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ABSTRACT Dollar spot, caused by the fungal pathogen Clarireedia spp., is an eco-
nomically important foliar disease of amenity turfgrass in temperate climates world-
wide. This disease often occurs in a highly variable manner, even on a local scale
with relatively uniform environmental conditions. The objective of this study was
to investigate mechanisms behind this local variation, focusing on contributions of
the soil and rhizosphere microbiome. Turfgrass, rhizosphere, and bulk soil samples
were collected from within a 256-m2 area of healthy turfgrass, transported to a
controlled environment chamber, and inoculated with Clarireedia jacksonii. Bacterial
communities were profiled by targeting the 16S rRNA gene, and 16 different soil
chemical properties were assessed. Despite their initial uniform appearance, the
samples differentiated into highly susceptible and moderately susceptible groups
following inoculation in the controlled environment chamber. The highly suscepti-
ble samples harbored a unique rhizosphere microbiome with suggestively lower
relative abundance of putative antibiotic-producing bacterial taxa and higher pre-
dicted abundance of genes associated with xenobiotic biodegradation pathways.
In addition, stepwise regression revealed that bulk soil iron content was the only
significant soil characteristic that positively regressed with decreased dollar spot
susceptibility during the peak disease development stage. These findings suggest
that localized variation in soil iron induces the plant to select for a particular rhizo-
sphere microbiome that alters the disease outcome. More broadly, further research
in this area may indicate how plot-scale variability in soil properties can drive variable
plant disease development through alterations in the rhizosphere microbiome.

IMPORTANCE Dollar spot is the most economically important disease of amenity
turfgrass, and more fungicides are applied targeting dollar spot than any other
turfgrass disease. Dollar spot symptoms are small (3 to 5 cm), circular patches that
develop in a highly variable manner within plot scale even under seemingly uni-
form conditions. The mechanism behind this variable development is unknown.
This study observed that differences in dollar spot development over a 256-m2

area were associated with differences in bulk soil iron concentration and correlated
with a particular rhizosphere microbiome. These findings provide interesting ave-
nues for future research to further characterize the mechanisms behind the highly
variable development of dollar spot, which may inform innovative control strat-
egies. Additionally, these results suggest that small changes in soil properties can
alter plant activity and hence the plant-associated microbial community, which has
important implications for a broad array of agricultural and horticultural plant
pathosystems.
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Dollar spot is a foliar pathogen of cool-season turfgrasses in North America that is
caused by the fungus Clarireedia spp. and is the most economically important

disease of amenity turfgrass in the world (1). It causes roughly circular patches of
bleached turfgrass 3 to 5 cm in diameter that can blight the stand and reduce the
functionality of the site for recreational purposes (2). The primary host of dollar spot
is creeping bentgrass (Agrostis stolonifera), and a lack of host resistance or effective
cultural control strategies has made dollar spot the target of more fungicide applica-
tions than any other turfgrass disease (3). Heavy reliance on synthetic fungicides has
led to the development of fungicide-resistant fungal populations (4), imposes a sig-
nificant financial burden on the turfgrass manager (5), and increases the risk of
human and environmental contamination resulting from repeated chemical expo-
sures (6). The development of dollar spot symptoms in uniformly managed turfgrass
with nearly identical environmental conditions is often highly variable, even at a
scale of several meters (7). It is unclear why dollar spot develops in such a variable
manner, but plausible explanations include a link to hyperlocal variations in microbial
antagonists or local variations in soil physical, chemical, or biological properties.

