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SUMMARY

The endoplasmic reticulum (ER) stress response, also known as the unfolded protein response (UPR), is

a complex cellular response to ER protein misfolding that involves transcriptional regulatory branches

and a PERK-mediated translational regulatory branch.

Here we revealed that amino acid biosynthesis regulation is coupled to protein synthesis demands

during ER stress. Specifically, we demonstrated that the UPR leads to PERK-dependent induction in

the biosynthesis of specific amino acids, and to upregulation of their corresponding tRNA synthe-

tases. Furthermore, we found that sequences of UPR-upregulated proteins are significantly enriched

with these UPR-induced amino acids. Interestingly, whereas the UPR leads to repression of ER target

proteins, we showed that secreted proteins tended to escape this repression and were highly en-

riched for the UPR-induced amino acids.

Our results unravel coordination between amino acid supply, namely, biosynthesis and tRNA loading,

and demand fromUPR-induced proteins under ER stress, thus revealing an additional regulatory layer

of protein synthesis.

INTRODUCTION

Endoplasmic reticulum (ER) stress elicits a complex cellular program, also termed the unfolded protein

response (UPR). This response enables cells to cope with dynamic changes in protein folding and process-

ing demands in the ER (Ron and Walter, 2007). The UPR in mammalian cells consists of three major

branches: the PERK branch, which leads to global inhibition of translation initiation through eIF2a phos-

phorylation, and two transcriptional branches, namely, the IRE1-XBP1 and the ATF6 branches (Pavitt and

Ron, 2012). Importantly, one of the major secondary effectors downstream of PERK is the transcription fac-

tor ATF4, the translation of which is highly induced in an eIF2a phosphorylation-dependent manner during

ER stress (Vattem and Wek, 2004) and is known to induce the transcription of genes essential for ER stress

adaptation (Rutkowski and Kaufman, 2007).

We and others have characterized another hallmark of the UPR: enhanced repression of ER-targeted pro-

teins (Gonen et al., 2019; Guan et al., 2017; Reid et al., 2014). We found that this repression is mainly at the

level of translation and occurs in many cell types (Gonen et al., 2019). Furthermore, using ribosome foot-

print profiling, we identified three major ER stress gene expression programs in mouse embryonic fibro-

blasts (MEFs): early induction, late induction, and repression, all of which are PERK dependent (Gonen

et al., 2019). Notably, late induction genes are enriched for amino acid biosynthesis pathways (Gonen

et al., 2019).

Amino acid biosynthesis genes were previously shown to be induced in response to ER stress. Harding et al.

demonstrated that amino acid metabolism is upregulated in response to ER stress, in an ATF4-dependent

manner (Harding et al., 2003). Furthermore, ATF4�/� MEFs were found to have an amino acid deficiency,

and thus require supplemental non-essential amino acids for their growth (Harding et al., 2003). ATF4�/�
cells have also been shown to experience oxidative stress, and supplementation of cysteine, glutathione

(GSH), or other reducing agents rescues their growth defects (Harding et al., 2003). In chronic ER stress,

ATF4 binds to the promoters of various amino acid biosynthesis genes, and also to amino acid transporters

(Han et al., 2013). Moreover, serine metabolism induction was highlighted in response to ER stress (Rendle-

man et al., 2018). In addition, ATF4 target genes were found to be enriched with tRNA synthetases (Han

et al., 2013). In pancreatic b-cells, increased protein synthesis during chronic ER stress involved the

transcriptional induction of an amino acid transporter network, and of tRNA synthetases, in an
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ATF4-dependent manner (Krokowski et al., 2013). The ATF4-induced network of amino acid transporters

has also been shown to be involved in alleviating the inhibition of protein synthesis during prolonged

ER stress, by promoting mTOR activation (Guan et al., 2014). In turn, mTOR can contribute to ATF4 expres-

sion in an eIF2a phosphorylation-independent manner, by mediating ATF4 mRNA stabilization (Ben-Sahra

et al., 2016; Park et al., 2017).

Here, we set out to further characterize the late response to ER stress. Using ribosome footprint profiling in

ER-stressed wild-type (WT) and PERK�/� MEFs (treated with thapsigargin [Tg]) (Gonen et al., 2019), we

found that ER stress, particularly a late-specific ER stress induction gene expression program, is highly en-

riched in two categories: amino acid biosynthesis and tRNA synthetases, in line with previous studies. Here-

in, we observed induction in the biosynthesis of a specific subset of amino acids, with highly significant

congruent upregulation of their corresponding tRNA synthetases. This observation led us to hypothesize

that this coordinated induction during ER stress might be coupled to differential demands of amino acids

from the amino acid sequences of the UPR-induced proteins. Indeed, our analyses showed that sequences

of induced proteins are significantly enriched with these amino acids. Finally, we showed that this UPR

amino acid signature is preferentially enriched within subclasses of ER targets that tended to escape the

enhanced repression during ER stress, namely, secreted and extracellular matrix proteins.

RESULTS

Secreted Proteins Escape the Repression of ER Targets during ER Stress

Previously, we and others (Gonen et al., 2019; Guan et al., 2017; Reid et al., 2014) described widespread

enhanced repression of ER-targeted proteins during ER stress. Furthermore, we showed that this repres-

sion occurs mainly at the level of translation and starts as early as 1 h into the stress, thus affecting the

expression of hundreds of mRNAs encoding ER targets (Gonen et al., 2019). These include membrane pro-

teins, glycoproteins, and disulfide bond-containing proteins (Gonen et al., 2019).

