruments, Hamden, CT)

mounted on the fixed stage of a Leica DM-LFS microscope (Leica

Microsystems, Bannockburn, IL). Slices were fully submerged and

continuously perfused at a rate of 1–2 mL/min with heated (32uC)

and oxygenated ACSF. Neurons were selected for recording under

IR-DIC illumination with a 406 water immersion objective.

Images were captured with a Hamamatsu Orca ER CCD camera

(Hamamatsu, Tokyo, Japan) controlled by SimplePCI software

(Compix, Sewickley, PA). Whole cell patch-clamp recordings were

Figure 2. Spontaneous, compound IPSPs coordinated spike timing and promoted rhythmic firing in the primate BLA. (A)
Spontaneous, compound IPSPs exhibited by a representative pair of primate BLA projection neurons, depolarized to action potential threshold (245
to 240 mV) using a DC current injection. A raster plot highlights the relative synchrony of spikes following the IPSPs, highlighted in gray boxes.
Action potentials are cropped at 230 mV (n = 6). (B) A spike correlation metric (see Methods) is plotted for 6 pairs of primate BLA principal neurons
exhibiting compound IPSPs and depolarized to threshold, as in A. Correlation is plotted for each pair as an individual, smoothed trace (thin black
lines) representing the mean correlation surrounding every spontaneous, compound IPSP, with the peak of each IPSP aligned to time 0. The mean of
all 6 pairs is superimposed as a dotted black line. (C–D) A representative single (C, n = 4) and pair of (D, n = 2) primate BLA principal neurons
exhibiting rhythmic firing upon rebound from spontaneous, compound IPSPs. Neurons were depolarized to threshold, as in A. IPSPs and rebound
firing are highlighted with gray boxes in C. Action potentials were cropped at 230 mV. (E) A primate BLA principal neuron, depolarized as in A,
exhibiting a damped membrane potential oscillation in response to a spontaneous, compound IPSP.
doi:10.1371/journal.pone.0035320.g002
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conducted using thin-walled borosilicate glass-patch electrodes

(WPI, Sarasota, FL) which were pulled on a P-97 Flaming/Brown

micropipette puller (Sutter Instruments, Novato, CA). Patch

electrodes had resistances ranging from 4–7 MV when filled with

standard patch solution that contained (in mM): K-gluconate

(138), KCl (2), MgCl2 (3), phosphocreatine (5), K-ATP (2) NaGTP

(0.2), HEPES (10), and biocytin (3 mg/mL). The patch solution

was adjusted to a pH of 7.3 with KOH and had a final osmolarity

of approximately 280 mOsm. Junction potentials were offset

manually prior to patching neurons. Access resistances were

monitored throughout recordings and neurons with more than a

15% change were discarded. In the case of paired recordings, two

neurons were selected for patching within a single 406visual field.

Neuronal types were pre-selected based on somatic morphology,

and type was verified based on electrophysiological profile, as

described previously for rat [35] and primate [19].

All recordings were performed in principal neurons of the

basolateral nucleus of the amygdala, contained in the basolateral

complex. Recordings were obtained using an Axopatch-700A

amplifier (Molecular Devices, Sunnyvale, CA), a Digidata 1320A

A/D interface, and pClamp 10 software (Molecular Devices). For

all experiments, whole cell patch-clamp configuration was

established, and cell responses were recorded in either current

clamp or voltage clamp mode. Data were filtered at 5 kHz in

current clamp and 2 kHz in voltage clamp, and sampled at a rate

of 10 kHz. Neurons were excluded from analysis if their resting

membrane potential (Vm) was more positive than 255 mV or if

their action potentials did not surpass +5 mV.

Drug Application. Drugs were applied by gravity perfusion at the

required concentration in the circulating ACSF. Drugs used:

cesium chloride (CsCl), 5 mM; nickel chloride (NiCl2), 500 mM; 4-

aminopyridine (4-AP), 100–500 mM; tetrodotoxin (TTX), 1 mM;

tetraethylammonium chloride (TEA-Cl), 20 mM; forskolin,

10 mM; dideoxy-forskolin, 10 mM; 1,2-bis(o-aminophenox-

y)ethane-N,N,N9,N9-tetraacetic acid (BAPTA), 5 mM purchased

from Sigma–Aldrich (St. Louis, MO); 6,7-dinitroquinoxaline-2,3-

dione (DNQX), 20 mM; RS-CPP, 10 mM; CGP 52432, 2 mM; 4-

(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyridi-

nium chloride (ZD7228), 60 mM; (1R,4R,5S,6R)-4-amino-2-ox-

abicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268), 50 mM;

8-Br-cAMP, 5–10 mM; and (R)-adenosine, cyclic 39,59-(hydro-

genphosphorothioate) triethylammonium (cAMPs-RP), 25 mM

purchased from Tocris (Ellisville, MO). All drugs were stored

frozen as concentrated stock solutions in dH2O except DNQX,

which was made in 50% dimethyl sulfoxide and buffered to

pH 7.3.

Spike-timing precision, resonance, and oscillations. To assess the effect

of IPSPs on spike-timing precision, repetitive action potentials

were evoked with a depolarizing, square-wave current step of

amplitude set to evoke 4–8 Hz firing from a holding potential of

260 mV. The current injections were repeated five times with an

inter-event interval of 10 seconds. To examine the effect of

synaptic inhibition on spike-timing precision, the current in the

depolarizing step was transiently removed for 15 ms and then

ramped back over 100 ms to the command amplitude to mimic

compound spontaneous IPSPs observed in BLA principal neurons.

Alternatively, pharmacologically isolated, compound, synaptic

IPSPs were evoked using electrical stimulation within the dorsal

BLA, just medial to the external capsule. The two IPSPs in each

sweep were applied 550 and 1415 ms into the depolarizing step,

separated by 865 ms start-to-start (,1.2 Hz), to mimic the

frequency of spontaneous IPSPs previously observed in our

laboratory.

