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MRI Cross-Modality Image-to-
Image Translation
Qianye Yang1,5, Nannan Li1,4,5, Zixu Zhao1,5, Xingyu Fan2,5, Eric I-Chao Chang3 & Yan Xu1,3*

We present a cross-modality generation framework that learns to generate translated modalities 
from given modalities in MR images. Our proposed method performs Image Modality Translation 
(abbreviated as IMT) by means of a deep learning model that leverages conditional generative 
adversarial networks (cGANs). Our framework jointly exploits the low-level features (pixel-wise 
information) and high-level representations (e.g. brain tumors, brain structure like gray matter, 
etc.) between cross modalities which are important for resolving the challenging complexity in brain 
structures. Our framework can serve as an auxiliary method in medical use and has great application 
potential. Based on our proposed framework, we first propose a method for cross-modality registration 
by fusing the deformation fields to adopt the cross-modality information from translated modalities. 
Second, we propose an approach for MRI segmentation, translated multichannel segmentation (TMS), 
where given modalities, along with translated modalities, are segmented by fully convolutional 
networks (FCN) in a multichannel manner. Both of these two methods successfully adopt the cross-
modality information to improve the performance without adding any extra data. Experiments 
demonstrate that our proposed framework advances the state-of-the-art on five brain MRI datasets. 
We also observe encouraging results in cross-modality registration and segmentation on some widely 
adopted brain datasets. Overall, our work can serve as an auxiliary method in medical use and be 
applied to various tasks in medical fields.

Magnetic Resonance Imaging (MRI) has become prominent among various medical imaging techniques due 
to its safety and information abundance. They are broadly applied to clinical treatment for diagnostic and ther-
apeutic purposes. There are different modalities in MR images, each of which captures certain characteristics of 
the underlying anatomy. All these modalities differ in contrast and function. Three modalities of MR images are 
commonly referenced for clinical diagnosis: T1 (spin-lattice relaxation), T2 (spin-spin relaxation), and T2-Flair 
(fluid attenuation inversion recovery)1. T1 images are favorable for observing structures, e.g. gray matter and 
white matter in the brain; T2 images are utilized for locating tumors; T2-Flair images present the location of 
lesions with water suppression. Each modality provides a unique view of intrinsic MR parameters. Examples of 
these three modalities are shown in Fig. 1. Taking full consideration of all these modalities is conducive to MR 
image analysis and diagnosis.

However, the existence of complete multi-modality MR images is limited by the following factors: (1) There is 
a certain probability of failure during the scanning process. (2) Motion artifacts are produced along with MR 
images. These artifacts are attributed to the difficulty of staying still for patients during scanning (e.g. pediatric 
population2), or motion-sensitive applications such as diffusion imaging3. (3) The mapping from one modality to 
another is hard to learn. Each of modality captures different characteristics of the underlying anatomy, and the 
relationship between any two modalities is highly non-linear. Owing to differences in the image characteristics 
across modalities, existing approaches cannot achieve satisfactory results for cross-modality synthesis as men-
tioned in4. For example, when dealing with the paired MRI data, the regression-based approach5 even lose some 
information of brain structures. Synthesizing a translated modality from a given modality without real acquisi-
tions, also known as cross-modality generation, is a nontrivial problem worth of studying. Take the transition 
from T1 (given modality) to T2 (target modality) as an example, T2  (translated modality) can be generated 
through a cross-modality generation framework. In this paper,  ̂denotes translated modalities. Cross-modality 
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generation tasks refer to transitions such as from T1 to T2, from T1 to T2-Flair, from T2 to T2-Flair, and vice 
versa.

Recently, image-to-image translation networks have provided a generic solution for image prediction prob-
lems in natural scenes, like mapping images to edges6,7, segments8, semantic labels9 (many to one), and mapping 
labels to realistic images10 (one to many). It requires an automatic learning process for loss functions to make the 
output indistinguishable from reality. The recently proposed Generative Adversarial Network (GAN)11–14 makes 
it possible to learn the distribution of the input data and be applied to multiple translation tasks. Isola et al.13 
demonstrate that the conditional GAN (cGAN) is suitable for image-to-image translation tasks.

Previous work on image-to-image translation networks focuses on natural scenes13,15–17. Motivated by13, we 
introduce Image Modality Translation networks (IMT) to brain MRI cross-modality generation (see Fig. 2). 
Unlike some classic regression-based approaches that leverage an L1 loss to capture the low-level information, we 
adopt cGANs to capture high-level information and an L1 loss to ensure low-level information at the same time, 
which allows us to recover more details from the given modality and reduce the noise generated along with the 
translated modality.

In this paper, we mainly focus on developing a cross-modality generation framework which provides us 
with novel approaches of cross-modality registration and segmentation. Our proposed cross-modality gener-
ation framework has great application potential, such as multimodal registration18, segmentation19, and virtual 
enhancement4. Among all these applications, we choose cross-modality registration and segmentation as two 
examples to illustrate the effectiveness of our cross-modality generation framework.

The first application of our proposed framework is cross-modality image registration which is necessary for 
medical image processing and analysis. With regard to brain registration, accurate alignment of the brain struc-
tures such as hippocampus, gray matter, and white matter are crucial for monitoring brain disease like Alzheimer 
Disease (AD). The accurate delineation of brain structures in MR images can provide neuroscientists with volu-
metric and structural information on the structures, which has been already achieved by existing atlas-based reg-
istrations18,20. However, few of them adopt the cross-modality information from multiple modalities, especially 
from translated modalities.

Here, we propose a new method for cross-modality registration by adopting cross-modality information from 
our translated modalities. The flowchart is illustrated in Fig. 3. In our method, inputting a given-modality image 
(e.g. T2 image) to our proposed framework yields a translated modality (e.g. T1  image). Both two modalities 
compose our fixed images space (T2 and T1 images). The moving images including T2 and T1 images are then 
registered to the identical modality in the fixed images space with a registration algorithm. Specifically, T2 (mov-
ing) is registered to T2 (fixed), T1 (moving) is registered to T1 (fixed). The deformation generated in the registra-
tion process are finally combined in a weighted fusion process and then propagate the moving images labels to the 
fixed images space. It is feasible since the introduction of translated modality provides us with richer anatomical 
information in comparison with only one modality is given, leading to more precise registration results. Our 
method is applicable to dealing with cross-modality registration problems by making the most of cross-modality 
information without adding any extra data at the same time.

Figure 1.  Examples of three different modalities: (a) T1, (b) T2, and (c) T2-Flair.

Figure 2.  Overview of our IMT network. It learns to generate translated modality images (T2) from given 
modality images (T1). The red box indicates our translated images.
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The second application of our proposed framework is brain segmentation for MRI data. However, it is a 
difficult task owing to the artifacts and in-homogeneities introduced during the real image acquisition21,22. To 
this point, we propose a novel approach for brain segmentation, called translated multichannel segmentation 
(TMS). In TMS, the translated modality and its corresponding given modality are fed into fully convolutional 
networks (FCN)9 for brain segmentation. Here, we fine tune Imagenet-FCN model using our MRI images. (Other 
well-performing segmentation models such as U-Net and dilated CNNs might as well be selected.) Thus we follow 
its original three-channel network, inputting one translated modality and two given modality images to serve as 
three channels. TMS is an effective method for brain segmentation by adding cross-modality information from 
translated modalities since different MRI modalities have unique tissue contrast profiles and therefore provide 
complementary information that could be of use to the segmentation process. For instance, TMS can improve 
tumor segmentation performance by adding cross-modality information from translated T2 modality into orig-
inal T1 modality.