Spatial variation in plant disease is often observed in both managed and natural
plant systems, although most studies on variation in plant disease incidence and sever-
ity have been conducted in large-scale agricultural fields over tens or hundreds of hec-
tares. Adiobo et al. (8) observed that the physicochemical and microbial properties of
andosols suppressed Pythium myriotylum root rot in cocoyam (Xanthosoma sagittifo-
lium) more effectively than ferralsols. Varied susceptibility to disease in adjacent fields
with similar soil physicochemical characteristics has commonly been attributed to dis-
ease suppressive or disease conducive soils and is often influenced by cropping history
(9, 10). Although on a larger scale than the variation observed in dollar spot, the patho-
gen suppression function of a specific suppressive soil has provided some clues as to
how the same soil type could have dramatically different pathogen suppression func-
tions. Specific disease suppressive soils and the associated antagonistic microbes have
been found in various major cropping systems against important plant pathogens, such as
Fusarium oxysporum, Phytophthora megasperma, and Gaeumannomyces graminis (11–13).
Enrichment of an antagonistic microbial population in the rhizosphere often serves as the
key plant pathogen suppression mechanism in previously characterized disease suppres-
sive soils (14). As a classic example, enrichment of antibiotic 2,4-diacetylphloroglucinol-pro-
ducing fluorescent Pseudomonas species in the rhizosphere of both wheat and flax has
been shown to reduce take-all disease in both plants (15).

The rhizosphere microbiome and its functions are codetermined by both the plant
and the soil. The host plant produces root exudates that recruit particular microbes
from within the soil (14). The soil harbors varied microbial communities shaped by soil
type and associated properties, such as physical structure and pH (16). Therefore, the
rhizosphere microbiome and its microbial disease suppressive function can shift fol-
lowing changes in the soil environment. Peng et al. (17) varied the chemical and physi-
cal properties of soils found to be both suppressive and conducive to Fusarium oxyspo-
rum f. sp. cubense and demonstrated that soil physicochemical traits can mediate
suppressiveness against the pathogen’s chlamydospores. This finding suggests that
soil physicochemical and microbial properties can cooperatively improve plant disease
suppression in agricultural fields.

Soil spatial variation in microbial properties is often studied at multiple levels,
including micro, plot, field, landscape, and regional scales (18, 19). Over a small plot
scale, spatial variation of smut disease (Ustilago syntherismae) on crabgrass (Digitaria
sanguinalis) was influenced by both pathogen spore density and spatial location (20).
However, soil property influences were not investigated in this study, and spores or
other long-distance dispersal mechanisms have never been observed with dollar spot
in a field environment (2). High spatial variations in soil physicochemical and microbial
properties were observed in a managed grassland, including a wide range of soil pH,
nitrogen content, microbial biomass, and microbial catabolism profiles within the
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scales of several centimeters to meters (21), but the impacts of these variations on
plant-pathogen interactions were not studied. Recently, Wei et al. (22) examined dis-
ease variation in tomato (Solanum lycopersicum) and observed that the initial rhizo-
sphere soil bacterial community could effectively predict the severity of the disease
caused by the soilborne bacterial pathogen Ralstonia solanacearum. Similarly, in a field
scale, Chen et al. (23) observed differences in rhizosphere bacterial community structure,
diversity, acid phosphatase activity, root iron content, and bulk soil calcium and magne-
sium between healthy and poorly growing highbush blueberry plants (Vaccinium corym-
bosum) in an unidentified pathosystem. These results again indicate the importance of
both soil chemical properties and the rhizosphere microbiome on plant health over a
field scale or smaller. However, it remains unknown whether the rhizosphere and/or bulk
soil microbiome impacts the severity of disease caused by a foliar fungal pathogen
when interacting with specific soil chemical properties.

In this study, various factors contributing to the localized variation in dollar spot de-
velopment on monocultured turfgrass were studied. Rhizosphere and bulk soil bacte-
rial communities as well as bulk soil chemical properties were examined to determine
possible causes for the highly variable spatial nature of dollar spot development. We
hypothesized that soil chemical properties and the rhizosphere bacteria are both sig-
nificant variables for determining dollar spot disease susceptibility in a uniformly man-
aged and monocultured turfgrass system. Turfgrass is an excellent system in which to
study this phenomenon because the high plant density allows for robust sampling
over a small scale. The initial 132-cm2 surface area turfgrass soil plug harbored an esti-
mated 1,200 individual creeping bentgrass plants, and each subsample derived from
the soil core contained 10 to 15 individual plants. By understanding the factors that
drive variation in dollar spot disease development within a plot scale in a high-density
monoculture system, we may discover mechanisms that can be targeted for improved
biological management of a number of important plant pathogens.