To examine the membrane potential oscillation of BLA

principal neurons, cells were held at 260 mV and injected with

the same transient (2.5 s) square-wave depolarizing current pulse

as described above. TTX (1 mM) was included in all experiments

investigating the membrane oscillation. The voltage response to

the DC current pulse was recorded and characterized in regular

ACSF and also in varying drug conditions. The amplitude of the

current pulse was adjusted such that the steady state membrane

potential achieved during current injection was similar before and

during drug application (between 240 and 230 mV). Any drug-

induced changes in resting membrane potential were compensated

for by DC current injection before initiating the transient square-

wave depolarizing current pulse to assess the effect on membrane

potential oscillations. To assess resonance frequency, principal

neurons were held at 260 mV with DC current injection and a

sinusoidal frequency sweep of constant current amplitude was

injected, increasing from 1–12 Hz over a period of 8 seconds, and

the voltage response of the cell was recorded.

Data and statistical analysis. The correlation of

spontaneous IPSPs and burst-firing from paired recordings of

BLA neurons were analyzed by first identifying event times using

pClamp software and then using a Pearson product-moment

correlation. Spike-timing precision was assessed using a

correlation-based metric adapted from Schreiber et al., 2003

[36]. The correlation statistic (Rcorr) was calculated for windows of

200 ms every 66 ms, using the equation (Equation 1) as published.

Briefly, spike times from N traces were convolved with a Gaussian

filter of pre-determined width (s) to create spike vectors (s). For

experiments involving artificial and evoked IPSPs, s= 6 ms, and

to prevent a floor effect due to lower spike rates, for experiments

with spontaneous IPSPs, s= 20 ms. The degree of correlation

between the vectors (si, sj) was calculated using a dot-product

normalized to the product of their magnitudes and the number of

comparisons being made.

Rcorr~
2

N N{1ð Þ
XN

i~1

XN

j~iz1

~SSi
:~SSj

~SSi

���
��� ~SSj

���
���

ð1Þ

When calculating spike-timing precision within cells, all 5 traces

(N = 5) were compared using this algorithm; when calculating

across cells, only the 2 traces (N = 2) which occurred simulta-

neously were compared, and 5 comparisons were made and

averaged. Statistical analyses were performed using a two-way

Analysis of Variance (ANOVA), with Bonferroni post-tests to

compare across windows and conditions.

Oscillations of the membrane potential of BLA principal

neurons were analyzed by means of multi-taper spectral analysis

using a custom program that was modified from the Chronux

toolbox [37]. The resonance frequency of BLA principal neurons

was analyzed with fast Fourier transforms (FFT) in pClamp 10

(Molecular Devices) using a Hamming window. Power spectra

(mV2/Hz) were converted into standardized Z-scores and peak

amplitudes were analyzed using a one-way ANOVA.

Results

Primate BLA principal neurons receive spontaneous,
synchronized, rhythmic IPSPs that coordinate action
potential timing

We have shown previously that approximately 80% of principal

neurons in slice preparations of the rat BLA receive spontaneous,

compound IPSPs that occur rhythmically at frequencies ranging

Synchrony and Oscillations in the Amygdala
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from 0.5–2 Hz, with a mean of 1.2 Hz, in control ACSF [18].

These compound IPSPs were observed in principal neurons with

varying intrinsic properties (mean 6 SD: input resistance

85628 MV, action potential threshold 24363.5 mV, action

potential half width 0.860.1 ms, data not shown). Here we show

that compound IPSPs are also observed in 67% of primate BLA

slices with a frequency of 0.7660.33 Hz, similar to the rat (n = 46,

Figure 1A, B). As in the rat BLA, compound IPSPs in the

primate BLA were highly rhythmic, with a coefficient of variation

of instantaneous frequency of 0.3060.09 (n = 12). Compound

IPSPs occur synchronously across multiple neurons in the rat BLA

[26,27], and new analysis reveals they have a near perfect

correlation in time across pairs of principal neurons (Pearson

product-moment correlation, R2 = 0.999; n = 11, data not shown).

We extend this observation to show that compound IPSPs are also

highly synchronized across pairs of primate neurons (Figure 1A;

Pearson product-moment correlation, R2 = 1.0; n = 5, data not

shown), suggesting this is an evolutionarily conserved phenome-

non.

Using paired recordings from a burst-firing interneuron and a

principal neuron, we extend previous observations in the rat BLA

[26,27] to the primate. Here we show that compound IPSPs

observed in BLA principal neurons (Figure 1 C, upper trace)

coincide with rhythmic bursts of action potentials occurring in

burst-firing interneurons (lower trace, n = 2; Pearson product-

moment correlation, R2 = 0.999, data not shown), which we have

previously shown in the rat BLA to express the calcium-binding

protein PV+ [21]. Figure 1D illustrates a typical burst-IPSP pair

at higher temporal resolution. Compound IPSPs with a similar

waveform can also be observed in principal neurons if an

interneuron is driven to fire bursts of action potentials by direct

current injection (Figure 1E). Previously, we have shown that

these compound IPSPs were abolished by application of either the

GABAA receptor antagonist, bicuculline, or the AMPA receptor

antagonist, CNQX, suggesting glutamatergic input drives burst-

firing PV+ interneurons to release GABA at multiple sites onto

BLA principal neurons [26]. Each parvalbumin interneuron can

innervate more than 150 BLA principal neurons [38], further

suggesting that spontaneous, compound IPSPs are highly syn-

chronized across a larger population of principal neurons than the

pairs we show here.

Elsewhere in the brain, IPSPs have been shown to interact with

subthreshold membrane potential oscillations (MPOs) to improve

stimulus discrimination and action potential precision in neurons

[28,30]. We were therefore interested in the ability of synchro-

nized, compound IPSPs to coordinate firing activity within

networks of BLA principal neurons. As illustrated in Figure 2,

compound IPSPs are capable of coordinating activity in the BLA,

improving the temporal coherence of spontaneous action poten-

tials between pairs of primate BLA principal neurons. When

neurons were depolarized to threshold for action potential

generation, action potentials occurring upon rebound from an

IPSP-induced membrane hyperpolarization were highly coinci-

dent across cells (Figure 2A, shaded regions). To identify periods

with consistent spike-timing across cells, we used a correlation-

based metric with a sliding window (see Methods [36]), where a

value of 1 indicates identical spike-timing and a value of 0

indicates no timing correlation. Action potentials during a window

directly following spontaneous, compound IPSPs had improved

temporal coherence across pairs of neurons compared to those

preceding IPSPs (Figure 2B). Interestingly, upon rebound from

compound IPSPs, a subpopulation of primate BLA principal

neurons (3/11 cells) exhibited an increased and more consistent

firing rate (from 3.6 to 7.4 Hz, coefficient of variation from 0.56 to

0.28) (Figure 2C). Moreover, clusters of action potentials showing

a consistent firing rate and high coherence following compound

IPSPs were also observed in 2/6 paired recordings (Figure 2D).