We therefore wished to perform a more fine-tuned analysis of expressed ER targets. One of the major

mechanisms of ER localization is that of the signal recognition particle, which is responsible for the local-

ization and co-translational import of many ER processed proteins that contain a signal peptide in their N

terminus (Keenan et al., 2001). We therefore utilized our ribosome footprint profiling dataset of MEFs that

were subjected to short and long ER stress induced by the SERCA inhibitor Tg (Gonen et al., 2019) and

aimed to examine all signal peptide-encoding mRNAs (see Methods). We performed hierarchical clus-

tering of the expression levels of the subset of signal peptide-encoding mRNAs that changed at least

2-fold during a time course of short and long ER stress treatments. Our analysis revealed that whereas

about 57% of the signal peptide-containing proteins were significantly repressed, the remaining proteins

were actually induced (Figure 1A). We then sought to identify the functional differences between the

repressed and the enhanced signal peptide-encoding mRNAs. We observed that over 60% of the

repressed signal peptide-encoding mRNAs were membrane proteins, consistent with our previous results

(Gonen et al., 2019). On the other hand, signal peptide-encoding mRNAs with induced expression during

ER stress were selectively enriched for extracellular region and secreted proteins (Figure 1B). Therefore, it

seems that different subsets of ER targets are regulated differently, with membrane proteins being selec-

tively repressed, whereas many secreted proteins escaping this repression and being actually enhanced.

Late-Specific ER Stress-Induced Genes Include Amino Acid Biosynthesis Genes and tRNA

Synthetases

Next, we set out to further characterize the candidate genes important for adaptation to ER stress, and

whose regulation is specific to the late stages of the response. To this end, we performed a differential

expression analysis to identify genes that vary in their expression between early (1 and 2 h) and late (5

and 8 h) ER stress treatments (see Methods). The analysis resulted in 120 significantly changing mRNAs,

of which 60% were induced at the late time points (Figure 2A). Interestingly, both specific late-induced

and late-repressed gene sets were PERK dependent, as their induction or repression in PERK�/� cells

was highly impaired (Figures 2A and S1A–S1D). Reassuringly, functional enrichment analysis revealed

that the induced gene set was enriched for genes involved in the ER stress response (Figure 2B). Further-

more, the late-specific induced gene set was also highly enriched with two additional functional categories:

amino acid biosynthesis and tRNA synthetases (Figure 2B). This result is in agreement with our previously

identified late ER stress gene induction program, which was enriched for response to ER stress and amino

acid biosynthesis (Gonen et al., 2019), as well as with earlier reports of changes in amino acid biosynthesis
iScience 19, 204–213, September 27, 2019 205



Figure 1. Analysis of Signal Peptide Encoding mRNAs Reveals that Secreted Proteins Tend to Escape Repression

upon ER Stress

(A) Hierarchical clustering analysis was performed using 236 signal peptide-encoding mRNAs, with translation change of

at least 2-fold compared with control in any of the time points examined following Tg treatment (1, 2, 5, and 8 h) in WT

MEFs. The heatmap depicts hierarchal clustering of mRNA translation levels (transcripts per million [TPM] of ribosome

footprint profiling in the respective samples, log2), according to Spearman’s correlation. Z score normalization was

further performed for visualization purposes. The mRNAs were clustered into two distinct groups: 102 induced mRNAs

(blue square) and 134 repressed mRNAs (red square) following Tg treatment.

(B) Functional enrichment of induced signal peptide encoding genes was analyzed using DAVID (Huang da et al., 2009).

The enriched terms were extracellular region and secreted proteins. False discovery rate (FDR)-corrected p values are

indicated.
using mRNA expression profiling (Harding et al., 2003). In addition, specific amino acids, such as

cysteine and leucine, were shown to be essential for cell survival under prolonged ER stress (Harding

et al., 2000, 2003). Interestingly, we found that 25% of the late-specific induced mRNAs were ATF4 targets

(p = 4.4 3 10�49, see Methods). Indeed, ATF4 transcriptional output is known to be a component of the

adaptive UPR, which occurs at the late time points.

Biosynthesis of a Specific Subset of Amino Acids Is Induced in the Late ER Stress Response

After observing that amino acid biosynthesis pathways are enriched within late-specific ER stress-induced

genes, we analyzed the expression patterns of all mRNAs related to amino acid biosynthetic pathways

(see Methods). Although overall, amino acid biosynthesis pathway mRNAs showed significant, PERK-

dependent, induction in ER stress (Figures S2A and S2B), hierarchical clustering analysis showed that

only about half of these mRNAs were induced, whereas the rest were largely unchanged (Figure S2E).

To distinguish the pathways that were induced, we examined the amino acid biosynthesis metabolic

map (see Methods) and overlaid on it the data of the late-specific induced mRNA set that was charac-

terized above (Figure 2A). Using this map, we identified a subset of eight non- or partly essential amino

acids that showed induction of their related biosynthetic pathways: Ser, Cys, Gly, Ala, Asn, Asp, Glu, and

Pro (Figure 2C).

Significant Overlap between Amino Acids with ER Stress-Induced Biosynthesis and

Upregulated tRNA Synthetases Defines a UPR Amino Acid Signature

Next, having observed that aminoacyl-tRNA synthetases were also enriched within late-specific ER

stress-induced mRNAs, we examined the expression pattern of all tRNA synthetases. The overall induc-

tion of 37 tRNA synthetases was highly significant and PERK dependent, as tRNA synthetases were not

induced in PERK�/� MEFs at any of the ER stress time points (Figures S2C, S2D, and 2D). Nevertheless,

clustering analysis revealed that here too, not all tRNA synthetases were equally induced in WT MEFs

(Figure 2D). Rather, a subset of 12 cytosolic tRNA synthetases was highly upregulated during ER stress

(Figure 2D). Notably, these specific tRNA synthetases were not induced in PERK�/� MEFs (Figure 2D).