RESULTS
Dollar spot development. Dollar spot development was measured as a decrease

of greenness over time in order to standardize the quantification of disease symptoms,
as lesion shape and color can be difficult to determine with simple visual assessments.
The resulting greenness decay curve followed a sigmoidal decay pattern (r2 = 0.8623
and P , 0.0001) (Fig. 1). Disease symptoms initially developed within 2 days after

FIG 1 Dollar spot (C. jacksonii) development as indicated by turf greenness decay curve fitted with
sigmoidal model (r2 = 0.8623, P, 0.0001) throughout 16 days of incubation after dollar spot
inoculation (n= 18).
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inoculation (DAI) and then increased rapidly over the next 4 to 12 DAI, before slowing
during the saturation phase at 14 to 16 DAI. Substantial differences in symptom sever-
ity between samples started showing up 4 DAI, and differences remained apparent
throughout the incubation.

Attributing soil bacterial community difference as a function of disease variability.
Turf samples were grouped into high, medium, and low disease according to the dis-
ease severity at each DAI with a preplanned number of six samples in each group. The
bacterial microbiome from rhizosphere and bulk soil associated with each sample,
which had been separated prior to inoculation, was then assessed to see if the baseline
microbiome structure explained turfgrass responses to Clarireedia jacksonii inoculation.
The rhizosphere bacterial community differed between high and low disease severity
groups when categorized based on severity between 4 and 10 DAI according to the
permutational analysis of variance (PERMANOVA) (Table 1). There were no differences
in bacterial community structure found between high and low disease severity groups
when categorized according to initial disease development (DAI 0 to 2) or the disease
saturation phase (DAI 12 to 16). In addition, no differences in the bulk soil bacterial
community were found among the disease severity groups throughout the incubation
(Table 1). The period where the rhizosphere soil bacterial community showed struc-
tural differences between the high and low disease groups (4 to 10 DAI) matched the
backslope of the disease development curve (Fig. 1), which suggested that the initial
soil rhizosphere bacterial community can affect the peak dollar spot development. The
samples were then recategorized according to their disease status during the peak dis-
ease development stage (4 to 10 DAI) to make the peak disease development period
the target of prediction instead of any single day within this period. The samples ini-
tially categorized as high disease during the period 4 to 10 DAI never shifted into the
low severity group and vice versa, so the 18 samples naturally broke into 2 groups
except for 1 sample that stayed in the medium disease group throughout the study
and was excluded from further analysis. Further analyses were performed based on
classifying the samples into nine highly susceptible (HS) samples and eight moderately
susceptible (MS) samples.

Comparison of rhizosphere bacterial communities of highly susceptible and
moderately susceptible turfgrass. Two-dimensional principal-coordinate analysis
(PCoA) showed that distinct bacterial community structures existed between the bulk
and rhizosphere soil and between the rhizosphere soil of HS and MS samples (Fig. 2).
PERMANOVA statistically confirmed the visual observations of bacterial community
composition differences between sample types (Fig. 2A) and susceptibility groups of
rhizosphere soil (Fig. 2B). Although the overall rhizosphere bacterial compositions
were different between MS and HS turfgrass, the major microbial taxa were identical
when analyzed at family and genus levels, with less than 20% and more than 75% of
the taxa unidentified at each taxonomic level, respectively (Fig. 3). The dominant fami-
lies identified included Gemmataceae, Pirellulaceae, Chitinophagaceae, Pedospheraceae,
and Burkholderiaceae; and the dominant genera identified included Flavobacterium,
Haliangium, Chthoniobacter, Pirellula, and Gaiella (Fig. 3). The majority of the rhizosphere
soil amplicon sequence variants (ASVs) are shared between the HS and MS turfgrass
(8,077), with more ASVs being unique to HS (1,181) than MS (347). Highly susceptible turf-
grass samples also had a higher microbial a-diversity relative to samples from MS turfgrass,
as shown by richness (Fig. 4A), Shannon index (Fig. 4B), and Pilou evenness (Fig. 4C).