In the course of these experiments it was noted that compound

IPSPs could elicit a damped oscillation on rebound, suggesting the

observed effects on action potential patterning may be due to an

interaction with an intrinsic MPO (Figure 2E).

Together these observations strongly suggest that compound

IPSPs coordinate the firing activity of principal neurons in both

the rat and primate BLA, and their prevalence and synchrony

further suggest that this coordination extends across large groups

of principal neurons. To better assess the interactions of

compound IPSPs with intrinsic properties of BLA principal

neurons, subsequent experiments examined the effects of IPSPs

on spike trains in the absence of synaptic noise. Moreover, given

the scarcity of primate tissue, all experiments were performed in

the rat.

Compound IPSPs enhance spike-timing precision in rat
BLA principal neurons

We first examined the effect of IPSPs on the precision of action

potential timing in a neuron depolarized to action potential

threshold with DC current injection. In order to better isolate the

effects of intrinsic currents on spike timing, we blocked synaptic

currents with a mixture of glutamate and GABA receptor

antagonists (see Methods). As illustrated in Figure 3A, BLA

principal neurons displayed a regular action potential firing

pattern when held at 245 mV. When ten sweeps from the same

neuron were aligned using an action potential as the trigger

(Figure 3B), it was apparent that subtle variations in inter-spike

interval accumulated over the course of the train, such that the

timing of spikes at the end of the train was less consistent than at

the beginning. Conversely, when two simulated IPSPs were

injected during 10 sweeps captured randomly in time (Figure 3C),

the phase of spiking was reset and spike times became much more

consistent across sweeps.

Having established that artificial IPSPs can improve spike-

timing precision in free-firing neurons, we next sought to quantify

this effect. Specifically, we used transient (2.5 s) steps of injected

current to elicit a spike train and determine the effect of IPSPs on

spike-timing precision in individual principal neurons, and

between pairs of principal neurons. Similar to when neurons are

free-firing, the timing of the first few spikes in a train was

extremely consistent across sweeps, but the timing of subsequent

spikes became less consistent as the train progressed because small

variations in the inter-spike interval accumulated (Figure 4A).

Here we used the same correlation-based metric as described for

Figure 2B, adapted to compare across five sweeps recorded in a

single neuron (see Methods). This analysis revealed that, at the

onset of the train, spike-timing was extremely precise with an

initial correlation value of 0.7560.13 (mean 6 SD), which then

diminished to 0.2660.20 within 300 ms (Figure 4D, Control,

n = 11).

We next evaluated spike-timing precision in the presence of

stimulus-evoked IPSPs (Figure 4B). Electrical stimulation of the

dorsolateral BLA in the presence of glutamate receptor antagonists

elicited a monosynaptic IPSP in principal neurons that had a

similar amplitude and duration to the spontaneous compound

IPSPs. We also examined the effects of artificial IPSPs, elicited

with hyperpolarizing current injection, on spike-timing precision

(Figure 4C). Activation of either evoked or artificial IPSPs during

the action potential train resulted in a significant improvement in

spike-timing precision compared to the control condition (Two-

way ANOVA with repeated measures, effect of group:

Synchrony and Oscillations in the Amygdala
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F2,800 = 136.3, p,0.0001). Both types of IPSPs significantly

increased correlation values relative to the control condition for

approximately 270 ms following each IPSP (effect of interaction:

F78,800 = 4.72, p,0.0001, Bonferroni post-tests). Evoked IPSPs

improved correlation values from a baseline of 0.1960.11 to a

peak of 0.4760.11 (n = 11) immediately following the IPSPs

(Figure 4D). As illustrated in Figure 4F, artificial IPSPs had a

more pronounced effect on spike-timing precision than evoked

IPSPs, with a peak correlation value of approximately 0.7160.21

(n = 11) following each IPSP. Only at the peak points of the

correlation, however, was there any significant difference in how

the two IPSP manipulations affected spike-timing precision.

Compound IPSPs synchronize the firing activity of
multiple BLA principal neurons

We next quantified the ability of compound IPSPs to improve

firing coherence across multiple BLA principal neurons, using a

similar metric as above to measure the correlation of spike times in

simultaneously recorded sweeps across the two neurons. In the

absence of IPSPs, spike-timing across BLA neurons showed low

coherence, such that the correlation-based metric reached an

initial peak of only 0.2760.39 which then declined rapidly to

0.0960.07 (n = 6) within 300 ms (Figure 5C). The introduction

of 2 evoked IPSPs was not able to significantly improve the

coherence of spike times between neurons, likely due to the

observed inconsistency in the amplitude and duration of the

evoked IPSP waveform between neurons (data not shown).

Because artificial IPSPs have a highly consistent waveform across

pairs of neurons and therefore mimic the consistency of

spontaneous, compound IPSPs better than do evoked IPSPs, we

also tested the effect of 2 artificial IPSPs on spike-timing. Artificial

IPSPs significantly increased the coherence of spike times between

pairs of neurons in the period immediately following the IPSPs

(Two-way ANOVA with repeated measures, effect of interaction:

F39,200 = 2.123, p,0.001, Bonferroni post-tests), with an improve-

ment from a baseline of 0.0960.12 to a peak of approximately

0.4260.27 (n = 6) in the correlation-based metric (Figure 5B, D).

These data strongly suggest that synchronized IPSPs enhance

spike-timing precision of BLA principal neurons and can serve to

entrain the firing activity of multiple neurons, despite inherent

differences in their intrinsic electrophysiological properties (e.g.,

membrane input resistance, time constants of membrane charging,

and firing frequency). Based on our prior observation that

spontaneous, compound IPSPs not only entrain action potential

firing, but also promote rhythmic firing and unmask a damped

membrane potential oscillation, we hypothesized that the ability of

compound IPSPs to coordinate firing would be facilitated by an

interaction with intrinsic oscillatory properties of principal

neurons. Therefore, we next characterized the interaction of

compound IPSPs with intrinsic oscillatory properties of BLA

principal neurons.

