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Abstract
Background  Apalutamide (APA) is a next-generation androgen receptor antagonist for the treatment of advanced prostate 
cancer. We have previously shown that upregulation of autophagy is one of the mechanisms by which prostate cancer (PC) 
cells survive APA anti-tumor treatment in vitro. Therefore, we investigated the characteristics of the autophagic response to 
APA treatment, alone and in combination with autophagy inhibition, in an in vivo model.
Methods  Tumor cells were injected into previously castrated nude mice. Four groups of mice bearing LNCaP xenografts 
were treated with daily intraperitoneal (i.p.) injections of vehicle (control), APA (10 mg/kg), APA (10 mg/kg) + Chl (Chlo-
roquine, 10 mg/kg) or Chl (10 mg/kg). The animals of each treatment group (3/treatment) were kept for the duration of 2 
and 3 weeks. At the end of the experiments, the animals were sacrificed and all samples assessed for tumor weight and size, 
histological analysis, immunoblotting (WES) and immunofluorescence.
Results  The tumor weight was significantly reduced in mice treated with APA + Chl (203.2 ± 5.0, SEM, P = 0.0066) com-
pared to vehicle control (380.4 ± 37.0). Importantly, the combined treatment showed a higher impact on tumor weight than 
APA (320.4 ± 45.5) or Chl (337.9 ± 35) alone. The mice treated with the combination of APA + Chl exhibited a reduced 
expression of ATG5 (autophagy-related five protein), Beclin 1 and LC3 punctuations and an increase in P62 as visualized by 
immunofluorescence and WES. In addition, Ki-67 nuclear staining was detected in all samples however reduced in APA + Chl 
(58%) compared to vehicle control (100%). The reduction in Ki-67 protein was associated with an increase in caspase 3 and 
endothelial CD31 protein expression.
Conclusion  These data demonstrate that a treatment with APA + Chl leads to reduced autophagy levels and to tumor sup-
pression compared to the APA monotherapy. Hence, the increased antitumor effect of APA in combination with autophagy 
inhibitors might provide a new therapeutic approach potentially translatable to patients.
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Abbreviations
APA	� Apalutamide
AR	� Androgen receptor
ATG5	� Autophagy-related 5 protein
Chl	� Chloroquine
CRPC	� Castration-resistant prostate cancer

CY3	� Cyanine-3
DAPI	� 4′,6-Diamidino-2-phenylindole
FITC	� Fluorescein isothiocyanate
PC	� Prostate cancer
i.p.	� Intraperitoneal

Introduction

Prostate cancer (PC) is the most common cancer among 
men worldwide. High-risk PC tends to recur in up to 40% 
of all patients following initial treatment (Lam et al. 2006). 
Despite second-line therapy, the majority of these patients 
develop castration-resistant prostate cancer (CRPC) with 
metastases, mainly in bone (Lam et al. 2006). Current 
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guidelines recommend combined treatment with second 
generation of antiandrogens like apalutamide, enzaluta-
mide, abiraterone or darolutamide which block the AR 
(androgen receptor) in patients with advanced PC (Beer 
et al. 2014; Ryan et al. 2013). However, some patients stop 
responding to these therapies due to drug resistance and 
castration resistance thus, the search for new AR-targeting 
compounds continues. Apalutamide (APA) is a potent AR 
inhibitor established for the treatment of advanced PC. It 
inhibits AR nuclear translocation, DNA binding and tran-
scription of AR gene targets. Although APA and bicalu-
tamide bind to the same AR–ligand binding domain, APA 
has a seven–tenfold greater affinity (Clegg et al. 2012). 
Phase I and II studies of APA reported a significant antitu-
mor activity in patients with non-metastatic CRPC (Smith 
et al. 2016; Rathkopf et al. 2013). Together with the results 
of the SPARTAN trial, these findings led to the approval 
of apalutamide (Erleada™) for the treatment of non-met-
astatic CRPC (Smith et al. 2018).