Contributions: (1) We introduce the end-to-end Image Modality Translation (IMT) network for 
cross-modality MRI generation to synthesize translated modalities from given modalities. A comprehensive 
comparison is provided with five datasets representing real-world clinical applications, each has its unique char-
acteristics in data size, patient cohort and disease status.The results show that our IMT framework can cope with 
a variety of brain MRI modality translation tasks using the same objective and architecture.

(2) Registration: We proposed a registration method which is able to leverage our IMT framework to augment 
the fixed images space with translated modalities for atlas-based registration. Registering moving images to fixed 
images and weighted fusion process enable us to make the most of cross-modality information without adding 
any extra data.

(3) Segmentation: Our proposed approach, translated multichannel segmentation (TMS), performs 
cross-modality image segmentation by means of FCNs. We input two identical given modalities and one corre-
sponding translated modality into separate channels, which allows us to adopt and fuse cross-modality informa-
tion and improve the segmentation performance without using any extra data.

Related Work
In this section, we mainly focus on methods related to cross-modality image generation, its corresponding regis-
tration and segmentation.

Image generation.  Related work on image generation can be broadly divided into three categories: 
cross-modality synthesis, GANs in natural scenes, and GANs in medical images.

Cross-modality synthesis.  In order to synthesize one modality from another, a rich body of algorithms have 
been proposed using non-parametric methods like nearest neighbor (NN) search23, random forests5, coupled 
dictionary learning18, and convolutional neural network (CNN)24, etc. They can be broadly categorized into two 
classes: (1) Traditional methods. One of the classical approaches is an atlas-based method proposed by Miller 
et al.25. The atlas contains pairs of images with different tissue contrasts co-registered and sampled on the same 
voxel locations in space. An example-based approach is proposed to pick several NNs with similar properties 
from low-resolution images to generate high-resolution brain MR images using a Markov random field26. In5, 

Figure 3.  Overview of our approach for cross-modality registration. Inputting a given-modality image (T2) to 
IMT framework yields a translated modality (T1 ). Then T2 (moving) is registered to T2 (fixed), T1 (moving) is 
registered to T1  (fixed). The deformation generated in the registration process are finally combined in a 
weighted fusion process, obtaining our final registration result. The red box indicates our translated images.
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a regression-based approach is presented where a regression forest is trained using paired data from a given 
modality to a target modality. Later, the regression forest is utilized to regress target-modality patches from given 
modality patches. (2) Deep learning based methods. Nguyen et al.24 present a location-sensitive deep network 
(LSDN) to incorporate spatial location and image intensity feature in a principled manner for cross-modality gen-
eration. Vemulapalli et al.4 propose a general unsupervised cross-modal medical image synthesis approach that 
works without paired training data. Huang et al.27 attempt to jointly solve the super-resolution and cross-modality 
generation problems in 3D medical imaging using weakly-supervised joint convolutional sparse coding.

Our image generation task is essentially similar to these issues. We mainly focus on developing a novel and 
simple framework for cross-modality image generation and we choose paired MRI data as our case rather than 
unpaired data to improve the performance. To this point, we try to develop a 2D framework for cross-modality 
generation tasks according to 2D MRI principle. The deep learning based methods4,27 are not perfectly suitable 
for our case on the premise of our paired data and MRI principle. We thus select the regression-based approach5 
as our baseline.

GANs in natural scenes.  Recently, a Generative Adversarial Network (GAN) has been proposed by Goodfellow 
et al.11. They adopt the concept of a min-max optimization game and provide a thread to image generation in 
unsupervised representation learning settings. To conquer the immanent hardness of convergence, Radford et 
al.28 present a deep convolutional Generative Adversarial Network (DCGAN). However, there is no control of 
image synthesis owing to the unsupervised nature of unconditional GANs. Mirza et al.29 incorporate additional 
information to guide the process of image synthesis. It shows great stability refinement of the model and descrip-
tive ability augmentation of the generator. Various GAN-family applications have come out along with the devel-
opment of GANs, such as image inpainting12, image prediction13, text-to-image translation14 and so on. Whereas, 
all of these models are designed separately for specific applications due to their intrinsic disparities. To this point, 
Isola et al.13 present a generalized solution to image-to-image translations in natural scenes. Our cross-modality 
image generation is inspired by13 but we focus on medical images generation as opposed to natural scenes.

GANs in medical images.  Except of the success of existing approaches in natural scenes, there are several appli-
cations of GANs to medical images as well. Nie et al.30 estimate CT images from MR images with a Context-Aware 
GAN model. Wolterink et al.31 demonstrate that GANs are applicable to transforming low-dose CT into 
routine-dose CT images. However, all these methods are designed for specific rather than general applications. 
Loss functions need to be modified when it comes to multi-modality transitions. Thus, a general-purpose strategy 
for medical modality transitions is of great significance. Fortunately, this is achieved by our cross-modality image 
generation framework. The previous version of our manuscript is uploaded to Arxiv in early 2018.

Image registration.  A successful image registration application requires several components that are cor-
rectly combined, like the cost function and transformation model. The cost function, also called similarity met-
rics, measures how well two images are matched after transformation. It is selected with regards to the types of 
objects to be registered. As for cross-modality registration, commonly adopted cost functions are mutual infor-
mation (MI)32 and cross-correlation (CC)33. Transformation models are determined according to the complexity 
of deformations that need to be recovered. Some common parametric transformation models (such as rigid, 
affine, and B-Splines transformation) are enough to recover the underlying deformations34.

Several image registration toolkits such as ANTs35 and Elastix36 have been developed to facilitate research 
reproduction. These toolkits have effectively combined commonly adopted cost functions and parametric trans-
formation models. They can estimate the optimal transformation parameters or deformation fields based on an 
iterative framework. In this work, we choose ANTs and Elastix to realize our cross-modality registration. More 
registration algorithms can be applied to our method.

Image segmentation.  A rich body of image segmentation algorithms exists in computer vision8,9,37,38. We 
discuss two that are closely related to our work.

The Fully Convolutional Network (FCN) proposed by Long et al.9 is a semantic segmentation algorithm. It is 
an end-to-end and pixel-to-pixel learning system which can predict dense outputs from arbitrary-sized inputs. 
Inspired by9, TMS adopts similar FCN architectures but focuses on fusing information of different modalities in 
a multichannel manner.

Xu et al.8 propose an algorithm for gland instance segmentation, which adopts the idea of multichannel learn-
ing. The proposed algorithm exploits features of edge, region, and location in a multichannel manner to generate 
instance segmentation. By contrast, TMS leverages features in translated modalities to refine the segmentation 
performance of given modalities.

Methods
In this section, we mainly learn an end-to-end mapping from given-modality images to target-modality images. 
We introduce Image Modality Translation (IMT) networks to cross-modality generation. Here, cGANs are used 
to realize IMT networks. The flowchart of our algorithm is illustrated in Fig. 4.