Compound IPSPs facilitate an intrinsic membrane
potential oscillation in BLA principal neurons

Most central nervous system neurons exhibit a preferred

resonance frequency that provides them with the ability to filter

synaptic input based on frequency [39–41]. Pape and colleagues

have reported that principal neurons in the lateral amygdala of the

cat have an intrinsic resonance frequency in the range of 1–3.5 Hz

[33]. Here we extend these observations to show that BLA

principal neurons of the rat also have an intrinsic resonance

(Figure 6A1–D1, n = 8), with a preferred frequency at

4.260.1 Hz (Figure 6E).

Many of the membrane currents that contribute to the resonant

properties of neurons have also been implicated in mediating long-

lasting, sub-threshold MPOs in the BLA as well as other brain

regions [32,33,39,40,42]. To determine whether compound IPSPs

interact with an intrinsic MPO in principal neurons, we next

examined the effect of IPSPs on membrane voltage in neurons

depolarized to threshold in the presence of TTX (1 mM; n = 6). As

illustrated in Figure 6A2, depolarizing current injection evoked a

transient depolarizing voltage deflection at the onset of current

injection but did not elicit an MPO in BLA principal neurons.

Furthermore, injection of artificial IPSPs evoked a similar

depolarizing voltage deflection on the rebound of each IPSP,

but did not elicit an MPO (Figure 6A3). We hypothesized that the

basal state of the neurons in the slice preparation might not be

conducive to the expression of an MPO, and that modulation of

intrinsic currents might be necessary to reveal the presence of an

MPO.

The membrane potential oscillation is sensitive to

modulation of its component currents. Work by Pape and

colleagues has shown that MPOs in the BLA can be enhanced by

modulating a select population of voltage-activated currents

including, but not limited to, the hyperpolarization-activated

cation current (IH) and the low-threshold Ca2+ current (IT) [43].

Significantly, an interaction between IH and IT is also thought to

be a key element in the regulation of intrinsic resonance

[39,40,42]. The IT current is often opposed by the transient K+

current, IA [44–47], which has been shown to regulate firing

activity in BLA principal neurons [48]. Thus, we reasoned that

blocking IA channels could effectively enhance IT and thus

facilitate resonance behavior in BLA principal neurons and

unmask an MPO. Bath application of the non-selective IA

channel blocker, 4-aminopyridine (4-AP), at 100 mM (Figure 6E)

Figure 3. Spike-timing precision diminishes in spike trains and
is reset by compound IPSPs. (A) A single sweep recorded from a
spiking BLA principal neuron, held at 245 mV by steady-state current
injection, displaying a typical regular firing pattern. (B) Multiple sweeps
like that in A overlaid and aligned by their first spikes. A raster plot
illustrates decay of spike-timing reliability. (C) Injection of artificial IPSPs
recovers spike-timing precision.
doi:10.1371/journal.pone.0035320.g003
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and 500 mM (Figure 6B1 & 6E) both significantly enhanced the

amplitude of the peak resonance (One-way ANOVA, Tukey post-

tests, F3,46 = 8.763, p,0.05). Application of 500 mM 4-AP also

enhanced the expression of the transient depolarizing voltage

deflection and unmasked a small, transient MPO at the onset of

the depolarizing step (Figure 6B2). Furthermore, in the presence

of 4-AP, the introduction of artificial IPSPs (Figure 6B3)

enhanced the amplitude of the MPO, which had peak power at

approximately 5 Hz (Figure 7A–C, n = 6).

Importantly, IT, IH, and IA channels are all substrates for

phosphorylation by protein kinase-A (PKA), which decreases the

conductance of IA channels and increases the conductance of IH

and IT channels [49–55]. Thus, we next examined the effects of

the PKA activator, forskolin, on the resonance properties of BLA

principal neurons. As illustrated in Figure 6C1, bath application

of forskolin (10 mM) in combination with 4-AP (500 mM)

significantly increased the amplitude of the resonance peak

compared to TTX controls (One-way ANOVA, Tukey post-test,

F3,46 = 8.763, p,0.05). However, the peak power of the resonance

in 4-AP and forskolin was not significantly different than that

observed in the presence of 4-AP alone (Figure 6E). In the

context of the depolarizing step, the addition of forskolin (10 mM)

Figure 4. Artificial and evoked compound IPSPs improved spike-timing precision in individual BLA principal neurons. (A) Five
superimposed traces from a representative principal neuron, held at 260 mV, showing a train of action potentials in response to a depolarizing
current step in the presence of DNQX (20 mM), RS-CPP (10 mM) and CGP (2 mM); note the loss of spike-timing precision as the spike train progresses.
(B, C) Similar traces to A with the injection of evoked (B) or artificial (C) compound IPSPs to demonstrate improvement of spike-timing precision
following a compound IPSP. (D, E, F) Comparisons of spike-timing precision for neurons with no IPSPs (Control, n = 11), evoked IPSPs (n = 11), and
artificial IPSPs (n = 11), assessed with a spike correlation metric (see Methods) and plotted as mean 6 SEM. Comparisons were made using a two-way
ANOVA (see Results), and windows of significant differences (p,0.05) in spike correlation are denoted with grey boxes.
doi:10.1371/journal.pone.0035320.g004
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in combination with 4-AP (500 mM) enhanced both the amplitude

and duration of the MPO in all neurons tested (Figure 6C2). The

MPO resembled a damped oscillation [33] and, as can be seen in

Figure 6F, the power of the MPO was greatest at the onset of the

depolarizing current injection and declined over time. In the

majority of neurons the MPO was seen to terminate before the

conclusion of the depolarizing current injection. The introduction

of artificial IPSPs further enhanced the oscillation (Figure 6C3,
G) without changing the preferred frequency (Figure 7E,

compared to 7C and 7D). Application of forskolin (10 mM) alone

also unmasked an MPO, similar to the effects of 500 mM 4-AP,

with a peak frequency at 4.8 Hz in all neurons tested (n = 4)

(Figure 7D). Hence, activation of the cAMP-signaling cascade

alone can facilitate the expression of the MPO in BLA principal

neurons.