Autophagy is a cellular self-digestive process con-
trolling degradation of cellular contents and thereby 
essentially contributing to homeostasis (Mizushima and 
Komatsu 2011). Induction of autophagy is often detected 
in cancer cells during anti-cancer therapy, which involves 
severe metabolic changes and/or DNA damage (Fulda 
2018). Dysregulation of autophagy in PC has been dem-
onstrated by several research groups including ourselves 
(Kranzbuhler et al. 2019; Mortezavi et al. 2018; Nguyen 
et al. 2014). In our previous in vitro studies, we showed 
upregulation of ATG5 and autophagy in PC cell line. 
Moreover, we provided evidence showing that down-
regulation of ATG5 accelerates cell death and increases 
the efficacy of the anti-cancer drugs EPI-001, abirater-
one acetate and APA (Kranzbuhler et al. 2019; Mortezavi 
et al. 2018; Eberli et al. 2020). In addition, we have shown 
that proteins related to autophagy are significantly upregu-
lated in patients with advanced PC (Mortezavi et al. 2017). 
Given the promising antitumor effect of APA for the treat-
ment of advanced PC and the role of autophagy as resist-
ance mechanism against therapy (Nguyen et al. 2014), we 
aimed to investigate the level of autophagy in response 
to treatment with APA. Furthermore, we have previously 
shown that targeting autophagy—alone or in combination 
with its inhibitors—is effective at enhancing cell death 
(Eberli et al. 2020). Therefore, we believe that PC cells 
use autophagy to escape the insult of androgen depriva-
tion or anti-androgen therapies as a survival mechanism. 
Hindering autophagy might be a way to overcome resist-
ance mechanism toward therapy in CRPC. To confirm 
our in vitro results, we investigated the enhanced thera-
peutic effects of a combination treatment of APA with an 
autophagy inhibitor such as chloroquine (Chl) in a mouse 
xenograft model.

Materials and methods

Cell culture

PC cell line LNCaP (ATCC, CRL-1740) was purchased 
from American type culture collection (ATCC, Manassas, 
USA). Cells were cultivated in RPMI (Life Technologies, 
ThermoFisher Scientific, Waltham, MA, USA) supple-
mented with 10% FBS and 1% penicillin/streptomycin and 
incubated at 37 °C with 5% CO2. Medium was changed 
twice a week.

Animal experimentation

All animal experiments were approved by the cantonal veter-
inary office (Veterinäramt Zürich, license No.244/2016) and 
performed according to the Swiss animal welfare act. A total 
of 28 male nude mice (8 weeks old; Charles River Labora-
tories, Sulzfeld, Germany) were analyzed. Mice underwent 
castration before tumor formation. After 2 weeks, nude mice 
were subcutaneously injected with 5.0 × 106 LNCaP cells 
with a high concentration Matrigel carrier (500 µl, Corning 
Life Sciences, NY, USA) on both left and right backsides. 
Drug injection was started once the tumors were formed, 
2–3 weeks after tumor cell injections. The mice were divided 
into four groups (three animals/group/ time point). The treat-
ment groups Vehicle control (For APA; 18% PEG 400, 1% 
Tween 80, 1% polyvinyl pyrolidone, 65% 20 mM citrate 
buffer pH:4.0 in 0.5% carboxymethylcellulose sodium salt, 
all purchased from Sigma Aldrich), APA (10 mg/kg, Jans-
sen Pharmaceutica NV, Belgium), APA (10 mg/kg) + Chl 
(10 mg/kg, Sigma-Aldrich, Buchs, Switzerland) and Chl 
(10 mg/kg) were subjected to intraperitoneal (i.p.) injections. 
Half of the animals of each treatment group (three/treatment) 
were kept for the duration of 2 and other half for 3 weeks. At 
the end of the experiments, animals were sacrificed and all 
samples were assessed for tumor weight and size.