Other tRNA synthetases were either slightly induced (a subset of mitochondrial tRNA synthetases) or

remained unchanged. Importantly, none of the tRNA synthetases was selectively repressed during ER

stress.

Having identified a specific subset of eight amino acids whose biosynthesis was induced during the late

stages of the ER stress response on one hand, and a subset of 12 highly upregulated tRNA synthetases
206 iScience 19, 204–213, September 27, 2019



Figure 2. Late-Specific ER Stress-Induced mRNAs Include Specific Amino Acid Biosynthesis Pathways and Their

Cognate tRNA Synthetases

(A) Hierarchical clustering analysis was performed using 120 mRNAs that were differentially translated (identified

using DESeq2, FDR-corrected p value < 0.1) between the group of 1- and 2-h ER-stressedWTMEFs and a second group of
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Figure 2. Continued

5- and 8-h treated WT MEFs. The heatmap depicts hierarchically clustered log2 fold change in translation levels

(transcripts per million [TPM] of ribosome footprint profiling in the respective samples, Tg/control, log2), according to

Spearman’s correlation. Clustering was performed according to WT MEF samples. As shown, PERK�/� cells display

very little change in these mRNAs.

(B) Functional enrichment of the late-specific induced genes was analyzed using DAVID (Huang da et al., 2009). False

discovery rate (FDR)-corrected p values are indicated.

(C) An amino acid biosynthesis metabolic map that was generated using the KEGG mapper (Kanehisa and Goto, 2000) of

late-specific ER stress-induced genes shows induction of biosynthesis pathways (induced reaction arrows are colored in

red) for eight non- or partly essential amino acids: Ser, Cys, Gly, Ala, Asp, Asn, Glu, and Pro.

(D) Hierarchical clustering analysis of translation log2 fold changes (as described in A) for the group of all tRNA

synthetases, identified a cluster of ER stress-induced, PERK-dependent, tRNA synthetases (marked by a red square).
on the other hand, we were prompted to examine the overlap between these two subsets. We found that

seven of the eight amino acids whose biosynthesis was induced, showed upregulation of their cognate

tRNA synthetase: Ser, Cys, Gly, Ala, Asn, Glu, and Pro (Table S1, p value for the overlap = 0.0012, using

the hypergeometric test). We thus termed this subset of seven amino acids with both ER stress-induced

biosynthesis and upregulated tRNA synthetases the UPR amino acid signature.

The other induced tRNA synthetases were related to essential amino acids. Indeed, we observed that

several amino acid transporters were highly induced during the late stages of ER stress (Figure S3), in

line with previous reports (Krokowski et al., 2013). However, as various transporters can import a broad

range of amino acids, we decided not to include the essential amino acids in this signature.
The UPRAmino Acid Signature Is Coupled to Differential Amino Acid Demand from ER Stress-

Induced Proteins

The identification of a UPR amino acid signature led us to hypothesize that the coordinated induction of

biosynthesis of a specific subset of amino acids and their cognate tRNA synthetases might be coupled

to changes in the ER stress cellular translatome. More specifically, we hypothesized that induction in the

biosynthesis of the identified UPR amino acid signature may correspond with the amino acid composition

of proteins that comprise the ER stress induction program. To test this hypothesis, we defined a metric

termed amino acid demand, which is simply the fraction of an amino acid, or a group of amino acids, within

the sequence of each protein. We calculated the UPR amino acid demand as the demand of the set of the

seven amino acids comprising the UPR amino acid signature, in each protein sequence in the mouse

genome. We then examined the amino acid demand within the three ER stress gene expression programs

that we previously identified (Gonen et al., 2019), namely, early UPR induction, late UPR induction, and UPR

repression, and compared these with the background UPR amino acid demand of all expressed proteins

(Figure 3A). We observed that whereas proteins belonging to the ER stress repression programwere signif-

icantly depleted for the UPR amino acid signature (p = 3.8 3 10�5), both early and late induction program

proteins were highly enriched for this amino acid set (Figure 3A, p = 3 3 10�4 and p = 1.2 3 10�4 for the

early and late induction gene expression programs, respectively). Importantly, examination of the proteins

that were induced or repressed by ER stress in the PERK�/�MEFs did not reveal enrichment or depletion

of the UPR amino acid signature (Figure 3B).

To investigate whether this finding can be recapitulated in another dataset, we examined an ER stress data-

set in which MEFs were stressed for 16 h using Tg, and translatome was mapped using polysome

sequencing analysis (Guan et al., 2017). Here too, we identified a UPR amino acid signature relevant for

a 16-h ER stress, which was similar to the signature that we identified for the 5- and 8-h ER stress in our data-

set (Table S1). Almost all cytosolic tRNA synthetases were induced by 16 h of ER stress (Figure S4A),

whereas the biosynthesis of fewer amino acids was upregulated at this time point (Figure S4B). Thus,

the 16-h UPR amino acid signature consisted of the amino acids Ser, Gly, Cys, Asp, and Glu (Table S1), a

similar subset to the late (5–8 h) ER stress signature above. Nevertheless, when considering the amino

acid demand originating from the induced proteins at the 16-h ER stress time point of the Guan et al. trans-

latome data, we again observed significant enrichment of the 16-h UPR amino acid signature within

induced proteins (Figure S4C, p = 1.5 310�10).