In other brain regions, MPOs are partially dependent on the

activation of IT channels, and as the transient depolarizing voltage

deflections observed upon rebound from the IPSPs were

reminiscent of low-threshold calcium spikes, we next determined

whether blocking IT channels with 500 mM NiCl [56] would

inhibit the combined response to forskolin and 4-AP. Application

of NiCl diminished the resonant properties of BLA principal

neurons (Figure 6D1) and completely blocked the forskolin- and

4-AP-induced MPO in all neurons tested (n = 6) (Figure 6D2–3,
7F), suggesting that an interaction between IT and voltage-gated

K+ channels, most likely IA channels, play a critical role in MPO

expression in BLA neurons.

Application of high-micromolar 4-AP, however, can also block

other K+ channels, including several that are also sensitive to

micromolar concentrations of TEA. Hence, to determine if the

effects of 4-AP on the MPOs resulted from a non-selective

blockade of K+ channels, we repeated the experiments above in

the presence of TEA (500 mM). As illustrated in Figure 8,

application of TEA failed to mimic the 4-AP effect in either the

presence or absence of simulated IPSPs. Moreover, concurrent

application of forskolin (10 mM) and TEA also failed to unmask a

significant increase in MPO amplitude over TEA alone

(Figure 8C, n = 5), suggesting that the forskolin effect may only

be observed when IA channel activity is reduced by 4-AP.

To verify that the effects of forskolin were mediated by direct

activation of the adenylyl cyclase-cAMP signaling cascade, we then

examined the membrane response to application of the inactive

forskolin isomer, dideoxy-forskolin (10 mM), in the presence of 4-

AP. Dideoxy-forskolin failed to mimic the forskolin effect on

MPOs in either the presence or absence of artificial IPSPs,

suggesting that activation of the adenylyl cyclase-cAMP signaling

cascade selectively facilitates IPSP-enhanced MPOs in principal

neurons of the BLA (Figure 8D, n = 6).

Finally, we examined if modulation of intracellular Ca2+ levels

also play a role in regulating the MPO. Here, inclusion of the Ca2+

chelator, BAPTA (5 mM), in the patch solution completely

blocked the MPO induced by co-application of 4-AP (500 mM)

and forskolin (10 mM) (Figure 9A, n = 6), suggesting that

fluctuations in intracellular Ca2+ levels also play an important

role in the expression of MPOs in BLA principal neurons.

However, this result raised the possibility that the drug-induced

MPO may be independent of activation of the cAMP-PKA

signaling cascade. To address this question, we included the

competitive antagonist of cAMP-induced PKA activation, cAMPs-

RP, in the patch solution. Inclusion of cAMPs-RP (25 mM)

completely blocked the MPO induced by forskolin (Figure 9B,

n = 4). Conversely, inclusion of a non-hydrolysable cAMP

analogue, 8-Br-cAMP (5–10 mM), in the patch pipette unmasked

an MPO in the presence of TTX alone that was similar in

magnitude to that induced by forskolin (Figure 9C, n = 6). Hence,

Ca2+ influx through IT channels, elevation of intracellular Ca2+,

and activation of the adenylyl cyclase-cAMP-PKA signaling

Figure 5. Artificial, compound IPSPs coordinated spike timing
across pairs of BLA principal neurons. (A) Five overlaid,
consecutive traces of action potentials during paired recordings of
BLA principal neurons, held at 260 mV, in response to a depolarizing
current injection without IPSPs and (B) with two IPSPs. (C) Spike
correlation metric calculated across pairs of neurons when artificial
IPSPs are injected compared to the control condition (n = 6 pairs),
plotted against time. Comparisons were made using a two-way ANOVA
(see Results), and grey boxes denote windows of significant differences
(p,0.05) in spike correlation.
doi:10.1371/journal.pone.0035320.g005
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Figure 6. BLA principal neurons exhibited a modifiable intrinsic resonance and a membrane potential oscillation that was
facilitated by compound IPSPs. (A1–D1) Principal neuron membrane potential response to injection of a sinusoidal current with constant
amplitude and linearly changing frequency (0–12 Hz) in the presence of various drug cocktails. All neurons were held at baseline of 260 mV. (A1)
Typical voltage response to the sinusoidal current in TTX (1 mM). The resonance of BLA principal neurons can be enhanced by application of 4-AP (B1,
500 mM) and the adenylyl cyclase activator, forskolin (C1, 10 mM), and is abolished by application of NiCl (500 mM, D1). Analysis of power spectra (E)
shows that the enhancement of resonance by 4-AP and forskolin is significantly different from baseline (p,0.05). (A2–D3) Intrinsic membrane
oscillations of BLA principal neurons, held at 260 mV, in response to a steady depolarizing current injection (A2–D2) and in response to the same
current injection with superimposed IPSPs (A3–D3). Similar to resonant properties, membrane oscillations are enhanced by application of 4-AP and
forskolin, and abolished in NiCl. Injection of artificial IPSPs in A3–D3 significantly enhanced the amplitude and duration of oscillations (F and G;
spectrograms illustrate data from C2 and C3 respectively).
doi:10.1371/journal.pone.0035320.g006
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cascade each play an important role in the expression of MPOs in

BLA principal neurons.

The sensitivity of the MPO to modulation by intracellular Ca2+

and activation of the cAMP-PKA signaling cascade suggested that

receptors coupled to Gas would facilitate MPOs, whereas those

coupled to Gai would attenuate MPOs. To test this hypothesis, we

examined the effect of prior application of the selective mGluR2/3

agonist, LY379268, on the 4-AP- and forskolin-induced MPOs.

Principal neurons of the BLA express high levels of mGluR2/3

receptors [57,58], which couple to Gi/o proteins to inhibit adenylyl

cyclase activity [59], and we reasoned that activation of these

receptors would attenuate drug-induced MPOs. As illustrated in

Figure 9D (n = 10), application of LY379268 (50 mM) completely

blocked the MPOs.