Tumor sample preparation and histological analysis

The tumor samples obtained from each mouse were divided 
into two pieces. One part was snap-frozen for gene and pro-
tein analysis. The second part of the tissue was fixed in 10% 
buffered formalin (Fisher Scientific, Norcross, GA), then 
processed and finally embedded in soft paraffin (Sargent-
Welch Scientific, Skokie, IL). Paraffin sections were pre-
pared (5 μm) and further processed. Haematoxylin and eosin 
(H&E, Sigma-Aldrich, Buchs, Switzerland) and Masson’s 
Trichrome (Sigma Aldrich, Buchs, Switzerland) staining 
were performed according to the manufacturer’s protocol.
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Immunofluorescent staining

Paraffin-embedded tumor samples were first de-paraffi-
nized by treatment with xylene and then rehydrated by 
passage through a graded series of ethanol. The indirect 
immunostainings of tissue sections were performed at 
4 °C overnight using the following primary antibodies for 
the autophagy-related proteins: anti-ATG5 (1:100, 0262-
100, 7C6, nanoTools, Taningen, Germany), anti-Beclin 1 
(1:200, NB110-87318, NanoTools, Taningen, Germany), 
LC3 (1:100, 0231–100, 5F10, nanoTools, Taningen, Ger-
many), anti-Caspase 3, active (1:100, cleaved, AB3623, 
Merck, Switzerland), and anti-Ki-67 (1:100, AB9260, 
Merck, Switzerland). The slides were incubated with the 
secondary antibodies goat anti-mouse FITC (1:500, BD 
Biosciences Allschwil, Switzerland), goat anti-rabbit 
FITC (1:500, Vector Laboratories, Liestal, Switzerland) 
or Cy3-conjugated goat anti-mouse antibody (1:1000, 
Sigma Aldrich, Sigma Aldrich, Buchs, Switzerland) at 
room temperature for 1 h. Subsequently, they were coun-
ter-stained with DAPI (4′,6-diamidino-2-phenylindole, 
1:200, Sigma Aldrich, Buchs, Switzerland). For negative 
controls, the primary antibody was omitted. Images were 
acquired with a Leica fluorescence microscope (CTR 
6000).

Immunoblotting (automated western blotting—
WES)

The harvested tumor samples were pulverized in liquid 
nitrogen with a mortar/pestle and re-suspended in modi-
fied lysis buffer supplemented with a protease inhibitor 
cocktail (Sigma-Aldrich, Buchs, Switzerland). Samples 
were centrifuged for 20 min at 13,000 rpm and the super-
natant was collected for protein determination. Total pro-
tein was measured using a BCA protein assay kit (Thermo 
scientific, Lausanne, Switzerland). Protein at 1 mg/mlL 
concentration was used for the WES using a 12–230 kDa 
cartridge kit (Protein Simple WES, Germany). Primary 
antibodies for autophagy-related proteins were mouse 
anti-ATG5 (1:100, NanoTools, Taningen, Germany), rab-
bit anti-Beclin1, rabbit anti-P62, and mouse anti-LC3B 
(all 1:50, Novus Biologicals Europe, Abingdon, United 
Kingdom). Mouse anti-GAPDH (1:100, Novus Bio-
logicals Europe, Abingdon, United Kingdom) served as 
internal control. Samples were analyzed using the Com-
pass software (ProteinSimple). Virtual blot and electro-
pherogram of each sample was checked and evaluated. A 
sharply defined chemiluminescent signal was quantified 
by the software and the area of each sample was normal-
ized to GAPDH.

Statistical analysis

Results were analyzed by one-way ANOVA with Bonfer-
roni’s post correction using GraphPad Prism (GraphPad 
Software, Inc., La Jolla, CA, version 7). P values < 0.05 
were considered statistically significant. All data presented 
are expressed as means with corresponding standard error 
of the mean (± SEM).