Taken together, regulation at the level of amino acid biosynthesis and tRNA synthetases during ER stress is

coupled to changes in the demand of amino acids originating from induced proteins.
208 iScience 19, 204–213, September 27, 2019
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Figure 3. The UPR Amino Acid Signature Is Enriched in UPR-Induced Proteins, and in Secreted Proteins

(A) The UPR amino acid demand, namely, the fraction of the seven amino acids comprising the UPR amino acid signature,

in protein sequences within the UPR-repressed (blue), early UPR-induced (green), and late UPR-induced (red) gene

expression programs from Gonen et al. (2019) compared with the background of all expressed proteins (gray) using a

cumulative distribution function (CDF) plot. The plot shows the cumulative distribution of the fraction of proteins within
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Figure 3. Continued

each of the groups (y axis), with different UPR amino acid demand scores (x axis). Proteins belonging to the UPR

repression program were significantly depleted for the UPR amino acid signature, as indicated by a shift in distribution

to more negative values compared with the background distribution. In contrast, both early and late UPR induction

program proteins were highly enriched for this amino acid set, as indicated by a significant shift in distribution to more

positive values compared with the background distribution. Kolmogorov-Smirnov (KS) test p values are indicated.

(B) Amino acid demand CDF plot (as in A) for all ER stress-induced (red) and ER stress-repressed (blue) mRNAs in the

PERK�/�MEFs (at least 2-fold at any of the time points compared with control). None of the groups showed enrichment

or depletion for the UPR amino acid signature; KS test p values are indicated.

(C) The UPR amino acid demand of secreted proteins (red) and extracellular matrix proteins (green) compared with the

background of all expressed proteins (gray) is shown using a CDF plot (as in A). Both secreted and extracellular matrix

proteins were highly enriched for the UPR amino acid signature, KS test p values are indicated.
UPR-Mediated Regulation of Amino Acid Metabolism Coupled with Amino Acid Demand

of Secreted Proteins

Next, we sought to examine whether this mode of regulation applies to specific pathways or protein clas-

ses. Our observation that secreted proteins tended to escape the ER stress-mediated repression of ER-tar-

geted proteins (Figure 1) prompted us to examine the amino acid composition of this group of proteins.

Interestingly, secreted protein sequences demonstrated significant enrichment in the UPR amino acid

signature (Figure 3C). Notably, although overall, secreted proteins showed elevated amino acid demand

for this signature, secreted proteins that were induced were more significantly enriched for the signature

than were those that were repressed (Figure S5D). Even greater enrichment of the UPR amino acid signa-

ture was observed in the sequences of extracellular matrix proteins (Figure 3C). This result was not due to

the particular amino acid composition of the signal peptide, as exclusion of the signal peptide region from

the analyzed protein sequences did not affect any of the trends (Figures S5A and S5B). In addition,

this trend was not confounded by overlap with the ER stress induction protein expression programs

(from Figure 3A), as it remained significant when we removed these proteins (Figure S5C).

The UPR Amino Acid Signature Shows Higher Codon Optimality in Both UPR-Induced and

Secreted Proteins

We next decided to analyze an additional level of protein synthesis regulation, namely, the level of codon opti-

mality. To this end, we calculated for each protein, the tRNA adaptation index (tAI, seeMethods), a widely used

metric for codon optimality that takes into account the corresponding tRNA copy numbers of each codon (dos

Reis et al., 2003). We compared the tAI of secreted proteins to those of all expressed proteins, and observed a

highly similar distribution (Figure 4A, p = 4.73 10�1). Surprisingly, when the tAI calculation was restricted to the

UPR amino acid signature, the codonoptimality for secreted proteinswas significantly increased (p= 8.43 10�6,

using Kolmogorov-Smirnov [KS] test, Figures 4B and 4C). Importantly, this findingwas not due to the signal pep-

tide region, as it remainedafter exclusion of this region from the analysis (Figures S6A–S6C). Further examination

of the set of late ER stress-inducedproteins revealed a similar trend, whereby codon optimality (measured using

tAI) for late UPR-induced proteins was elevated for the UPR amino acid signature (Figures S6D–S6F). Thus, the

UPR amino acid signature is coupled to UPR-induced protein expression demands, as well as to the amino

acid demand of secreted proteins and shows increased codon optimality for these specific groups.

In summary, our analyses unraveled an additional mode of protein synthesis regulation as part of the UPR,

which involves rewiring of amino acid metabolism and tRNA synthetase induction, and the coupling of

these processes to the amino acid demand of proteins whose synthesis is induced during ER stress.

DISCUSSION

Here we analyzed ribosome footprint profiling data of a time course of ER stress treatments and identified

an additional mode of protein synthesis regulation that occurs in the late adaptive stage of the response.

Specifically, we found coordinated induction in certain amino acid biosynthetic pathways, together with

upregulation of the expression of their cognate tRNA synthetases. In agreement with our hypothesis

that this coordination may be related to protein synthesis demands, we found indeed that these signature

amino acids are enriched within UPR-induced proteins.

Codon bias was shown to vary according to categories of gene expression. Upon stress, yeast cells were

shown to induce the expression of tRNAs whose codons are enriched within stress-induced mRNAs

(Torrent et al., 2018). Furthermore, codon usage was found to differ between proliferation-related genes,
210 iScience 19, 204–213, September 27, 2019
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Figure 4. The UPR Amino Acid Signature Shows Higher Codon Optimality for UPR-Induced Proteins and for

Secreted Proteins

Codonoptimalitywas calculated forall expressedproteins using the tRNAadaptation index (seeMethods), using all aminoacids