In the rhizosphere, there were 28 families and 32 genera that differed in relative
abundance between HS and MS samples according to Welch’s t test without false dis-
covery rate (FDR) correction (Fig. 5). When the FDR correction was applied, no differen-
ces in relative abundance between HS and MS samples were detected at the family
and genus levels. A balance analysis that accounted for the compositional nature of
the data set was also performed to detect the microbial signature for discerning the
HS and MS rhizosphere bacterial community. The signatures were determined by
searching the association between the factor for overall bacterial microbiome differ-
ence with the bacterial taxa balances defined as the normalized log ratio of the
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geometric mean of the numerator and denominator bacterial taxa. The results showed
that relative abundance log ratios of Rhizobacter (numerator) to Microvirga (denomina-
tor) at the genus level and Solibacteraceae subgroup3 (numerator) to Saprospiraceae
(denominator) at the family level were robust microbial signatures to differentiate the
HS and MS turfgrass rhizosphere bacterial community, with an adjusted area under the
receiver operating characteristic curve for cross-validation equal to 0.9875 and 0.983
for genus and family level, respectively (Fig. 6).

A co-occurrence network analysis was performed to visualize the microbial interac-
tion of HS and MS turf rhizosphere soil bacteria and showed different network patterns
(Fig. 7). The HS co-occurrence network had fewer nodes, internode links, average path,
and more Actinobacteria and Firmicutes involved in the major modulations than that of
the MS network. The co-occurrence networks were then further analyzed using
“NetShift” to quantify the differences and identify the keystone microbial taxa that
triggered the shift of the microbial networking between HS and MS rhizosphere bac-
terial communities when clustered at the family and genus level (Fig. 8). There were
55 families and 28 genera identified as driver taxa when comparing HS and MS co-
occurrence networks aggregated at each taxonomic level.

Rhizosphere soil bacterial function was predicted using Tax4Fun2 (24) to explore
the potential microbial functional differences between HS and MS samples during the
peak disease development period. Predicted functional pathways at level two accord-
ing to KEGG reference for molecular functions of genes (25), including nucleotide

FIG 2 Principal-coordinate analysis (PCoA) of bulk soil versus rhizosphere microbiome (A) and MS
versus HS turfgrass rhizosphere microbiome (B). Significant differences between MS and HS samples
were tested using PERMANOVA. MS and HS are disease susceptibility groups derived from the peak
disease development stage.
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metabolism, folding, sorting and degradation, cell motility, translation, transcription,
replication and repair, and metabolism of cofactors and vitamin-associated genes,
were found to be more abundant in the rhizosphere of MS samples (Fig. 9). In the HS
samples, rhizosphere genes associated with xenobiotic biodegradation and metabo-
lism pathways were more abundant (Fig. 9). These comparisons were performed using
Welch’s t test, and no significant differences were detected when applying the FDR
correction.

FIG 3 Average relative abundances of rhizosphere microbiome from MS and HS turfgrass for the taxa that represent more than 1%
of the identified community at family (top) and genus (bottom) levels. MS and HS are disease susceptibility groups derived from the
peak disease development stage.
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Bulk soil nutrient and chemical property analysis. Bulk soil chemical properties
were compared among the three dollar spot severity groups throughout the incuba-
tion period. The bulk soil was sampled prior to the inoculation of C. jacksonii to evalu-
ate if bulk soil chemical properties explained the turfgrass responses to the pathogen

FIG 4 Bacterial richness (A), Shannon diversity (B), and Pilou evenness (C) in rhizosphere of turfgrass
from MS and HS susceptibility samples at peak disease development stage at the ASV level. The
natural logarithms were used in Shannon index calculation. The significance tests was performed
using a nonparametric Wilcoxon rank-sum test.
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inoculation. The results showed that iron concentration was significantly lower
(P= 0.005) in the high disease group (0.81mg iron/kg soil) than in the low disease
group (0.95mg/kg) throughout the peak disease development stage from 4 to 10
DAI (Table 2 and 3) according to Kruskal-Wallis test and followed by Steel-Dwass
paired comparison. Bulk soil iron was also lower in the HS samples than in the MS