Results

APA and autophagy inhibitor as potent tumor 
growth inhibitors in a humanized mouse xenograft 
model of CRPC

To confirm our previous in vitro findings (Eberli et al. 2020), 
to provide pre-clinical support and finally to test the impact 
of a combined treatment of APA with an autophagy inhibi-
tor, we generated a PC xenograft model and analyzed the 
growth of LNCaP cells in vivo after inoculation of castrated 
male athymic nude mice (Fig. 1A). Primary tumor growth 
was observed in all injected mice (100%) (Fig. 1B). Drug 
injections (i.p.) were started once the tumors were formed, 
3 weeks after tumor cell injection. The intraperitoneal treat-
ment was applied for 5 days a week for up to 2 and 3 weeks 
with either vehicle control, APA (10 mg/kg), Chl (10 mg/
kg) or Chl + APA (10 mg/kg). The animals did not reach 
the termination criteria after a mean growth period of 4 and 
5 weeks (i.e., 2 and 3 weeks upon injections). The growth 
of the LNCaP xenograft was rapid in the control group 
(Fig. 1C) after 2 and 3 weeks. A decrease in tumor weight 
was detected under all experimental conditions compared 
to vehicle control after week 2 and 3. However, the most 
significant weight reduction was observed after 3 weeks 
with a significantly reduced tumor weight in mice treated 
with APA + Chl (203.2 ± 5.0, SEM, P = 0.0066) compared 
to vehicle control (380.4 ± 37.0). Importantly, the combined 
treatment had a higher impact on tumor weight than APA 
(320.4 ± 45.5) or Chl (337.9 ± 35) alone.

The average body weight of the animals did not vary 
significantly between treatment groups throughout the 
study. Importantly, there were no observable signs of 
stress or infection, such as redness or swelling at the injec-
tion site, change in behavior or activity in the three animal 
groups receiving the APA, Chl or the APA + Chl treatment 
compared to vehicle control. This finding suggests that 
APA + Chl has an anti-tumor activity against human pros-
tate cancer in vivo, and is well-tolerated by mice at the dos-
age tested. Histological examination of the tumors showed 
increased infiltration of inflammatory cells in the combina-
tion treatment of APA + Chl compared with vehicle control, 
APA or Chl alone (Fig. 2).
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Effect of APA on autophagy associated markers

To confirm the qualification of APA and autophagy inhibi-
tors for the use in future therapeutics targeting in clinical 
trials, the investigation of autophagy specific markers is of 
importance. Therefore, we evaluated the expression of the 
main autophagy markers ATG5, Beclin 1 and LC3 in tumor 
tissue. As assessed by immunofluorescence, vehicle control 
showed low basal expression levels of ATG5 and a weak 
diffused LC3 staining (Fig. 3). APA-treated mice showed 
an increased expression of ATG5 and a punctuated pattern 
for LC3, confirming the accumulation of autophagosomes 
upon 3-week treatment. The mice treated with a combination 
of APA + Chl exhibited a reduced expression of ATG5 and 
slight LC3 punctuations (Fig. 3, lower panel). Moreover, the 
Chl-treated mice showed accumulation of LC3 protein, indi-
cating a Chl-induced accumulation of autophagic vacuoles 
(Fig. 3, lower panel). The observed pattern of expression 

of Beclin 1 was consistent with the ATG5 results (Fig. 4, 
upper panel).

Furthermore, immunofluorescent staining with cluster of 
differentiation 31 (CD31) showed an enhanced vasculariza-
tion and the presence of endothelial cells in the combina-
tion treatment group compared to vehicle control, APA- and 
Chl-treated groups (Fig. 4). Increased CD31 and reduced 
autophagy were correlated to an increase in P62 in the com-
bination treatment group.