(A), only the amino acids comprising theUPR amino acid signature (B), or only the amino acids that are not part of theUPR amino

acid signature (C). tAI distributions were plotted for the group of secreted proteins (red) versus the background distribution of

all expressed proteins (gray), using cumulative distribution function (CDF) plots (as in Figure 3). p values for the differences

between these two groups, calculated using the Kolmogorov-Smirnov test, showed no difference in the codon optimality of all

amino acids (A); however, the codon optimality of the UPR amino acid signature is significantly higher for secreted proteins (B).
whose expression is altered in cancer, and differentiation-related genes, and this was accompanied by

shifts in the expression of respective pools of tRNAs (Gingold et al., 2014). In addition, secreted proteins

were shown to have particular codon bias properties in several organisms, from yeast to human (Mahlab

and Linial, 2014). Therefore, organisms seem to have evolved means of coupling the expression of their

tRNA pools to match demands of varying protein expression programs (Quax et al., 2015). Here we

describe a phenomenon in which amino acid biosynthesis and tRNA synthetase expression are coupled

to the amino acid content of induced proteins during the course of the ER stress response. In codon

bias, shifts in tRNA pools involve synonymous codons, whereas the signs of a metabolic shift reported

here were related to the amino acid content. Nonetheless, it is interesting that the UPR amino acid signa-

ture we identified also shows higher codon optimality for secreted proteins and for late UPR-induced pro-

teins, thus manifesting a combined-level regulation.

Amino acid biosynthesis induction was previously discussed in the context of ER stress. Some studies sug-

gested that this upregulation is adaptive (Harding et al., 2000, 2003), whereas others claimed that the ATF4-

mediated induction of amino acid biosynthesis and tRNA synthetases enhances protein synthesis in a

manner that could become harmful upon prolonged stress (Krokowski et al., 2013). Here we suggest

that the induced biosynthesis of specific amino acids is coupled to protein synthesis demands, which sup-

ports the notion that this is indeed an adaptive mechanism. We propose that amino acid composition and

shifts in amino acid metabolism have co-evolved such as to yield an improved regulatory program that fine-

tunes supply and demand for proteins that are preferentially synthesized upon ER stress.

An alternative possibility is that feedback regulation senses depletion in some amino acids, and thereby

acts to enhance biosynthesis, which then meets the increased demand. However, we note that the cells

were grown throughout the experiment in a media that was supplemented with non-essential amino acids

(Gonen et al., 2019). Therefore, it is highly unlikely that the cells were depleted for these amino acids, but

rather that an intrinsic program led to the shift in amino acid metabolism.

We wondered whether the UPR amino acid signature we identified is the optimal one, given the set of induced

proteins. Our analysis found that the UPR amino acid signature is only in the top 37th percentile in terms of

optimal compatibility to the set of induced proteins and in the top 30th percentile of optimality for secreted pro-

teins (see Figure S7). In other words, other combinations of seven amino acids would more optimally meet the

specific demands of amino acids for induced protein expression programs. Importantly, other roles have been

ascribed to various amino acidbiosynthesis pathways uponER stress (Harding et al., 2000, 2003). Thus, it is highly

likely that amino acid demand is only partly responsible for the observed UPR amino acid signature.

For example, the serine-glycine biosynthesis pathway contains four enzymes, all of which were highly

induced in our data in a PERK-dependent manner (Figures 2C and S8A). This pathway was also found to
iScience 19, 204–213, September 27, 2019 211



be elevated, in an ATF4-dependent manner, and to increase glutathione production in non-small-cell lung

cancer cells, thus contributing to their aggressiveness (DeNicola et al., 2015). Indeed, glutathione has an

important role in protection from oxidative stress in general, and in ATF4�/� cells in particular (Harding

et al., 2003). Furthermore, mitochondrial tetrahydrofolate, which is another important derivative of

serine-glycine metabolism, has been shown to play important roles in protecting frommitochondrial stress

in response to glucose starvation, and in maintaining proper mitochondrial translation upon stress (Minton

et al., 2018). Indeed, our data showed that mitochondrial translation is largely maintained during the course

of ER stress, as evident by the increased ratio of mitochondrially encoded gene translation (Figure S8C),

whereas cytosolic translation was overall repressed (Gonen et al., 2019). Therefore, it is possible that the

induction of serine biosynthesis actually leads to increased conversion of serine into glycine and tetrahy-

drofolate, which is adaptive for cell fate and helps maintain healthy mitochondria during ER stress.

Proline, which is generated by a series of reactions fromglutamate, has also been shown to haveprotective roles

in stress. Proline starvation results in unresolved ER stress in cancer cells (Sahu et al., 2016). Furthermore, proline

was shown tobe limiting in clear cell renal cell carcinoma tumors, inwhich the PYCR1 enzyme responsible for the

final step of proline production from glutamate was induced, whereas proline catabolism enzymes were down-

regulated (Loayza-Puch et al., 2016). Our data showhigh induction of PYCR1, alongwith two additional enzymes

in the glutamate toproline biosynthesis pathway, PYCR2 andALDH18A1, togetherwith a nearly 2-fold reduction

in the expression of the proline catabolic enzyme ALDH4A1 (Figure S8B). Therefore, the observed induction in

glutamate may be only an intermediate step that promotes the biosynthesis of proline.

Following the above, we investigated whether removal of serine and glutamate would generate amore optimal

UPR amino acid signature. Indeed, when we removed one or both of these from the UPR amino acid signature,

the signature became more optimal (4.9th and 2nd top percentiles for late-induced proteins and secreted pro-

teins, respectively, Figure S9). Therefore, it is possible that some induced amino acids serve as precursors for

certain derivatives, which are themselves involved in protection fromvarious effects of ER stress, or from second-

ary related oxidative stress. Our observation of a favorable, yet suboptimal set of induced amino acids corrob-

orates with the possibility of other underlying causes for the induction of some of the induced amino acid

biosynthesis pathways. This supports the notion that fine-tuned changes in amino acid biosynthesis coincide

with amino acid demands that originate particularly from induced protein expression programs. The extent

to which these metabolic shifts in the biosynthesis of amino acids or their metabolic derivatives is congruent

with specific amino acid-related functions, or with protein synthesis demands, remains to be resolved.