Training.  We denote our training set as S = {(xi, yi), i = 1, 2, 3, …, n}, where xi refers to the ith input 
given-modality image, and yi indicates the corresponding target-modality image. We subsequently drop the sub-
script i for simplicity, since we consider each image holistically and independently. Our goal is to learn a mapping 
from given-modality images x X{ }i i

n
1 ∈=  to target-modality images y Y{ }i i

n
1 ∈= . Thus, given an input image x and 

a random noise vector z, our method can synthesize the corresponding translated-modality image y. Take the 
transition from T1 to T2 as an instance. Similar to a two-player min-max game, the training procedure of GAN 
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mainly involves two aspects: On one hand, given an input image T1 (x), generator G produces a realistic image T2 
(ŷ) towards the real data T2 (y) in order to puzzle discriminator D. On the other hand, D evolves to distinguish 
synthesized images T2 (ŷ) generated by G from the real data T2 (y). The overall objective function is defined: 



L ~

~

= +

−

G D D x y

D x G x z

( , ) [log ( , )]

[log(1 ( , ( , ))], (1)

cGAN x y p x y

x p x zp z

, ( , )

( ), ( )

data

data z

where pdata(x) and pdata(z) refer to the distributions over data x and z, respectively. G is not only required to output 
realistic images to fool D, but also to produce high-quality images close to the real data. Existing algorithms12 have 
found it favorable to combine traditional regularization terms with the objective function in GAN. An L1 loss, 
as described in13,39, usually guarantees the correctness of low-level features and encourages less blurring than an 
L2 loss. Thus, an L1 loss term is adopted into the objective function in our method. The L1 loss term is defined 
as follows: 

L = − . ~ ~G y G x z( ) [ ( , ) ] (2)L x y p x y z p z1 , ( , ), ( ) 1data z

 The overall objective function is then updated to: 

λ= +G D G( , ) ( ), (3)cGAN L1L L L

where λ is a hyper-parameter specified manually to balance the adversarial loss and L1 loss. The appropriate 
weight of λ is based on the cross-validation of training data. A value of 100 is eventually selected for λ.

Following13, the optimization is an iterative training process with two steps: (1) fix parameters of G and opti-
mize D; (2) fix parameters of D and optimize G. The overall objective function can be formulated as follows: 

λ= + .L LG arg G D G* min max ( , ) ( ) (4)G D cGAN L1

Here, the introduction of z enables it to match any distribution rather than just a delta function. As40 described, 
dropout can also be interpreted as a way of regularizing a neural network by adding noise to its hidden units. Thus 
we replace the noise vector z with several dropout layers in G to achieve the same effect.

In addition, we also explore the effectiveness of each component in our objective function. Generators with 
different loss functions are defined as follows: cGAN: Generator G together with an adversarial discriminator 
conditioned on the input; L1: Generator G with an L1 loss. It is essentially equivalent to a traditional CNN archi-
tecture with least absolute deviation; cGAN + L1: Generator G with both an L1 loss term and an adversarial 
discriminator conditioned on the input.

Network architecture.  Our cross-modality generation framework is composed of two main submodels, 
generator (G) and discriminator (D). It is similar to traditional GANs11.

Generator.  Although appearances of input and output images are different, their underlying structures are the 
same. Shared information (e.g. identical structures) needs to be transformed in the generative network. In this 
case, encoder-decoder networks with an equal number of down-sampling layers and up-sampling layers are pro-
posed as one effective generative network12,41–44. However, it is a time-consuming process when all mutual infor-
mation between input and output images (such as structures, edges and so on) flows through the entire network 
layer by layer. Besides, the network efficiency is limited due to the presence of a bottleneck layer which restricts 
information flow. Thus, skip connections are added between mirrored layers in the encoder-decoder network, 

Figure 4.  Overview of our end-to-end IMT network for cross-modality generation. Notice that our training set 
is denoted as S = {(xi, yi), i = 1, 2, 3, …, n}, where xi and yi refer to the ith input given-modality image and its 
corresponding target-modality image. The training process involves two aspects. On the one hand, given an 
input image xi and a random noise vector z, generator G aims to produce indistinguishable images ŷi from the 
real images yi. On the other hand, discriminator D evolves to distinguish between translated-modality images iŷ  
generated by G and the real images yi. The output of D is 0 or 1, where 0 represents synthesized images and 1 
represents the real data. In the generation process, translated-modality images can be synthesized through the 
optimized G.
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following the "U-Net” shape in45. These connections speed up information transmission since the bottleneck layer 
is ignored, and help to learn matching features for corresponding mirrored layers.

The architecture of G has 8 convolutional layers, each of which contains a convolution, a Batch Normalization, 
and a leaky ReLu activation46 (a slope of 0.2) with numbers of filters at 64, 128, 256, 512, 512, 512, 512, and 
512 respectively. Following them are 8 deconvolutional stages, each of which includes a deconvolution, a Batch 
Normalization, and an unleaky ReLu46 (a slope of 0.2) with numbers of filters at 512, 1024, 1024, 1024, 1024, 512, 
256, and 128 respectively. It ends with a tanh activation function.

Discriminator.  GANs can generate images that are not only visually realistic but also quantitatively compara-
ble to the real images. Therefore, an adversarial discriminator architecture is employed to confine the learning 
process of G. D identifies those generated outputs of G as false (label 0) and the real data as true (label 1), then 
providing feedback to G. PixelGANs13 have poor performance on spatial sharpness, and ImageGANs13 with many 
parameters are hard to train. In contrast, PatchGANs13 enable sharp outputs with fewer parameters and less run-
ning time since PatchGANs have no constraints on the size of each patch. We thus adopt a PatchGAN classifier 
as our discriminator architecture. Unlike previous formulations47,48 that regard the output space as unstructured, 
our discriminator penalizes structures at the scale of image patches. In this way, high-level information can be 
captured under the restriction of D, and low-level information can be ensured by an L1 term.

The architecture of D contains four stages of convolution-BatchNorm-ReLu with the kernel size of (4,4). The 
numbers of filters are 64, 128, 256, and 512 for convolutional layers. Lastly, a sigmoid function is used to output 
the confidence probability that the input data comes from real MR images rather than generated images.

Application
In this section, we choose cross-modality registration and segmentation from multiple applications as two exam-
ples to verify the effectiveness of our proposed framework. Details of our approaches and algorithms are dis-
cussed in the following subsections.

Cross-modality registration.  The first application of our cross-modality generation framework is to use 
the translated modality for cross-modality image registration. Our method is inspired by an atlas-based registra-
tion, where the moving image is registered to the fixed image with a non-linear registration algorithm. Images 
after registration are called the warped images. Our method contains four steps: (1) We first build our fixed 
images space with only one modality images being given. We use T1 and T2 images as one example to illustrate 
our method. Given T2 images, our fixed images space can consist of T2 and T1  images by using our cross-modality 
generation framework. The moving images space commonly consists of both T2 and T1 images from n subjects. 
(2) The second step is to register the moving images to the fixed images, constructing n corresponding atlases. 
Since multiple atlases encompass richer anatomical variability than a single atlas, we used multi-atlas-based 
rather than single-atlas-based registration approach. For any fixed subject, we register all n moving images to the 
fixed images and the deformation field that aligns the moving image with the fixed image can be automatically 
computed with a registration algorithm. As illustrated in Fig. 3, T2 images from the moving images space are 
registered to T2 images from the fixed images space and T1 images from the moving images space are registered 
to T1 images from the fixed images space. (3) The deformations generated in (2) are combined in a weighted 
fusion process, where the cross-modality information can be adopted. We fuse the deformations generated from 
T2 registrations with deformations generated from T1  registrations (see Fig. 3). (4) Applying the deformations to 
the atlas segmentation labels can yield n registered segmentation labels of fixed images. For any fixed subject, we 
obtain the final registration results by averaging the n registered labels of the fixed subject.