Reduction in of the Ki‑67 proliferation marker 
and caspase activation following combination 
treatment

The proliferative capacity of the injected cells was 
assessed by Ki-67 staining after 3 weeks of treatments. 
The Ki-67 antibody reacts with a human nuclear anti-
gen that is present only in the nucleus of cells with 

Fig. 1   Effect of apalutamide (APA), hydroxyl chloroquine (Chl), and 
the combination of both in xenograft mouse model. A Schematic 
presentation of the animal study and injections time table. B In vivo 
tumor growth is shown with APA only, Chl only and combined treat-
ment in a mouse xenograft model. LNCaP prostate cancer cells were 
injected subcutaneously to left and right backsides of castrated nude 

mice and grown for 2 weeks. Mice were treated 5 days per week for 
2 and 3  weeks with vehicle control, APA (10  mg/kg), Chl (10  mg/
kg), or both in combination (APA 10 mg/kg + Chl 10 mg/kg). C Total 
tumor weight following tissue harvesting after 2 and 3  weeks upon 
treatments. N = 6 per experimental condition
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proliferating capacity. Nuclear staining was detected 
in all samples. Quantification of Ki-67 fluorescence 
intensity revealed a significant reduction in APA + Chl 
(58.3 ± 3.1%)-treated animals compared to vehicle 

control (100 ± 11.8%), whereas treatment with APA 
(88.7 ± 14.9%) or Chl (94 ± 2.0%) alone led to a slight 
reduction of Ki-67 only. These data support the hypoth-
esis that autophagy controls cellular stress and manages 

Fig. 2   Representative images of paraffin-fixed hematoxylin and 
eosin-stained sections of formed tumor from all experimental con-
ditions after 2 and 3  weeks of treatments with APA, Chl, and the 
combination of both. Hematoxylin stained the nuclei (blue–purple), 

eosin stained the cytoplasm and red blood cells in pink. Tumor tissue 
sections from combination treated animals with APA + Chl showed 
increased infiltration of inflammatory cells and reduced cell popula-
tion density. Arrows (white) indicate increase in inflammatory cells

Fig. 3   Up-regulation of ATG5 and LC3 in APA-treated animals. Rep-
resentative immunofluorescent staining of tumor sections from all 
experimental conditions after 3 weeks of treatments. The green color 
indicates cytoplasmic expression of ATG5, the LC3 staining in red 
indicates autophagosome formation. Up-regulation of ATG5 and LC3 

punctuation depict high autophagic activity in APA-treated animal 
tissue sections. Tumor tissue sections combination treated animals 
showed decreased ATG5 expression. Samples were stained using a 
Cy3 (red) conjugated secondary antibody or FITC (green) and DAPI 
(blue, 40,6-diamidino-2-phenylindole)
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also the impact of the APA treatment. Inhibition of 
autophagy with Chl, therefore, hampers the autophagic 
defense mechanism and increases the APA efficiency, 
leading to cell death, apoptosis and induction of cleaved 
caspase 3 (Fig. 5). Mice treated with APA + Chl showed 
increased caspase 3 expression (152.3 ± 12.0%) com-
pared to vehicle control (100 ± 10.0%). Increased apop-
tosis was also observed in animals treated with APA 
(121.7 ± 10.0%) or Chl (133 ± 12.8%) alone compared to 
vehicle control. The level of apoptosis appeared to be 
correlated with the reduction of Ki-67 protein and the 
increase in cleaved caspase 3 protein expression.

The involvement of autophagy was confirmed at the 
protein level by quantitative automated immunoblot-
ting. As shown in Fig. 6, mice receiving APA treatment 
showed increased levels of ATG5 (112 ± 33%) and Bec-
lin 1 (123.7 ± 10.0%) proteins, i.e., the main regulators 
of autophagy, when compared to animals treated with 
vehicle only (100%). Cells treated with Chl showed 
reduced expressions of ATG5 (51.0% ± 27.4) and Beclin 
1 (47% ± 16.0) compared to vehicle control. The com-
bination treatment with APA + Chl led to a significant 
down regulation of ATG5 (32.53% ± 10.9) and Beclin 
1 (35.9% ± 18.0) compared to vehicle control (100%). 
The reduction of autophagy resulted in the consequen-
tial upregulation of ubiquitin-binding protein P62 
(345.0% ± 165.4) compared to vehicle control.