FIG 5 Rhizosphere bacterial taxa relative abundance differences between the HS and MS turfgrass at family (top) and genus
(bottom) level tested with Welch’s t test. MS and HS are disease susceptibility groups derived from the peak disease
development stage.
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samples (P = 0.0021) according to Kruskal-Wallis test following recategorization of the
samples (see Table S1 in the supplemental material). A Mantel test was conducted to
determine the correlation between the overall soil chemical properties and the soil
bacterial community (Table 4). Bulk soil chemical properties did not correlate with
the bulk soil bacterial community (r = 20.2297, P = 0.966), but they did correlate with
the rhizosphere bacterial community (r = 0.274, P = 0.048) (Table 4). To further exam-
ine the relationship between bulk soil chemical properties and dollar spot severity
during the peak disease development stage, a backward stepwise regression model
was constructed after removing significant colinear variables. The stepwise model
(adjusted r2 = 0.5041, P = 0.002031) suggested that soil iron significantly (P= 0.00062)
and positively regressed with average turfgrass greenness during the peak develop-
ment period (Table 5).

FIG 6 Compositional balance change analysis identifying the bacterial signatures that discriminate the
rhizosphere microbiome between HS and MS turfgrass. The balance indicates the logarithm ratio of the relative
abundance of identified denominator and numerator. MS and HS are disease susceptibility groups derived from
the peak disease development stage.

FIG 7 Rhizosphere soil bacterial microbiome co-occurrence networks at phylum level of MS and HS turfgrass,
in which the sizes of the nodes were scaled based on in-degree values; blue and pink paths represent positive
and negative correlations, respectively.
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FIG 8 NetShift analysis by comparing the co-occurrence networks between the MS and HS turfgrass
to identify the driver taxa at family (top) and genus (bottom) levels, where the nodes were scaled

(Continued on next page)
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DISCUSSION

The results from this study indicated that initial differences in the soil rhizosphere
bacterial community can impact the level of dollar spot development in the turfgrass
canopy. These differences occurred over small areas despite uniform host plants and
seemingly uniform environmental conditions. The mechanisms of disease suppression
provided by the rhizosphere community were not directly studied, and the short-
amplicon sequencing method used in the study yielded only compositional data. As
such, these results provide limited resolution for exploring the specific species and
genera, but differential analysis of microbial taxa relative abundances and NetShift
analysis of co-occurrence networks in this study provide supporting information for
the hypothesis that disease suppression is related to the occurrence of antagonistic
organisms in the rhizosphere. A similar hypothesis was also suggested in work done by
Wei et al. (22), which indicated that the rhizosphere bacterial community determined
the disease occurrence and severity caused by Ralstonia solanacearum in tomato plants
and specifically linked disease suppression to the antagonistic activity of soil bacteria
in the genera Bacillus and Pseudomonas.

In our study, differential analysis revealed that certain families and genera were
higher in relative abundance in the rhizosphere of MS samples than those in HS sam-
ples. These families, including Nocardiaceae and Xanthomonadaceae, and genera,
including Rhodococcus and Janthinobacterium, are known to produce a range of anti-
microbial compounds (26–29). Among the microbial co-occurrence network shift driv-
ers identified through NetShift, node betweenness was significantly increased in MS
samples for certain genera, including Pseudonocardia, Streptomyces, and “Candidatus
Entotheonella,” which are all known for their ability to produce antifungal compounds
(30–32). The betweenness represents the number of paths that pass through a node in
which the paths are part of the shortest path of any two given nodes. Simply, the
increase in node betweenness for these genera indicated that more co-occurrent
microbes are influenced by these genera, making them important in the overall com-
munity and offering a possible explanations for microbial suppression of dollar spot in
MS turf samples.