Discussion

In the present study, we demonstrate that spontaneous,

compound IPSPs function to increase spike-timing precision both

within and across BLA principal neurons. Previous studies have

shown that these IPSPs are driven by local, burst-firing PV+

neurons [18], which have a high level of connectivity with BLA

principal neurons. These data suggest that spontaneous, com-

pound IPSPs would function to synchronize action potentials in a

large population of principal neurons. We also show that

compound IPSPs promote and entrain a high delta/low theta

frequency membrane potential oscillation (MPO) that is uncov-

ered by activation of the cAMP-PKA signaling cascade. The

oscillatory nature of BLA principal neurons is also manifested as a

modifiable inherent resonance frequency. We propose that the

interaction of compound IPSPs with the oscillatory properties of

BLA principal neurons is a viable mechanism for synchronizing

firing activity in this cell population, promoting network

oscillations within the BLA, and enhancing coherent oscillations

between the BLA and other brain regions involved in fear.

Synchronized inhibition drives coordinated activity of
BLA principal neurons

Recent evidence suggests a wide variety of behaviors require

synchronized neural activity and network oscillations, both of

which are promoted by synaptic inhibition [13–17]. Here, we

demonstrate that BLA principal neurons receive highly synchro-

nized, rhythmic inhibition which, in turn, synchronizes firing

activity among groups of BLA principal neurons. Importantly,

spontaneous activity of interneurons in the prefrontal cortex at

theta frequency entrains the firing of principal neurons to an

Figure 7. The peak power of the membrane potential oscillation was sensitive to modulation of IA and IT and activation of PKA.
Power spectra of MPOs in BLA PNs in response to a depolarizing step with artificial IPSPs, with mean (solid lines) and 95% confidence intervals
(shaded region). Frequencies at which the 95% confidence intervals do not overlap indicate statistically significant differences among the plots. (A) In
the presence of TTX, neurons exhibit a weak MPO. (B,C) MPOs were not enhanced by bath application of 100 mM 4-AP (B) but were significantly
enhanced by 500 mM 4-AP, with peak power at 4.9 Hz (C). (D) Application of forksolin, an activator of the c-AMP cascade, at 10 mM also enhanced a
MPO with peak power at 4.8 Hz. (E) The MPO was significantly enhanced by a combination of 500 mM 4-AP and 10 mM forskolin, with peak power
greater than for either drug alone but occurring at a similar frequency. (F) The MPO observed in forskolin and 4-AP was completely abolished by co-
application of NiCl (500 mM) to block low-threshold calcium channels.
doi:10.1371/journal.pone.0035320.g007
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ongoing network theta oscillation [60]. This example from the

prefrontal cortex suggests the coordination of principal neuron

firing by inhibition is critical for salient output of some neural

circuits. Through coordinating the firing of large groups of BLA

principal neurons, compound IPSPs should improve salience by

promoting summation of output and leading to spike-timing

dependent plasticity in both the BLA and its targets.

In order to study the effect of compound IPSPs on spike-timing

precision, we used two proxies: artificial IPSPs generated by direct

current injection at the soma, and compound IPSPs evoked by

direct stimulation of interneurons in the BLA under glutamatergic

blockade. We showed that spike-timing precision within single

neurons is improved by spontaneous IPSPs, artificial IPSPs, and

stimulation-evoked IPSPs, with artificial IPSPs being significantly

more effective than evoked IPSPs. Furthermore, artificial IPSPs

were able to significantly coordinate firing across neurons, but

evoked IPSPs were not, due to the observed variability in the

waveform. Spontaneous, compound IPSPs observed across pairs

had a highly consistent waveform (evident in a representative pair

in Figure 1A), likely because they are generated by burst-firing

PV+ interneurons, which innervate BLA principal neurons

perisomatically and have their activity coordinated through a

syncytium. In contrast, stimulation of the BLA to evoke IPSPs

probably recruited multiple subtypes of GABAergic interneurons

targeting multiple compartments of the principal neurons [61–63]

and hence introduced variability across cells in the IPSP

waveform. While PV+ interneurons seem uniquely positioned to

generate synaptic inhibition that is ideal for interacting with an

MPO and coordinating activity of BLA principal neurons, the

possibility is not excluded that other inhibitory input, for instance

feed-forward inhibition from cortical or thalamic sources [64,65],

could exert a similar coordinating influence.

The fact that artificial IPSPs were able to mimic the effects of

evoked and spontaneous IPSPs on spike-timing precision without

directly influencing the membrane conductance suggests they act

primarily via membrane hyperpolarization. This hyperpolariza-

tion likely causes activation of IH and de-inactivation of voltage-

Figure 8. Forskolin and 4-AP modulation of the membrane
potential oscillation were not mimicked by dideoxy-forskolin
and TEA, respectively. Intrinsic membrane oscillations of BLA
principal neurons, held at 260 mV, in response to a steady depolarizing
current injection with and without artificial IPSPs. (A) Shows typical
small membrane oscillations in TTX during the depolarizing current
injection. In the presence of 1 mM TTX, the introduction of IPSPs evoked
a transient depolarizing deflection at the termination of each IPSP, but
failed to unmask a MPO. (B) MPOs are not enhanced by application of
TEA (500 mM). (C) The addition of 10 mM forskolin had a small
enhancing effect on MPOs in the presence of TEA. (D) Application of
the inactive isomer dideoxy-forskolin in the presence of 4-AP did not
enhance the MPO as observed previously with forskolin.
doi:10.1371/journal.pone.0035320.g008

Figure 9. Membrane potential oscillations in the BLA were bi-
directionally modulated by the adenylyl cyclase signaling
cascade. Cumulative power spectra of intrinsic theta frequency MPOs
in BLA principal neurons. Responses are plotted as mean (solid lines)
and 95% confidence intervals (shaded regions). Frequencies at which
the 95% confidence intervals do not overlap indicate statistically
significant differences among the plots. (A) BAPTA-containing patch
solutions disorganized the frequency tuning of 4-AP- and forskolin-
induced MPOs. (B) Inhibiting PKA activation completely abolishes
forskolin-induced MPOs. (C) Activation of PKA with the cAMP analog
8Br-cAMP induces MPOs in TTX alone that are similar to those observed
in response to forskolin. (D) Activation of mGluR II glutamate receptors
with LY379268 completely blocked 4-AP and forskolin-induced theta
MPOs.
doi:10.1371/journal.pone.0035320.g009
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gated currents including IT, which would contribute to calcium

spikes upon rebound [42]. Because IT is typically inactive near

resting membrane potential, the observed effect of compound

IPSPs on spike timing is probably more applicable when BLA

principal neurons are depolarized from rest. It is also important to

consider that compound IPSPs occur amidst ongoing synaptic

activity, not in the absence of synaptic input as when tested here.