Among multiple registration algorithms, we select ANTs35 and Elastix36 to realize our method. Three stages of 
cross-modality registration are adopted via ANTs. The first two stages are modeled by rigid and affine transforms 
with mutual information. In the last stage, we use SyN with local cross-correlation, which is demonstrated to 
work well with cross-modality scenarios without normalizing the intensities49. For Elastix, affine and B-splines 
transforms are used to model the nonlinear deformations of the atlases. Mutual information is adopted as the 
cost function.

Cross-modality segmentation.  We propose a new approach for MR image segmentation based on 
cross-modality images, namely translated multichannel segmentation (TMS). The main focus of TMS is the 
introduction of the translated-modality images obtained in our proposed framework, which enriches the 
cross-modality information without any extra data. TMS inputs two identical given-modality images and one 
corresponding translated-modality image into three separate channels which are conventionally used for RGB 
images. Three input images are then fed into FCN networks for improving segmentation results of given-modality 
images. Here, we employ the standard FCN-8s9 as the CNN architecture of our segmentation framework because 
it can fuse multi-level information by combining feature maps of the final layer and last two pooling layers. Fig. 5 
depicts the flowchart of our segmentation approach.

We denote our training dataset as = = …ŷS x l i n{( , , ), 1, 2, 3, , }i i i , where xi refers to the ith given-modality 
image, iŷ  indicates the ith corresponding translated-modality image obtained in our proposed framework, and li 
represents the corresponding segmentation label. We denote the parameters of the FCN architecture as θ and the 
model is trained to seek optimal parameters θ*. During testing, given an input image x, the segmentation output 
l  is defined as below: 

θ θ= =∗ ∗
P l k x s h x( ; ) ( ( , )), (5)k
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where k denotes the total number of classes, h(⋅) denotes the feature map of the hidden layer, s(⋅) refers to the 
softmax function and sk indicates the output of the kth class.

Experiments
In this section, we demonstrate the generalizability of our framework for MR image generation and apply it 
to cross-modality registration and segmentation. We first conduct a large number of experiments on five pub-
licly available datasets for MR image generation (BraTs2015, Iseg2017, MRBrain13, ADNI, RIRE). Then we 
choose Iseg2017 and MRBrain13 for cross-modality registration. We finally choose BraTs2015 and Iseg2017 for 
cross-modality segmentation. Among these five MRI datasets, the BraTs2015, Iseg2017, and MRBrain13 datasets 
provide ground truth segmentation labels.

Implementation details.  All our models are trained on NVIDIA Tesla K80 GPUs. Our code will be publicly 
released upon acceptance.

Generation.  We train the models on a torch7 framework50 using Adam optimizer51 with a momentum term 
β1 = 0.5. The learning rate is set to 0.0002. The batchsize is set to 1 because our approach can be regarded 
as “instance normalization” when batchsize = 1 due to the use of batch normalization. As demonstrated in52, 
instance normalization is effective at generation tasks by removing instance-specific information from the content 
image. Other parameters follow the reference13. All experiments use 70 × 70 PatchGANs.

Registration.  A Windows release 2.1.0 version of ANTs35 is used in our experiments. As for the Elastix36, 
a Windows 64 bit release 4.8 version is adopted. All the registration experiments are run in a Microsoft 
High-Performance Computing cluster with 2 Quad-core Xeon 2.43 GHz CPU for each compute node. We choose 
the parameters by cross-validation. For ANTs, we use the parameters in53. For Elastix, we adopt the parameters 
in54.

Segmentation.  We implement standard FCN-8s on the MXNET toolbox55. A pre-trained VGG-16 model, a 
trained FCN-32s model, and a trained FCN-16s model are used for initialization of FCN-32s, FCN-16s, and 
FCN-8s respectively. The learning rate is set to 0.0001, with a momentum of 0.99 and a weight decay of 0.0005. 
Other parameters are set to the defaults in9.

Cross-modality generation.  Evaluation metrics.  We report results on mean absolute error (MAE), peak 
signal-to-noise ratio (PSNR), mutual information (MI), Structural Similarity Index (SSIM) and FCN-score.

We follow the definition of MAE in56: 
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where target-modality image y and translated-modality image ŷ both have a size of m × n pixels, and (i, j) indi-
cates the location of pixels.

PSNR57 is defined as below: 

PSNR MAX
MSE

10log 10 , (7)

2
=

 where MAX is the maximum pixel value of two images and MSE is the mean square error between two images.
MI is used as a cross-modality similarity measure58. It is robust to variations in modalities and calculated as: 
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Figure 5.  Flowchart of our approach for cross-modality segmentation. First, we input a given-modality image 
to our IMT network to generate a translated-modality image. For instance, given a T1 image, T2 images can be 
generated with our method. Second, two identical given-modality images and one corresponding translated-
modality image are fed to channels 1, 2, and 3 and segmented by FCN networks. Under the standard FCN-32s, 
standard FCN-16s, and standard FCN-8s settings, we output our segmentation results. The red box indicates 
our translated images.
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where m, n are the intensities in target-modality image y and translated-modality image ŷ respectively. p(m, n) is 
the joint probability density of y and ŷ, while p(m) and p(n) are marginal densities.

SSIM59 is defined as follows: 

μ μ σ

μ μ σ σ
=

+ +

+ + + +
SSIM x y

c c

c c
( , )

(2 )(2 )

( )( )
,

(9)

x y xy
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2 2
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2 2

2

where μx and μy denote the mean values of original and distorted images. σx and σy denote the standard deviation 
of original and distorted images, and σxy is the covariance of both images.

FCN-score is used to capture the joint statistics of data and evaluate synthesized images across the board. It 
includes accuracy and Dice. On one hand, accuracy consists of the mean accuracy of all pixels (denoted as "all” 
in the tables) and per-class accuracy (such as mean accuracy of tumors, gray matter, white matter, etc.). On the 
other hand, the Dice is defined as follows: (2∣H ∩ G∣)/(∣H∣ + ∣G∣) where G is the ground truth map and H is the 
prediction map.

Here, we follow the definitions of FCN-score in13 and adopt a pre-trained FCN to evaluate our experiment 
results. The semantic segmentation task in essence is to label each pixel with its enclosing object or region class. 
Pre-trained semantic classifiers are used to measure the discriminability of the synthesized images as a 
fake-metric. If synthesized images are plausible, classifiers pre-trained on real images would classify synthesized 
images correctly as well. Take the transition from T1 to T2 for instance. T2 images (training data) are utilized to 
fine tune an FCN-8s model. Both T2 (test data/real data) and T2  (synthesized data) images are subsequently seg-
mented through the well-trained model. We score the segmentation (classification) accuracy of synthesized 
images against the real images. The gap of FCN-score between T2 images and T2 images quantitatively evaluates 
the quality of T2  images.