Discussion

The suppression of the AR signaling remains a significant 
pathway in the therapy of advanced prostate cancer. The 
present study confirms that cancer cells use autophagy as 
a survival mechanisms in response to apalutamide (APA) 
treatment (Eberli et al. 2020). We could demonstrate that 
autophagy is one of the mechanisms of resistance to APA 
also in vivo. The combination of APA with the inhibition 
of autophagy by Chl treatment resulted in enhanced cyto-
toxicity of PC cells, increased apoptosis and reduction of 
the xenograft growth in a castrated nude mouse model. 
Therefore, a combination treatment could hinder the pro-
tective effect of autophagy on PC cells and increase APA 
efficacy, leading to cell death and induction of caspase 3. 
The upregulation of autophagy as a survival mechanism 
in CRPC has already been shown in several PC cell lines 
(Kranzbuhler et al. 2019; Zou et al. 2012; Wu et al. 2010).

In our prior in  vitro studies, we have shown, that 
autophagy is induced as a pro-survival response to mul-
tiple cytotoxic therapies, such as APA, abiraterone ace-
tate and EPI-001 in LNCaP, and enzalutamide-resistant 
LNCaP cells (Kranzbuhler et al. 2019; Eberli et al. 2020; 
Mortezavi et  al. 2019). This induction was associated 
with an increase in ATG5 and Beclin 1 protein expres-
sions, the main regulators of autophagy in PC cells. In 

Fig. 4   Influence of APA, Chl and combined APA + Chl on Beclin 
1 and P62 protein expression. Representative immunofluorescent 
staining of samples from all experimental conditions after 3  weeks 
of treatments. Upper panel displays upregulation of Beclin 1(red) in 

APA-treated animal tissue only. Lower panel shows increased P62 
(Green, FITC) and CD31 (red, Cy3) expression in Chl, APA + Chl-
treated animals compared to APA-treated animals only. Nuclei were 
stained with DAPI (blue)
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our present study, we have followed the same strategy and 
used APA (10 mg/kg/day) and Chl (10 mg/kg/day) alone 
and in combination in a mouse xenograft model of human 
CRPC. Our results are consistent with a previously pub-
lished animal study, demonstrating the safety and efficacy 
of APA (10 mg/kg/day) combined with a dose-dependent 
tumor regression that is superior to bicalutamide or enza-
lutamide (4). Consistent with our in vitro data, the main 
proteins involved in autophagosome formation, namely 
ATG12-ATG5 (ATG5) and Beclin 1, were upregulated 
upon single treatment with APA (Eberli et  al. 2020). 
We also demonstrated that a treatment with APA alone 
induced LC3 (microtubule-associated protein 1 light chain 
3-phosphatidylethanolamine (PE) system) and decreased 
the expression of P62 in the tumor xenograft tissue. This 

is in line with our prior reports where we demonstrated 
an increased LC3 localization and a decrease in P62 with 
induction of autophagy in APA-treated cells (Eberli et al. 
2020; Saleem et al. 2012).

Increasing evidence from preclinical models suggests that 
inhibition of autophagy increases cytotoxicity in combina-
tion with several anticancer drugs (Kaini and Hu 2012; Bou-
tin et al. 2013). Autophagy inhibitors, such as chloroquine 
and 3-methyladenine, are used to sensitize several different 
cancer cells to different anti-cancer drugs, such as cisplatin 
or tamoxifen, as well as to radiation therapies (Wu et al. 
2010; Amaravadi et al. 2007; Apel et al. 2008).