In the in vivo system, compound IPSPs may not produce spikes in

the absence of excitatory transmission, but rather interact with

ongoing synaptic activity to influence the timing of spikes.

The ability of compound IPSPs to coordinate spiking activity

most likely occurs across large groups of BLA principal neurons

due to the broad connectivity of PV+ interneurons [38], the

synchronization of PV+ interneuron firing activity through a

syncytium [23–25], and, as shown here, the robustness of IPSP

coordination of spike timing across principal neurons despite

varying intrinsic properties. Although synchronizing large net-

works of principal neurons will improve potency of efferent

signaling, it could also limit the specificity of signaling. Cortical

inputs to the BLA are organized topographically [66], and

synchrony throughout the nucleus could weaken the specificity

afforded by this topography. A loss of specificity in this circuit

through excessive synchronization within the amygdala may lead

to generalization of fear learning, which has been implicated in

affective disorders such as post-traumatic stress disorder [67].

Furthermore, less than a quarter of BLA neurons appear to be

incorporated into the engram for any specific fear memory

[68,69]. If encoding and recall of fear memories depend on

network oscillations, there must be a mechanism to preferentially

incorporate some neurons while excluding others. Some potential

mechanisms include regulation of the extent of the syncytium or of

projections from the PV+ interneurons onto principal neurons, or,

more interestingly, interactions between variability in the frequen-

cy of the network oscillation with variations in preferred resonance

frequency of the principal cells.

Considering the prominent role inhibition appears to play in

coordinating the activity of BLA principal neurons, it is likely that

stimuli altering the frequency of IPSPs in vivo could drastically

change the output activity of the BLA. For instance, activation of

serotonin 2A or cholecystokinin B receptors, both of which are

implicated in emotional learning [70], increase the frequency of

rhythmic IPSPs in BLA principal neurons through indirect

excitation of interneurons [18,71]. A similar effect is observed in

the BLA in response to local release of dopamine in mice [20] and

primates [19]. Moreover, the BLA receives dopaminergic input

from the ventral tegmental area, which also exhibits a network

oscillation at 2–5 Hz during working memory tasks [72], raising

important questions about the nature of the interaction of phasic

dopamine release with a BLA circuit that itself generates rhythmic

activity.

Resonance frequency and intrinsic membrane
oscillations in BLA principal neurons

In the present study we have shown that BLA principal neurons

in the rat have an intrinsic resonance that was extremely

consistent, with nearly all neurons displaying a peak resonance

between 4.2 and 4.4 Hz. This intrinsic resonance was insensitive

to application of TTX (1 mM), whereas a previous study in guinea

pigs reported neurons in the lateral and basolateral nuclei of the

amygdala express a TTX-sensitive inherent resonance frequency

at 2.5 Hz [33]. The difference in reported resonance frequencies is

likely due to the different model species, as we have also seen

differences in peak resonance frequency of principal neurons

between rat and primate (unpublished observation). The differ-

ence in TTX sensitivity, however, is likely explained by the

concentrations of TTX employed. In the study by Pape and

colleagues the resonance frequency was abolished by 20 mM TTX,

compared to the 1 mM TTX used here. High concentrations of

TTX are known to block the persistent Na+ current, and future

studies should investigate whether it contributes to resonance in

BLA principal neurons, as it does in LA neurons [32]. Similar to

our observations, hippocampal principal neurons also display

resonance that is insensitive to 1 mM TTX with a peak at 4.1 Hz

[73].

In addition to selectively filtering synaptic input in high delta/

low theta bands, BLA principal neurons also express high- and

low-threshold MPOs in this frequency range, as described by Pape

and colleagues [32]. Here we show the presence of an MPO that

occurs at the peak resonance frequency of these neurons (,4–

5 Hz) and seems to share some mechanisms with both previously

described oscillations. Although Pape and colleagues found no

effect of specific Ca2+ channel blockers on the high threshold

membrane oscillations [33], recordings with a BAPTA-containing

electrode completely abolished the oscillation. In our hands, bath

application of NiCl completely abolished the MPO, suggesting a

strong influence of T-type Ca2+ channels. The Pape study also

reported that high-threshold membrane oscillations were insensi-

tive to 10 mM 4-AP, suggesting that voltage-gated K+ channels

were not involved in that membrane oscillation [33]. We observed,

however, that application of 100–500 mM 4-AP significantly

enhanced the membrane oscillations, suggesting IA may actively

suppress the MPO, acting in opposition to IT. This could also be

related to changes in input resistance, but the lack of effect of

500 mM TEA suggests a specific role of IA. A similar relationship

between IT and IA has been shown in other systems [47,74], and

factors that either enhance IT or reduce IA could then unmask the

expression of the intrinsic membrane oscillations. In agreement

with Pape and colleagues, we did not find an effect on intrinsic

membrane oscillations of blocking IH with ZD7228 (60 mM, data

not shown). While this is not an exhaustive pharmacological

characterization, we believe we have identified the major currents

involved in mediating this MPO. Other currents, including the

persistent sodium current and calcium-activated potassium

currents may also be involved [33], and future study to illuminate

their roles in this phenomenon would be valuable.

It is notable that the currents mentioned above (IT, IA, and IH)

are all sensitive to membrane hyperpolarization, particularly in the

voltage range between rest and action potential threshold [75–77].

Specifically, IT channels are de-inactivated by hyperpolarization in

this range and IH channels are activated, while IA channels are

activated by depolarization in this range. We have shown that

compound IPSPs facilitate the MPO in the absence of spiking, and

this is likely due to hyperpolarization-mediated de-inactivation of

IT and activation of IH. While we did not find an effect of IH

blockade on the MPO, it is possible this is an artifact of the degree

to which we depolarize the membrane to enhance the MPO. The

MPO is likely also active in a more subtle form at membrane

potentials only slightly depolarized from rest, where IT and IA are

active and IH would enhance the rebound from an IPSP and may

contribute directly to the MPO.