The predicted microbial function and relative abundance differences in this study
were detected using Welch’s t test without FDR correction. When the FDR correction
was applied, however, no significant differences in relative abundance were observed.
The FDR correction is used to reduce the possibility of false-positive results when con-
ducting multiple comparisons, with the embedded trade-off false-negative results
even for the less stringent Storey FDR correction. As the number of hypothesis tests

FIG 9 Significant differences in predicted rhizosphere microbiome functional pathways of MS and HS turfgrass using Tax4Fun2 and tested by Welch’s t
test. MS and HS are disease susceptibility groups derived from the peak disease development stage.

FIG 8 Legend (Continued)
based on the degree in neighbor shift. The red nodes are the identified important drivers responsible
for the network shift between the MS and HS turfgrass rhizosphere microbiome; and the green, red,
and blue paths represent the edges shown in MS, HS, and both, respectively. The node label color
scheme represents the network module. MS and HS are disease susceptibility groups derived from
the peak disease development stage.
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increase, the resulting adjusted P value will become more conservative. This study con-
ducted approximately 1.25� 105 hypothesis tests (paired comparisons for 468 families
and 533 genera) for each taxonomic level using normalized data to overcome the read
inequality among the samples, which may be overly conservative in identifying differ-
ences when an FDR correction is applied. An important assumption of using the FDR is
that the multiple hypothesis tests are independent or weakly dependent of one
another. However, as multiple influential taxa exist in the examined communities in
this study, the assumption of applying FDR is not necessarily appropriately met. This
study aimed to provide initial explorations into the potential microbial factors that trig-
ger hypervariable disease severity over small distances and determine avenues for
future, more rigorous mechanistic research. We have provided the results of both the t
test and FDR analyses here so that future research can build off these results but so
that proper context into the potential significance of the results can also be provided.

How the microbes found in the soil can be antagonistic to a foliar pathogen like C.
jacksonii remains unclear. Previous studies have suggested possible mechanisms via
endophytic recruitment of functional rhizosphere microbes (33, 34) and direct uptake
of antibiotic metabolites produced by soil microbes (35, 36). The effect of antibiotic
uptake by the plants may also be further amplified through bioconcentration, espe-
cially for small molecules such as oxytetracycline and sulfonamides (37). In addition,
the close spatial distance between the turfgrass canopy and the soil may also allow the
soil microbial activity to have an impact on dollar spot expansion horizontally given
that C. jacksonii relies on hyphae to extend the infection zone from one plant to
another.

A number of other bacterial taxa with environmental or plant functional importance
in the rhizosphere differed between the HS and MS samples. The balance analysis
revealed that the log ratios of Saprospiraceae and Solibacteraceae subgroup3 at the
family level and Rhizobacter to Microvirga at the genus level can effectively differenti-
ate between the rhizosphere bacterial microbiomes of the HS and MS groups. Among
these identified signatures, the family Saprospiraceae and genera Rhizobacter and
Microvirga were also found to differ in relative abundances. Microbial species under
the genus Microvirga include many root symbionts (38), whereas members of the
Rhizobacter genus are common rhizobacteria (39), and they can also be plant patho-
genic (40). Although the relative abundances were low, these identified taxa served as
key signatures to differentiate the HS and MS rhizosphere bacterial community and

TABLE 3 Bulk soil iron content of each severity group categorized based on the peak of
disease development stage

Group

Iron contenta (mg/kg of dry soil) at:

DAI 4 DAI 6 DAI 8 DAI 10
High 0.8256 0.035b 0.8116 0.037b 0.8186 0.035b 0.7956 0.031b
Low 0.9896 0.035a 0.9756 0.037a 0.9876 0.035a 0.9896 0.031a
Medium 0.8596 0.035b 0.8876 0.037ab 0.8686 0.035ab 0.8896 0.031ab
aAll values are mean6 SE. Different lowercase letters indicate significant differences derived from Steel-Dwass
paired comparisons with an a value of 0.05.