Therefore, we investigated the impact of APA in com-
bination with an agent such as chloroquine (Chl). This 
drug, which is approved by the FDA (food and drug 

Fig. 5   Immunofluorescent colocalization of Ki-67 and caspase 3. 
Upper panel: Ki-67 (red) and caspase 3 (green) staining of tumor sec-
tions after 3 weeks of treatments. Lower panel: Positive Ki-67 immu-

nostaining in the nuclei of tumor cells and cleaved (active) caspase 3 
in the cytoplasm of tissue sections were measured and compared to 
vehicle control (100%). Nuclei were stained with DAPI (blue)
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administration), is a known inhibitor of autophagy, ini-
tially used to prevent and treat malaria (Rubinsztein et al. 
2007). It blocks autophagy at later stages in the autophagic 
progression by interfering with lysosome acidification and 
by impairing autophagosome degradation (Rubinsztein 
et al. 2007). Chl alone or in combination with different 
anti-cancer drugs or chemotherapeutics has been used in 
numerous clinical trials for the treatment of various can-
cers and was reported to be well-tolerated (Wolpin et al. 
2014; Rangwala et al. 2014; Rosenfeld et al. 2014; Boone 
et al. 2015). The safety of Chl in combination with chemo-
therapeutic taxanes was evaluated in a phase II clinical 
study of breast cancer. This combination therapy was well 
tolerated and effective in patients with locally advanced 
or metastatic breast cancers. The clinical use of Chl in 
combination with the Akt inhibitor MK2206 for the treat-
ment of patients with advanced solid tumors such as PC 
is currently under investigation (Phase I, Study identifier: 
NCT01480154). In our study, we further show evidence 
for increased cytotoxicity using a combination treatment of 
APA + Chl in our mouse model. Mammalian cells and tis-
sues lacking autophagy have increased levels of ubiquitin 
and P62 (Bjorkoy et al. 2005; Tanida and Waguri 2010). 
Therefore, an increase in P62 protein expression confirms 
that autophagy is blocked in the combination treated mice. 
Furthermore, this led to an increase in caspase 3 protein 

expression and reduction in Ki-67 protein. As a marker of 
cell proliferation, Ki-67 is measured in prostate tumor tis-
sues as an additional prognostic marker (Ojea Calvo et al. 
2004; Hammarsten et al. 2019). Therefore, the reduction 
of Ki-67 protein in the combination treated mice is an 
indicator of hampered cell proliferation, which correlated 
with an increase in cleaved caspase 3 protein.

The efficacy of APA, a competitive inhibitor of AR, was 
evaluated in a study including men with non-metastatic 
CRPC who were at high risk for the development of metas-
tasis. In the group receiving APA treatment, the risk of 
metastasis or death was 70% lower and the median metas-
tasis-free survival was extended by more than 2 years com-
pared to the placebo group (7). A further phase III study 
(SPARTAN) assessed the benefit of APA for the overall 
survival of none metastatic CRPC patients. In the APA-
treated group, the risk of death decreased by 22% and the 
median overall survival increased by 14 month compared 
to placebo (Smith et al. 2020).

Despite advances in the development of drugs for the 
treatment of advanced prostate cancer, the exact mecha-
nism of resistance by which the targeted cells might escape 
is still unknown and requires further research.

Fig. 6   Representative WES immunoblotting image. ATG5 and Bec-
lin 1 protein was increased in animals treated with APA compared 
to vehicle control and Chl treatments. Mice treated with the combi-
nation treatment showed reduction of both ATG5 and Beclin 1 pro-
teins. An increase in P62 protein was observed only in animals with 

the combination treatment, indicating lowered autophagy in these 
animals. The protein expression in each sample was normalized to its 
own GAPDH and analyzed using the Compass software (ProteinSim-
ple). N = 5
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Conclusion

In this study, we provide preclinical data demonstrating 
that targeting autophagy in combination with an APA 
treatment may enhance tumor suppressive effects in 
CRPC. Autophagy reduces treatment stress and promotes 
cell survival of tumor cells, which ultimately may allow 
them to develop other ways to resist anti-androgen thera-
pies. A novel safe and efficient way to overcome resistance 
mechanisms might be the combination therapy of APA 
with autophagy modulators such as chloroquine. A com-
bination therapy that simultaneously targets the androgen 
receptor axis and autophagy may maximize the therapeutic 
effect in CRPC patients in future clinical applications.
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