Datasets.  The data preprocessing mainly contains three steps. (1) Label Generation: Labels of necrosis, edema, 
non-enhancing tumor, and enhancing tumor are merged into one label, collectively referred to as tumors. Labels 
of Grey Matter (gm) and White Matter (wm) remain the same. Thus, three types of labels are used for training: 
tumors, gm, and wm. (2) Dimension Reduction: We slice the original volumetric MRI data along the z-axis 
because our network currently only supports 2D input images. For example, the 3D data from BraTs2015 data-
sets, with a size of 240 × 240 × 155 voxels (respectively representing the pixels of x-, y-, z-direction), is sliced to 
2D data (155 × 220, 155 slices and 220 subjects). (3) Image Resizing and Scaling: All 2D images are then resized 
to a resolution of 256 × 256 pixels, after which we generate the 2D input images. Then the input images are 
scaled to [0.0, 1.0] and normalized with mean value of 0.5 and standard deviation of 0.5. So, all the input data are 
normalized in range [−1.0, 1.0]. Note that different modalities of the same subject from five brain MRI datasets 
that we choose are almost voxel-wise spatially aligned. We do not choose to coregister the data in our datasets 
since this is beyond the scope of our discussion. We respectively illustrate five publicly available datasets used for 
cross-modality MRI generation.

(1)BraTs2015: The BraTs2015 dataset60 contains multi-contrast MR images from 220 subjects with high-grade 
glioma, including T1, T2, T2-Flair images and corresponding labels of tumors. We randomly select 176 subjects 
for training and the rest for testing. 1924 training images are trained for 600 epochs with batch size 1. 451 images 
are used for testing.

(2)Iseg2017: The Iseg2017 dataset61 contains multi-contrast MR images from 23 infants, including T1, T2 
images and corresponding labels of Grey Matter (gm) and White Matter (wm). We randomly select 18 subjects 
for training and remaining 5 subjects for testing. 661 training images are trained for 800 epochs with batch size 1. 
163 images from the 5 subjects are used for testing.

(3)MRBrain13: The MRBrain13 dataset62 contains multi-contrast MR images from 20 subjects, including T1 
and T2-Flair images. We randomly choose 16 subjects for training and the remaining 4 for testing. 704 training 
images are trained for 1200 epochs with batch size 1. 176 images are used for testing.

(4)ADNI: The ADNI dataset30 contains T2 and PD images (proton density images, tissues with a higher con-
centration or density of protons produce the strongest signals and appear the brightest on the image) from 50 
subjects. 40 subjects are randomly selected for training and the remaining 10 for testing. 1795 training images are 
trained for 400 epochs with batch size 1. 455 images are used for testing.

(5)RIRE: The RIRE dataset63 includes T1 and T2 images collected from 19 subjects. We randomly choose 16 
subjects as for training and the rest for testing. 477 training images are trained for 800 epochs with batch size 1. 
156 images are used for testing.

In this study, we have adopted datasets which represent typical training data sizes in medical imaging prob-
lems. For example, the RIRE and MRBrain13 datasets. Whether these datasets are sufficient remains an open 
question. In theory, the more training data, the better performance. However, being sufficient is usually an 
application-dependent measure. The generator in our framework used a modified U-Net architecture. In the 
original U-Net paper45, it was trained on ISBI cell tracking challenge datasets of “PhC-U373” and “DIC-HeLa”, 
which contain 35 and 20 images separately for training with partial annotation. This means that although the size 
of training set might not enough for the network to reach the best performance, it is still possible for it to learn 
useful features, satisfying application needs. For testing purposes, on one hand, compare to the image translation 
experiment13 using CMP Facades dataset (train images: 400, test images: 100) and the ADNI dataset for MRI 
to CT translation (train + test subjects: 16) in30, all of the datasets used in our paper contain more images than 
those. On the other hand, we included p-values of the t-test to show the statistical significance for the experiments 
of image generation and registration. These indicate that the test data size is sufficient to support the conclusions 
in this study.
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Cross-modality registration.  Evaluation metric.  We use the two evaluation metrics for cross-modality 
registration, namely Dice and Distance Between Corresponding Landmarks (Dist).

(1)Dice: The first metric is introduced to measure the overlap of ground truth segmentation labels and regis-
tered segmentation labels. It is defined as (2∣H ∩ G∣)/(∣H∣ + ∣G∣) where G is the ground truth segmentation label 
of the fixed image and H is the registered segmentation label of the fixed image. Since image registration involves 
identification of a transformation to fit a fixed image to a moving image. The success of the registration process is 
vital for correct interpretation of many medical image-processing applications, including multi-atlas segmenta-
tion. A higher Dice, which measures the overlap of propagated segmentation labels through deformation and the 
ground truth labels, indicates a more accurate registration.

(2)Distance Between Corresponding Landmarks (Dist): The second metric is adopted to measure the capacity 
of algorithms to register the brain structures. The registration error on a pair of images is defined as the average 
Euclidean distance between a landmark in the warped image and its corresponding landmark in the fixed image. 
To compute the Euclidean distance, all 2D-slices after registration are stacked into 3D images.

Dataset.  We preprocess the original MRI data from Iseg2017 and MRBrain13 datasets. We didn’t change the size 
of the images from the MRBrain13 dataset. The preprocessing is only to slice the 3D images from all the subjects 
into 2D images along the z-axis. The Iseg2017 dataset contains MR images of infant brains have much smaller 
fields-of-view, it was preprocessed with the following steps for considerations in computational efficiency. (1) We 
first crop the 3D image into a smaller cube, each side of which circumscribes the brain. (2) The brain cubes are 

Figure 6.  Illustration of the seven landmarks selected for cross-modality registration. L1: right lateral ventricle 
superior, L2: left lateral ventricle superior, L3: right lateral ventricle inferior, L4: left lateral ventricle inferior. L5: 
middle of the lateral ventricle, L6: right lateral ventricle posterior, L7: left lateral ventricle posterior.