Limitations of the Study

Our study describes an additional regulatory layer that occurs during ER stress, involving coordination be-

tween supply and demand of amino acids to fine-tune UPR protein synthesis demands. Furthermore, the

same amino acid signature shows improved codon optimality, further supporting the adaptiveness of

this mode of regulation. Nevertheless, amino acid biosynthesis generates multiple derivatives, some of

which have been shown to play specific roles in protection from prolonged ER stress and other secondary

stresses, as discussed above. Future additional experiments, such as tRNA-charging assays and metabo-

lomics, would be required to fully disentangle the effects of amino acid supply-demand regulation from

those of secondary derivatives and fully quantify their specific contributions.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Figure S1. PERK-dependence of late-specific repressed and induced gene sets. 
Related to Figure 2. 
CDF (Cumulative Distribution Function) plots of translation log2 fold change of late-
specific repressed (A,B) and induced (C,D) gene sets in WT (A,C) and PERK -/- (B,D) 
MEFs, show that both repression and induction is largely PERK dependent. The y-axis 
shows the cumulative fraction of genes corresponding to the log2 fold changes (plotted 
on the x-axis) in the translation levels of the subset of mRNAs in each timepoint (colored 
plots) compared to the background of all expressed mRNAs (in grey). 
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Figure S2. Amino acid biosynthesis pathway and tRNA synthetase mRNAs show 
significant, PERK-dependent, induction in ER stress. Related to Figure 2. 

CDF plots of log2 fold changes in the translation levels of amino acid biosynthesis 
pathway mRNAs (A,B) and tRNA synthetase mRNAs (C,D), in WT (A,C) and PERK -/- 
(B,D) MEFs, show that induction (in 2h, 5h, and 8h) is PERK dependent. (E) Hierarchical 
clustering analysis of amino acid biosynthesis pathway genes, showed that ~80 of them 
were induced while the rest were largely unchanged. The heatmap depicts hierarchically 
clustered log2 fold change of the TPM of mRNAs, according to their spearman correlation.  

  



 

Figure S3. Several amino acid transport mRNAs are induced in ER stress. Related 
to Figure 2.  

Hierarchical clustering analysis was performed using 45 genes related to amino acid 
transport. Heatmap depicting hierarchically clustered mRNA translation log2 fold 
changes, according to their spearman correlation.  
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Figure S4. Analyses of amino acid demand in the Guan et al. dataset. Related to 
Figure 3. 

(A) Hierarchical clustering analysis of tRNA synthetase genes in cytoplasmic RNA and 
polysome-associated RNA from Guan et al. (Guan et al., 2017). Heatmap depicting 
hierarchically clustered mRNA expression (Cytoplasmic RNA) / translation (Polysome-
associated) log2 fold changes, according to their spearman correlation. The majority of 
cytosolic tRNA synthetases were induced at 16h of ER stress. The induction is higher in 
polysome-associated RNA. (B) Amino acid biosynthesis metabolic map of induced 
mRNAs within polysome-associated RNA from Guan et al. (Guan et al., 2017), shows 
induction of biosynthesis pathways for five non- or partly-essential amino acids: Ser, Cys, 
Gly, Asp, and Glu. (C) The fraction of these five amino acids (UPR amino acid demand) 
in repressed (red) and induced (blue) proteins according to the polysome-associated RNA 
from Guan et al. (Guan et al., 2017), depicted using a CDF plot. Induced proteins are 
significantly enriched for this 16h UPR amino acid signature, while repressed are 
depleted. KS-test p-values vs. background distribution (all expressed genes, in grey) are 
indicated. 
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Figure S5. UPR amino acid demand for secreted proteins - additional analyses. 
Related to Figure 3. 

(A-B) UPR amino acid demand CDF plots (as in Fig. 3A,C) were repeated after excluding 
the first 30 amino acids for all proteins, the region encoding the signal peptide, 
demonstrate that the same enrichment/depletion trends still hold. (C) Exclusion of mRNAs 
from the UPR-repression or induction gene expression programs (Gonen et al., 2019) did 
not affect the trend of increased amino acid demand of the UPR amino acid signature for 
secreted and extracellular matrix proteins. (D) UPR-induced secreted proteins show more 
significant amino acid demand profile for the UPR amino acid signature than UPR-
repressed secreted proteins. The set of induced and repressed secreted proteins was 
calculated using two cutoffs (indicated in the insets) and the trend holds for both of them. 

  



 

 

Figure S6: The UPR amino acid signature shows higher codon optimality in UPR-induced 
as well as secreted proteins. Related to Figure 4. 

(A-C) As in Fig. 4, tAI distributions for secreted vs. all proteins calculated for all amino 
acids (A), only the amino acids comprising the UPR amino acid signature (B), or only 
amino acids not part of the UPR amino acid signature (C). Protein sequences analyzed 
were excluded for the first 30 amino acids, a region corresponding to the signal peptide. 
(D-F) As in Fig. 4, but tAI distributions are compared between the group of late ER stress-
induced proteins and all proteins. While the overall tAI distribution of late ER stress-
induced proteins is less optimal than the background distribution (all proteins, grey, panel 
D), considering only the UPR amino acid signature abrogates this difference (E), and 
shows a relative enhancement of the codon optimality for this group of proteins. p-values 
for the differenced in the tAI distributions between the two groups and the background 
distributions were calculated using the KS-test, and indicated.  
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Figure S7. UPR amino acid signature is not optimal for the set of induced 
proteins. Related to Figure 3. 