In addition, the conductances of these currents, and therefore

the magnitude of the MPO itself, are not fixed but sensitive to

modulation. Importantly, the channels mediating IT and IH

increase their activity in response to PKA phosphorylation [49–

54]. Conversely, activity of K+ channels mediating IA is decreased

by PKA phosphorylation [55]. Together, these would enable

neurotransmitter systems which modulate PKA activity to have

synergistic effects to bi-directionally modulate the MPO.
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The frequency of rhythmic, compound IPSPs is also sensitive to

modulation. We have previously shown that dopamine acts to

increase IPSP frequency into a range of 2–6 Hz [18–20]. This

would bring the IPSP frequency closer to the peak resonance

frequency of BLA principal neurons, ensuring principal neurons

respond to incoming rhythmic IPSPs with maximal voltage

deflections and also serve to enhance the interaction with the

MPO. In our hands, the oscillation does not occur spontaneously

but is initiated by the IPSP and is naturally damped, quickly

decaying from its initial amplitude. More frequent synchronized

IPSPs would better reset drift in the phase relationship between

cells and better maintain the amplitude of the oscillation.

It is interesting to note that the intracellular cascades activated

by many of the neuromodulators that promote the MPO (e.g., Gs-

coupled activation of cAMP and PKA) are also critical for synaptic

plasticity. Through this mechanism, cells primed by neuromod-

ulators to exhibit an MPO may be more likely to contribute to a

fear memory engram.
Implications for learning and memory. Recent studies by

several groups have emphasized the importance of amygdala

network oscillations and synchronized oscillations across multiple

brain regions in regulating long-term fear memory [43,78–84].

Importantly, phase-locked stimulation of the amygdala and

hippocampus at theta frequency during extinction training

prolongs fear expression, suggesting synchronized network

oscillations between these regions are an essential neurological

component of fear memory [9]. The high delta/low theta

oscillations in the LFPs of the BLA, hippocampus, and

prefrontal cortex during fear acquisition and expression [7,8]

match the frequency of the MPO and the peak resonance in BLA

neurons, suggesting the intrinsic properties of BLA neurons

contribute to the network oscillation. As we have argued, a

candidate mechanism to promote these network oscillations is the

interaction of synchronized IPSPs with MPOs in BLA principal

neurons. MPOs could contribute to fear learning by promoting

network oscillations, and by improving spike-timing precision they

could support fear memory formation through enhanced spike-

timing dependent plasticity [29,85].

The sub-cellular mechanism of the intrinsic MPO is well-suited

to facilitate plasticity in the BLA and thereby promote fear

learning. The MPO requires activation of voltage-gated calcium

currents [33], causing calcium influx and subsequent activation of

cAMP and PKA [86]. This can, in turn, reinforce the oscillation

through phosphorylation of ion channels. In fact, the oscillation is

weak or nonexistent under our baseline experimental conditions,

but must be uncovered by application of the PKA activator,

forksolin. The close relationship of the MPO with the adenylyl

cyclase-cAMP signaling cascade is particularly important because

its downstream targets have been implicated in fear learning and

memory [87–90], and in regulating theta oscillations in the

amygdala in vivo [43,87–89,91]. It is also noteworthy that

downstream targets of this signaling cascade, particularly the

cAMP response element binding protein (CREB), have been used

to identify those neurons activated specifically during fear memory

formation [68,69].

One neurotransmitter receptor known to modulate the cAMP-

PKA pathway, the dopamine D1 receptor, is also implicated in

fear learning. Release of dopamine and subsequent activation of

D1 receptors in the BLA are critically involved in the acquisition

and consolidation of fear memory [92,93]. Additionally, we have

recently shown that D1-receptor activation is necessary for long-

term potentiation of sensory afferents to the BLA [94]. Aside from

direct effects on synaptic plasticity, D1 receptor activation may

promote fear learning by facilitating an MPO. Considering that

the MPO must be uncovered by activation of PKA in vitro, D1-

receptor activation could provide the requisite PKA activation to

initiate a self-reinforcing high delta/low theta oscillation in vivo.

Importantly, in the prefrontal cortex, application of dopamine

mimics the effect of a working memory task to entrain firing of

principal neurons to an ongoing theta oscillation [60]. One

possible explanation, which parallels our observations in the BLA

in vitro, is that interneurons maintain a network oscillation by

providing a background of rhythmic activity to which principal

neurons are, at baseline, minimally sensitive. In this model, the

principal neurons become more sensitive to rhythmic inhibitory

input from the interneurons by activation of PKA, either directly

(as in our hands, with forskolin) or with the introduction of

dopamine (either artificially or endogenously through a behavioral

task) [60,95]. Interestingly, activation of D1 receptors has also

been shown to enhance spike-timing dependent plasticity,

potentially compounding with the effects of D1 activation on

spike-timing precision via the MPO [96].

We have shown that inhibition of adenylyl cyclase and cAMP

production by activation of group II metabotropic glutamate

receptors completely abolished the high amplitude MPO induced

by forskolin and 4-AP. Activation of these receptors has been

associated with reductions in fear learning, as well as de-

potentation of synapses and long-term depression [59,97,98],

providing further support for a role for MPOs in BLA-dependent

fear learning. Interestingly, the Gi-coupled type 1 cannabinoid

receptor has been shown to reduce neural synchrony and dampen

theta and gamma oscillations in the hippocampus [99], further

suggesting changes in cAMP levels can bi-directionally modulate

the propensity of a network to oscillate.

While network oscillations contribute to normal brain functions,

including fear learning, aberrant oscillations have been implicated

in the pathophysiology of psychiatric disorders. For example, it is

well established that diminished synchrony between pyramidal

neurons, and consequently aberrant network oscillations in the

gamma band, are involved in the pathophysiology of schizophre-

nia [100]. Interestingly, the changes in oscillations observed in

schizophrenia have been specifically linked to diminished function

in the PV+ subpopulation of interneurons in the cortex [100]. It is

worth noting that theta oscillations are thought to modulate the

gain of gamma oscillations, and both are produced through the

action of PV+ interneurons [101–103]. Gamma-frequency oscil-

lations are observed in the BLA both in vivo and in vitro [104,105],

and may be generated by similar mechanisms in the BLA as in the

cortex due to their similar composition and architecture [106].

Considering the importance of neural oscillations and that

compound IPSPs may influence gamma oscillations through their

effects on high delta/low theta oscillations, future studies should

address changes in oscillations and PV+ interneurons in the

amygdala in various psychiatric disorders, particularly post-

traumatic stress disorder and others linked to fear learning [67].
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