Datasets Transitions

RF CA-GAN

IMT

cGAN + L1 cGAN L1

MAE ↓
PSNR 
↑ MI ↑

SSIM 
↑

MAE 
↓

PSNR 
↑ MI ↑

SSIM 
↑

MAE 
↓

PSNR 
↑ MI ↑

SSIM 
↑ MAE ↓

PSNR 
↑ MI ↑

SSIM 
↑

MAE 
↓

PSNR 
↑ MI ↑

SSIM 
↑

BraTs2015

T1  →  T2 6.025 24.717 0.617 0.910 11.947 19.738 0.787 0.826 8.292 22.560 0.862 0.866 10.692 20.301 0.788 0.575 8.654 22.517 0.901 0.880

T2  →  T1 7.921 23.385 0.589 0.893 16.587 17.462 0.661 0.723 9.937 22.518 0.777 0.854 15.430 18.507 0.673 0.723 10.457 22.374 0.818 0.896

T1  →  T2-Flair 8.176 23.222 0.609 0.873 13.999 19.157 0.722 0.756 7.934 22.687 0.833 0.837 11.671 19.969 0.749 0.797 8.462 22.642 0.879 0.857

T2  →  T2-Flair 7.318 23.138 0.610 0.875 12.658 18.848 0.756 0.749 8.858 21.664 0.848 0.836 10.469 20.656 0.817 0.823 8.950 21.791 0.928 0.860

Iseg2017
T1  →  T2 3.955 28.028 0.803 0.902 12.175 21.992 0.804 0.690 3.309 29.979 0.931 0.887 8.028 22.860 0.782 0.748 3.860 28.874 0.993 0.913

T2  →  T1 11.466 22.342 0.788 0.808 17.151 18.401 0.789 0.662 9.586 23.610 0.868 0.745 17.311 18.121 0.777 0.620 10.591 23.325 0.880 0.754

MRBrain13 T1  →  T2-Flair 7.609 24.780 1.123 0.863 13.643 19.503 0.805 0.782 6.064 26.495 1.066 0.823 9.906 22.616 1.009 0.785 6.505 26.299 1.185 0.881

ADNI
PD  →  T2 9.485 24.006 1.452 0.819 16.575 19.008 0.674 0.728 6.757 26.477 1.266 0.812 7.211 26.330 1.184 0.779 4.898 29.089 1.484 0.891

T2  →  PD 5.856 29.118 1.515 0.880 17.648 18.715 0.659 0.713 4.590 31.014 1.381 0.856 5.336 29.032 1.282 0.820 5.055 30.614 1.536 0.881

RIRE
T1  →  T2 38.047 12.862 0.694 0.501 18.625 18.248 0.724 0.749 5.250 28.994 0.636 0.736 13.690 21.038 0.513 0.506 9.105 28.951 0.698 0.760

T2  →  T1 17.022 19.811 0.944 0.622 23.374 16.029 0.650 0.728 9.035 24.043 0.916 0.692 13.964 20.450 0.737 0.538 9.105 24.003 0.969 0.741

Table 1.  Generation performance on five publicly available datasets evaluated by MAE, PSNR, MI, and SSIM. 
The bold entries in this table indicate the algorithm which gets the best performance in each task. The standard 
for choosing the best algorithm is to have statistical significance over the other algorithms (p-value < 0.05). If 
an algorithm gets the best evaluation metrics but has no statistical significance over the others (p-value > 0.05), 
all of them will be regarded as the best algorithms. The result show that our IMT approach outperforms both 
Random Forest (RF) based method5 and Context-Aware GAN (CA-GAN)30 method on most datasets.
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resized to a size of 128 × 128 × 128 voxels, without significant down-sampling or information lost. (3) The last 
step is to slice the brain cubes from all the subjects into 2D data along the z-axis (128 × 128, 128 slices).

After preprocessing, the brain slices with the same depth value from different subjects are spatially aligned. 
During the training phase, a pair of brain slices from two different subjects with the same depth value is treated 
as a pair moving and fixed images. In order to conduct five-fold cross-validation for our experiments, the value 
of n (numbers of atlases) is selected differently in each dataset. For Iseg2017 dataset, we choose 8 subjects in the 
moving images space and another 2 subjects in the fixed images space (n = 8). For MRBrain13 dataset, 4 subjects 
are selected for the moving images space while one subject in the fixed images space (n = 4).

Figure 7.  Samples of cross-modality generation results on five publicly available datasets including BraTs201560, 
Iseg201761, MRBrain1362, ADNI30, and RIRE63. Results are selected from top performing examples (relatively 
low MAE, high PSNR, high MI, and high PSNR collectively) with four approaches. The right five columns show 
results of the random-forests-based method (RF)5, the Context-Aware GAN (CA-GAN)30 and IMT framework 
with different loss functions (L1, cGAN, cGAN + L1).

Method

Accuracy Dice

all tumor tumor

T1  →  T2 0.955 0.716 0.757

T2 (real) 0.965 0.689 0.724

T2  →  T1 0.958 0.663 0.762

T1 (real) 0.972 0.750 0.787

T1  →  T2-Flair 0.945 0.729 0.767

T2  →  T2-Flair 0.966 0.816 0.830

T2-Flair (real) 0.986 0.876 0.899

Table 2.  Segmentation results of IMT images on BraTs2015 evaluated by FCN-score. The gap between 
translated images and the real images can evaluate the generation performance of our method. Note that “all” 
represents mean accuracy of all pixels (the meanings of “all” are the same in the following tables). We achieve 
close segmentation results between translated-modality images and target-modality images.
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Iseg2017 and MRBrain13 datasets provide ground truth segmentation labels. Seven well-defined anatomic 
landmarks (see Fig. 6) that are distributed in the lateral ventricle are manually annotated by three doctors. We 
consider the average coordinates from three doctors as the ground truth positions of the landmarks.

Cross-modality segmentation.  Evaluation metric.  We report segmentation results on Dice (higher is 
better).

Dataset. The original training set is divided into PartA and PartB at the ratio of 1:1 based on the subjects. The 
original test set maintains the same (denoted as PartC). PartA is used to train the generator. PartB is then used 
to infer the translated modality. PartB is then used to train the segmentation model, which is tested on PartC.

(1)Brats2015: The original Brats2015 dataset contains 1924 images (PartA: 945, PartB: 979) for training and 
451 images (PartC) for testing. After preprocessing, 979 images are trained for 400 epochs and 451 images are 
used for testing.

Method

Accuracy Dice

all gm wm gm wm

T1  →  T2 0.892 0.827 0.506 0.777 0.573

T2 (real) 0.920 0.829 0.610 0.794 0.646

T2  →  T1 0.882 0.722 0.513 0.743 0.569

T1 (real) 0.938 0.811 0.663 0.797 0.665

Table 3.  Segmentation results of IMT translated images on Iseg2017 evaluated by FCN-score. Note that “gm” 
and “wm” indicate gray matter and white matter respectively. The minor gap between translated-modality 
images and the target-modality images shows decent generation performance of our framework.

Datasets Modalities Structures

Dice Dist

ANTs Elastix ANTs Elastix

Iseg2017

T2 wm 0.508 0.475 2.105 2.836

gm 0.635 0.591
T1 wm 0.503 0.469 1.884 2.792

gm 0.622 0.580

T2 + T1 wm 0.530 0.519 1.062 2.447

gm 0.657 0.648

T1 wm 0.529 0.500 1.136 2.469

gm 0.650 0.607

T2
wm 0.495 0.457 2.376 3.292

gm 0.617 0.573

T1 + T2 wm 0.538 0.527 1.097 2.116

gm 0.664 0.650

T1 + T2 wm 0.540 0.528 1.013 2.109

gm 0.666 0.651

MRBrain13

T2-Flair wm 0.431 0.412 3.417 3.642

gm 0.494 0.463
T1 wm 0.468 0.508 3.159 3.216

gm 0.508 0.487

T2-Flair + T1 wm 0.473 0.492 2.216 2.659

gm 0.530 0.532

T1 wm 0.484 0.534 2.524 2.961

gm 0.517 0.510

T2 -Flair wm 0.431 0.410 3.568 3.726

gm 0.497 0.458

T1 + T2
-Flair wm 0.486 0.505 2.113 2.556

gm 0.534 0.540

T2-Flair + T1 wm 0.486 0.503 2.098 2.508

gm 0.534 0.539

Table 4.  Registration results evaluated by Dist and Dice on Iseg2017 and MRBrain13. The bold entries indicate 
the experiments which used the combination of the real and the translated images in another modality 
generated by the real images.
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(2)Iseg2017: The original Iseg2017 dataset contains 661 images (PartA: 328, PartB:333) for training and 163 
images (PartC) for testing. After preprocessing, 333 images are trained for 800 epochs and 163 images remain for 
testing.