To test the optimality of the UPR amino acid signature set, we compared the difference 
in its median amino acid demand between induced genes and all expressed genes to the 
distribution of differences from all other possible sets of seven non- or partly-essential 
amino acids. The p represents the number of combinations with differences larger than 
that of the UPR amino acid signature. The UPR amino acid signature difference for 
induced mRNAs (A) was at the 63th percentile, and for secreted mRNAs (B) was at the 
70th percentile, suggesting that the UPR amino acid signature is not optimal.    
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Figure S8. Expression changes in the Ser-Gly and Glu-Pro pathways, and in 
mitochondrially encoded genes. Related to Figure 2. 

(A) Log2 fold changes (TPM, Tg/Control) in translation levels of four enzymes that are 
involved in the Serine-Glycine biosynthesis pathway show that all are induced in late ER 
stress. (B) Log2 fold changes (TPM, Tg/Control) in translation levels of three enzymes 
that are involved in the Glutamate to Proline biosynthesis pathway, show that all three 
are induced in late ER stress, whereas the expression of the Proline catabolic enzyme 
ALDH4A1 is reduced. (C) Hierarchical clustering analysis of the ER stress fold changes 
(log2) for the 13 mitochondrially encoded mRNAs. Heatmap depicting hierarchically 
clustered log2 fold changes (TPM, Tg/Control) in translation levels, according to their 
spearman correlation. The elevation actually reflects steady translation levels of 
mitochondrially-encoded mRNAs when considering the overall repression of cytosolic 
translation (see Methods).  
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Figure S9. The UPR amino acid signature of UPR-induced proteins and secreted 
proteins is more optimal after exclusion of Serine and/or Glutamate. Related to 
Figure 3. 

The optimality of the UPR amino acid set (as described in Figure S7), was calculated 
without Serine (A), Glutamate (B), or both Serine and Glutamate (C), with respect to UPR-
induced proteins and secreted proteins. In all cases, the median difference of amino acid 
demand from the background control was in a higher percentile than that of the complete 
set (Figure S7). The p represents the number of combinations with difference larger than 
that of the modified UPR amino acid signature. 

  



Table S1, Related to Figures 2,3: Amino acids whose biosynthesis (blue) and/or tRNA 
synthetases (green) were induced in Gonen et al. (Gonen et al., 2019) and Guan et al. 
(Guan et al., 2017) datasets. The UPR amino acid signature was defined as the set of 
amino acids with both induced biosynthesis and induced tRNA synthetases during ER 
stress in each dataset. 

Amino acid  Biosynthesis up 

Gonen et al. 

tRNA up 

Gonen et al. 

Biosynthesis up  

Guan et al. 

tRNA up  

Guan et al. 

Ser (S) ✓ ✓ ✓ ✓ 

Cys (C) ✓ ✓ ✓ ✓ 

Gly (G) ✓ ✓ ✓ ✓ 

Ala (A) ✓ ✓ ✗ ✓ 

Pro (P) ✓ ✓ ✗ ✓ 

Glu (E) ✓ ✓ ✓ ✓ 

Asp (D) ✓ ✗ ✓ ✓ 

Asn (N) ✓ ✓ ✗ ✓ 

Tyr (Y) ✗ ✓ ✗ ✓ 

Arg (R) ✗ ✗ ✗ ✓ 

 

 

  



Transparent Methods 

Data analysis 

Ribosome footprint profiling data from Gonen et al. (Gonen et al., 2019) (GSE118660) were mapped to the 

mm10 version of the genome using RefSeq CDSs. Transcripts shorter than 100 nucleotides were filtered 

out and 30 nucleotides were clipped from the start and end of each CDS, similar to Ingolia et al. (Ingolia et 

al., 2012). Ribosome footprint sequences were trimmed to a maximal size of 34, and polyA sequences from 

the polyA tailing step were removed, such that footprints of lengths 22-34 were considered. FASTQ files 

were then filtered for rRNAs and tRNAs using STAR (Dobin et al., 2013). Expression levels were 

quantified using RSEM (Li and Dewey, 2011) after mapping to clipped CDSs using Bowtie2 (Langmead 

and Salzberg, 2012), to produce transcript and gene level TPM (Transcript Per Million) values. 

 

Lowly expressed genes with a TPM below 2 across all samples were filtered out and the expression of all 

other genes was thresholded to a TPM of 4.  For each experimental group (WT or PERK -/- MEFs), fold 

changes were calculated as a ratio between each condition and its respective control. Regulated mRNAs 

were designated as mRNAs that changed at least two-fold relative to their designated controls. mRNAs 

were clustered hierarchically based on Spearman’s correlation using the clustergram MATLAB function. 

Cumulative Distribution Function (CDF) plots were used to compare the cumulative distributions of log2 

fold changes in the expression of mRNAs/protein groups of interest to their respective controls, and to 

determine significant shifts in these distributions relative to the overall distribution of log2 fold changes of 

the entire transcriptome (expressed genes, as defined above). The statistical significance of the comparisons 

for different gene groups was calculated using the Kolmogorov-Smirnov (KS) statistical test. 

 

Guan et al. polysome-seq data (Guan et al., 2017) was downloaded from GEO (GSE90070).  RNA-Seq 

reads from polysome-seq were filtered for rRNAs using STAR (Dobin et al., 2013). The remaining reads 

were mapped to mm10 versions of the mouse genome, using STAR (Dobin et al., 2013). Expression levels 

were quantified using RSEM (Li and Dewey, 2011). TPM values were averaged between sample replicates. 