Results
Cross-modality generation.  Generation performance with different methods on the five datasets are sum-
marized in Table 1. It quantitatively shows how using IMT network allows us to achieve better generation results 
than the regression-based method using RF5 and the latest proposed Context-Aware GAN method from30 on 
most datasets evaluated by MAE, PSNR, MI, and SSIM. However, there are also some cases where the RF method 
surpasses our IMT network on the BraTs2015 dataset (images with tumors). It is explicable since the RF method 
incorporates additional context features, taking full advantages of structural information and thus leading to 
comparable generation results on images with tumors. The method of CA-GAN utilized the spatial information of 
the images as well, but the results show that a series of metrics have not been improved. Although a fair compari-
son is difficult between a 2D and 3D networks directly, according to64, the results provides a preliminary evidence 
that including 3D spatial information may not necessarily improve the predicative performance for the applica-
tions of interest. For example, the authors designed a network which could incorporate 3D spatial information 
by taking one or more Transrectal Ultrasound slices neighboring each slice to be segmented as input. However, it 
did not improve the segmentation performance in most of their experiment results. In addition, our task is more 
difficult compare to30 since the MR image is superior in the detail of the image while the CT image has relatively 
low soft tissue contrast. Considering the structure complexity of the CA-GAN and the increased task difficulty, 
we believe it is the widely-observed difficulties in training generative adversarial networks, as reported in11, which 
diminished the potential benefit in using full 3D spatial information.

Note that different losses induce different quality of generated images. In most cases, our IMT network with 
cGAN + L1 achieves the best results on MAE and PSNR; L1 loss term contributes to superior performance on MI 
over other methods. MI focuses more attention on the matching of pixel-wise intensities and ignores structural 
information in the images. Meanwhile, the L1 loss term ensures pixel-wise information rather than the properties 
of human visual perception65. Thus, it is reasonable that using L1 term contributes to superior results on MI.

 Figure 7 shows the qualitative results of cross-modality image generation using different approaches on five 
datasets. We have reasonable but blurry results using IMT network with L1 alone. The IMT network with cGAN 
alone leads to improvements in visual performance but causes some artifacts in cross-modality MR image genera-
tion. Using cGAN + L1 terms obtains sharp and realistic images and reduces artifacts. In contrast, the RF method 
and Context-Aware GAN lead to rough and fuzzy results compared with IMT networks.

We also quantify the generation results using FCN-score on BraTs2015 and Iseg2017 in Table 2 and Table 3. 
Our approach (cGAN + L1) is effective in generating realistic cross-modality MR images towards the real images. 
The cGAN-based objectives lead to high scores close to the real images.

To validate the perceptual realism of our generated images, two more experiments are conducted. One is 
conducted by three radiologists. The other is done by five well-trained medical students. For the first experiment, 
we randomly select 1100 pairs of images, each of which consists of an image generated by our framework and its 
corresponding real image. On each trial, three radiologists are respectively asked to select which one is fake in the 

Figure 8.  Samples of registration results of our method: (a) Fixed image, (b) Ground truth segmentation 
label of fixed image, (c) Moving image, (d) Ground truth segmentation label of moving image, (e) Warped 
image (moving image warped by the best traditional registration algorithm (ANTs), (f) Warped ground truth 
segmentation label of moving image, (g) Fused image, (h) Segmentation prediction of fused image. The pink, 
dark red, grey areas in (f) denote true regions, false regions, and missing regions respectively. The red crosses 
denote landmarks in the fixed and moving images.
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Datasets Modalities Structures Dice Dist

Iseg2017

T2 wm 0.823 0.475

gm 0.859
T1 wm 0.882 0.183

gm 0.910

T2 + T1 wm 0.883 0.190

gm 0.857

T1 wm 0.868 0.179

gm 0.898

T2 wm 0.807 0.218

gm 0.846

T1 + T2 wm 0.868 0.186

gm 0.898

T1 + T2 wm 0.868 0.184

gm 0.898

MRBrain13

T2-Flair wm 0.976 0.182

gm 0.976
T1 wm 0.966 0.181

gm 0.968

T2-Flair + T1 wm 0.971 0.180

gm 0.974

T1 wm 0.976 0.179

gm 0.981
T2-Flair wm 0.985 0.180

gm 0.983

T1 + T2 -Flair wm 0.985 0.179

gm 0.985

T2-Flair + T1 wm 0.978 0.178

gm 0.982

Table 5.  Results of our additional registration experiments evaluated by Dist and Dice on Iseg2017 and 
MRBrain13 implemented by ANTS. The bold entries indicate the experiments which used the combination of 
the real and the translated images in another modality generated by the real images.

Dice(tumor) Δ

T1 0.760 —

T1 + T2 0.808 6.32%

T1 + T2 0.857 —

T1 + T2 -Flair 0.819 7.89%

T1 + T2-Flair 0.892 —

Table 6.  Tumor segmentation results of TMS on Brats2015. “T1 + T2” and “T1 + T2 -Flair” in bold font 
indicate our approach (TMS) where inputs are both T1 and T2  images or T1 and T2-Flair images. “T1” indicates 
the traditional FCN method where inputs are only T1 images. “T1 + T2” and “T1 + T2-Flair” indicate the 
upper bound. Δ indicates the increment between TMS and the the traditional FCN method.

Dice(wm) Δ Dice(gm) Δ

T2 0.649 — 0.767 —

T2 + T1 0.669 3.08% 0.783 2.09%

T2 + T1 0.691 — 0.797 —

Table 7.  Brain structure segmentation results of TMS on Iseg2017. “T2 + T1” in bold font indicates our method 
(TMS) where inputs are both T2 and T1 images. “T2” indicates the traditional FCN method where inputs are 
only T2 images. “T2 + T1” indicates the upper bound.
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image pair. The first 100 trials are practice after which they are given feedback. The following 1000 trials are the 
main experiment where no feedback are given. The average performance of the three radiologists quantitatively 
evaluates the perceptual realism of our approach. For the second experiment, the experimental setting is perfectly 
identical. Results indicate that our generated images fooled radiologists on 25% trials and fooled students on 
27.6% trials.

Cross-modality registration.  Our experiments not only include registration with real data, but also with 
translated images (T1  and T2 images for Iseg2017 dataset, T1 and T2 -Flair images for MRBrain13 dataset). The 
deformations generated in each set of experiments are combined in a weighted fusion process, yielding the final 
registration deformation. In order to compute the Euclidean distance of those corresponding landmarks between 
warped images and fixed images, all 2D-slices are then stacked into 3D images. Besides, we also employ the fused 
deformation to segmentation labels of moving images, obtaining registered segmentation results of fixed images. 
Table 4 summarizes the registration results both in terms of Dist and Dice. We introduce the cross-modality 
information from our T1  images into T2 images and T2-Flair images, of which the performance are denoted as 
“T2 + T1” and “T2-Flair + T1 ”. Likewise, “T1 + T2 ” and “T1 + T2 -Flair” indicate performance of registrations 
with cross-modality information from our T2-Flair images added into T1 images. We also show the upper bounds 
of registrations with translated images, which are denoted as “T1 + T2” and “T2-Flair + T1”. The weights for the 
combination are determined through five-fold cross-validation. The optimal weights of 0.92 and 0.69 are selected 
for T1 images in terms of white matter and gray matter on Iseg2017 and 0.99 and 0.82 are selected on MRBrain13.

After the weighted fusion process, we find that registrations with translated images show better performance 
than those with real data by achieving higher Dice, e.g. 0.657 (T2 + T1) vs. 0.635 (T2) and 0.534 (T1 + T2 -Flair) 
vs. 0.517 (T1), both got p-value < 0.0001 on t-test. We also observe that the Dist is greatly shortening (e.g. 2.216 
(T2-Flair + T1) vs. 3.417(T2-Flair), p-value < 0.0001 on t-test) compared to registrations without adding 

Figure 9.  Samples of tumor segmentation results on BraTs2015: (a,d,e,g,h) denote T1 image, T2 image, T2 
image, T2-Flair image, T2-Flair image. (b) Denotes ground truth segmentation label of T1 image. (c,f,i) Denote 
tumor segmentation results of T1 image using the FCN method, TMS (adding cross-modality information from 
T2  image), TMS (adding cross-modality information from T2-Flair image). Pink: true regions. Grey: missing 
regions. Dark red: false regions.
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cross-modality information. In many cases, our method even advances the upper bound both in Dist and Dice. 
These results are reasonable because our translated images are realistic enough, as well as the real data itself with 
high contrast for brain structure leads to lower registration errors. Figure 8 visualizes samples of the registration 
results of our methods. More details can be found there.

To demonstrate the effectiveness of our cross-modality registration approach with translated images, we pro-
pose an additional experiment by employing a known transformation to the moving images to generate trans-
formed images that can be used as our “fixed”. This allows us to directly estimate the benefit of adding translated 
modalities to the registration process when finding the known transformation during the registration step. Take 
T1 and T2 images as one example. The T1 and T2 images from the moving images space are first rotated a certain 
degree. Here we rotate them by 30 degrees. The T1 images generated from our framework are also rotated 30 
degrees. All these rotated images are used as our “fixed”. T2 (moving) images are registered to rotated T2 (fixed) 
images and T1 (moving) images are registered to rotated T1 (fixed) images. The following fusion processes are the 
same as our stated method. Table 5 shows the results of our additional experiments.

Cross-modality segmentation.  Our experiments focus on two types of MRI brain segmentation: tumor 
segmentation and brain structure segmentation. Among all MRI modalities, some modalities are conducive to 
locating tumors (e.g. T2 and T2-Flair) and some are utilized for observing brain structures (e.g. T1) like white 
matter and gray matter. To this point, we choose to add cross-modality information from T2 and T2-Flair images 

Figure 10.  Samples of brain structure segmentation results on Iseg2017: (a,e,f) denote T2 image, T1 image, T1 
image. (b) Denotes ground truth segmentation label of T2 image. (c,d) Denote white matter and gray matter 
segmentation results of T2 image using the FCN method respectively. (g,h) Denote white matter and gray 
matter segmentation results of T2 image using TMS (adding cross-modality information from T1  image) 
respectively. Pink: true regions. Grey: missing regions. Dark red: false regions.
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into T1 images for tumor segmentation and add cross-modality information from T1 images into T2 images for 
brain structure segmentation. Experiments of tumor segmentation are conducted on Brats2015 and experiments 
of brain structure segmentation are conducted on Iseg2017.

As shown in Tables 6, cross-modality information from T2-Flair and T2 images contributes improvements to 
tumor segmentation of T1 images (7.89% and 6.32% of tumors respectively). Likewise, Table 7 shows that 
cross-modality information from T1  images leads to improvements of wm and gm segmentation of T2 images 
(3.08% of wm and 2.09% of gm). We also add cross-modality information from real modalities to make an upper 
bound. We observe a minor gap between results of TMS and the upper bound though our translated modalities 
are very close to real modalities. It is explicable by the presence of abnormal tissue anatomy (eg. tumors) and the 
cortex in MR images. The tumors are diffuse and even a small difference in the overlap can cause a low value for 
the Dice. In addition, in some finer cortex regions (unlike large homogeneous gray matter and white matter), our 
approach may produce some relatively coarse images, leading to a lower Dice. Moreover, our approach aims to 
help incorporate extra cross-modality information for more accurate segmentation rather than replace the real 
images. Overall, TMS outperforms the traditional FCN method when favorable cross-modality information is 
adopted. Figures 9 and 10 visualize some samples of our segmentation results on BraTs2015 and Iseg2017 
respectively.

Discussion
We have described a new approach for cross-modality MR image generation using IMT network. Experimental 
results in section Experiments have highlighted the capability of our proposed approach to handle complex 
cross-modality generation tasks. The rationales are as follows. First, the cGAN rather than GAN network is 
essentially conceived of as a supervised network. It not only pursues realistic looking images, but also penalizes 
the mismatch between input and output so as to produce grounded enough real images. Second, the L1 term, 
which introduces pixel-wise regularization constraints into our generation task, guarantees the quantifications 
of low-level textures. Besides, we also described registration and segmentation applications of generated images. 
Both given-modality images and generated translated-modality images are used together to provide enough con-
trast information to differentiate different tissues and tumors, contributing to improvements for MR images reg-
istration and segmentation.

Although our approach generally achieves excellent performance, we recognize that in some cases our gener-
ated images are still not as good as real images at tiny structures. As illustrated in Fig. 11, there are also abortive 
cases where tiny structures may be mistaken. In the yellow circle, the eyebrow-like structure is missing. The red 
circle indicates a non-existent round structure which might be confounded with the vessel. In the green circle, 
the learned structure seems to be discontinuous which might give rise to perplexity for radiologists to make a 
diagnosis. In the future, we will improve our algorithm to describe more tiny structures.

Conclusion
In this paper, we develop a conditional generative adversarial network based framework for cross-modality trans-
lation and provided a comprehensive comparison with five datasets representing real-world clinical applications, 
each has its unique characteristics in data size, patient cohort and disease status. Important algorithmic options 
such as different loss functions were compared with traditional non-deep-learning machine learning methods, 
also with each other. We also have reported the performance in using the proposed methods for the difference in 
downstream tasks, registration and segmentation, arguably representing a more clinically relevant value from the 
proposed methodology. Our methods lead to comparable results in cross-modality generation, registration and 
segmentation on widely adopted MRI datasets without adding any extra data on the premise of only one modality 
image being given. In the future, we will make efforts in cross-modality translation tasks beyond MRI, such as 
from MRI to PET.

Figure 11.  An abortive sample in our generation results: (a) T2. (b) T2. Circles in T2  indicate some 
misdescription of tiny structures. Circles in different colors indicate different problems.
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