 

Differentially expressed genes 

We applied the R package DSeq2 (Love et al., 2014) to the read-count tables resulting from RSEM, to 

identify genes that were differentially expressed (DEG) between samples (False Discovery Rate  (FDR)-

corrected p-value < 0.1). Specifically, we examined genes that were shown to vary in their responses 



between early (1h and 2h) and late (5h and 8h) ER stress treatments, by grouping the 1h and 2h samples 

into one group, and the 5h and 8h samples into a second group.  

 

Gene groups 

The classification of ER stress gene expression programs: early UPR induction, late UPR induction and 

UPR repression was taken from Gonen et al. (Gonen et al., 2019) (supplementary table S5). Signal peptide 

encoding mRNAs were defined using the signalP program (Nielsen, 2017). Genes related to amino acid 

biosynthesis pathways were defined according to GO:0006520 (cellular amino acid metabolic process). 

Genes related to amino acid transport were defined according to GO:0003333 (amino acid transmembrane 

transport). Genes annotated as extracellular matrix were defined according to GO:0031012. A list of 

secreted mouse proteins was derived from UniProt (www.uniprot.org) by using the query: 

keyword:"Secreted [KW-0964]" AND reviewed:yes AND organism:"Mus musculus (Mouse) [10090]". A 

list of ATF4 target genes was taken from Han et al. (Han et al., 2013), and the significance of the overlap 

between this target set and the late specific ER stress-induced DEG group was calculated using a 

hypergeometric p-value. 

 

Pathway enrichment analyses 

Pathway enrichment was analysed using the DAVID 6.8 functional annotation tool (Jiao et al., 2012), with 

all expressed genes as background. Pathways with FDR corrected p-value <0.05 were designated as 

enriched. Induced and repressed signal peptide-encoding mRNAs were analyzed for pathway enrichment 

against a background of all expressed signal peptide-encoding mRNAs. 

 

Amino acid biosynthesis metabolic map 

We used KEGG Mapper – Search&Color Pathway 

(https://www.genome.jp/kegg/tool/map_pathway2.html) (Kanehisa and Goto, 2000) to examine the 

metabolic map of amino acid biosynthesis. We used the Homo sapience (hsa) database, as it is better 

annotated than the mouse database, with all other default settings. We loaded the list of upregulated late 

specific ER stress DEGs (described above), and these were overlaid on the map in red by the KEGG 

website. 

 



Amino acid demand 

We defined a metric called “amino acid demand” for each protein, which is the fraction of a group of amino 

acids within the sequence of that protein. Protein sequences were taken from mm10 Mus musculus NCBI 

RefSeq gene annotation database, with each gene represented by a single RefSeq protein (NP) and isoform 

(NM) sequences for the amino acid demand analyses and codon optimality analysis (see below). We 

calculated the amino acid demand for the set of amino acids comprising the UPR amino acid signature, in 

each protein sequence in the mouse genome. We further plotted the CDF of this metric in different protein 

groups compared to the background set of all expressed proteins. 

 

tRNA Adaptation Index and codon optimality analysis 

Codon optimality was calculated using the tRNA Adaptation Index (tAI) metric (dos Reis et al., 2003), 

which takes into account the tRNA copy number and the wobble interaction for each codon. We calculated 

tAI as in (dos Reis et al., 2003). Briefly, for each codon i, the number of tRNA genes in the mouse genome 

of each of the codon's anticodons (tGCNij) was extracted from the GtRNAdb database (Chan and Lowe, 

2016). First, a Wi coefficient was calculated for each codon i as appears below. Every anticodon was 

assigned a coefficient; sij = 0 for perfectly matching codon-anticodon pairs, and sij = 0.5 for the codons with 

mismatch of the anticodon at the wobble position, according to the wobble rules.  

     𝑊" = 	∑ &1 − 𝑠"*+𝑡𝐺𝐶𝑁"*0
*12  

Then, Wi values were normalized by dividing all Wi values by the maximal Wi value to generate wi values. 

Codons with a wi of zero were assigned the minimal wi score. The tRNA Adaptation Index of each coding 

sequence was then calculated as a geometric mean of all tAI values of all the codons in the sequence (of 

length L), excluding the start and stop codons. 

     𝑡𝐴𝐼 = 	 &∏ 𝑤78
712 +2/8  

To calculate the geometric mean for the tRNA Adaptation Index for a subset of amino acids, such as the 

UPR amino acid signature, only codons of the amino acids belonging to the subset were taken into account, 

both for protein groups of interest and for the background set of proteins. 

 

Analysis of the optimality of the amino acid signature  



To investigate the optimality of the UPR amino acid signature, comprising K amino acids, we compared 

the difference in median amino acid demand between UPR-induced proteins or secreted proteins, and all 

expressed mRNAs, to the distribution of these median differences according to all other possible sets of K 

non- or partly-essential amino acids (Fig. S7 and S9).  

 

Mitochondrial translation  

All 13 mitochondrially-encoded mRNAs showed highly increased levels following 1h of ER stress, and 

relative relaxation at subsequent timepoints (Fig. S8C). However, this seeming induction actually indicates 

the maintenance of non-repressed mitochondrial translation, upon overall cytoplasmic translation 

repression. Since overall cytosolic translation is inhibited during ER stress, with the highest degree of 

inhibition occurring at 1h (Gonen et al., 2019), the number of overall translating cytosolic ribosomes is 

reduced. Thus, the proportion of non-repressed mitochondrially-translated mRNAs would be higher at the 

earlier timepoints. A similar trend was demonstrated previously in other translation inhibition conditions 

(Iwasaki et al., 2016). 
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