TABLE 4 Correlations among bulk soil chemical property, bulk soil microbiome, and
rhizosphere microbiomea

Correlation

Mantel statistic

r P value
Soil chem vs bulk microbiome 20.230 0.97
Soil chem vs rhizo microbiome 0.245 0.048*
Bulk microbiome vs rhizo microbiome 20.065 0.58
aPerformed using Mantel tests. An asterisk indicates the significance level; *, P, 0.05.
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may also have functional importance. For example, the identified family signature
Saprospiraceae was present at a low level in our study (,1% in relative abundance),
but members of the Saprospiraceae family are known to break down complex organic
compounds in the environment (41) and are also suggested to have functional impor-
tance while underrepresented in soil abundance (42). The manner in which these mi-
crobial signatures interacted with the pathogen and host plant and whether they can
be used for future evaluations of dollar spot suppression require further research.

Functional prediction was performed to better understand the implications of the
differences identified in bacterial community composition and interaction of HS and
MS samples in the absence of a comprehensive metagenomic analysis. The MS rhizo-
sphere bacterial community was more enriched in genetic information processing and
cellular processes metabolic pathways, whereas the HS rhizosphere bacterial commu-
nity was more abundant in predicted xenobiotic biodegradation and metabolism. This
result could help explain why the HS rhizosphere bacterial community resulted in
more susceptible turfgrass. Many chemical compounds, such as salicylic acid (SA) ana-
logs and b-aminobutyric acid, can induce plant systemic acquired resistance that
primes plants to defend against pathogens through activation of SA or abscisic acid
(ABA) signaling pathways (43). The higher predicted relative abundance in genes asso-
ciated with xenobiotic biodegradation and metabolic pathways in the HS rhizosphere
bacterial community suggested that the bacterial community has a higher potential to
degrade xenobiotics, such as agrochemicals, transformation products, and secondary
metabolites, that either has direct antagonistic effects on pathogen growth or com-
pounds that have roles in priming plants against pathogens. These differences in rela-
tive abundances were relatively minor and without FDR correction and require further
investigation using quantitative PCR (qPCR) or metagenomic tools for a more complete
understanding.

In the study by Wei et al. (22), structural and functional differences in the rhizo-
sphere bacterial microbiome were found to be the sole factors determining disease se-
verity on tomato. In our study, bulk soil iron concentration predicted the disease sus-
ceptibility as well as that of the rhizosphere bacterial microbiome and seemed to
contribute significantly to dollar spot suppression. Gu et al. (44) recently showed that
siderophore production as a result of bacterial competition for iron resources in the
soil environment strongly mediates R. solanacearum activity in the tomato rhizosphere.
Specifically, iron-scavenging siderophores produced by nonpathogenic members of
the bacterial consortia enhanced the fitness of these nonpathogenic bacteria in the
soil environment and suppressed pathogen growth. Further large-scale screening of all
major bacterial phylogenetic lineages established a strong positive linkage between in-
hibitory siderophore production by nonpathogenic bacteria and R. solanacearum sup-
pression, indicating that the relative abundance of bacteria that produce pathogen-
unusable siderophores in the tomato rhizosphere microbiome served as an effective
predictor for disease outcome (45). These studies were done in a soilborne pathosys-
tem, and it is unclear how pathogen-suppressing siderophore producers in the rhizo-
sphere would compete with C. jacksonii, which is a foliar pathogen and possible sapro-
phyte in the thatch layer. Other mechanisms are likely involved, such as iron directly or
indirectly neutralizing pathogen activity. For example, Gadd (46) observed that oxalic

TABLE 5 Stepwise regression resultsa

Coefficient Estimate SE t-value P(>jtj)
Intercept 27.09 13.06 2.075 0.056
Fe 69.74 16.19 4.309 ,0.001***
Zn 227.28 15.81 15.81 0.105
aSelection of the optimal regression model for bulk soil chemical elements and average dollar spot disease
severity (greenness) during the peak disease development stage (4 to 10 DAI). Asterisks indicate the
significance level: ***, P, 0.001. Residual standard error, 6.011 on 15 degrees of freedom; multiple r2, 0.5624; F-
statistic: 9.641 on 2 and 15 DF, P = 0.002031.
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acid, a potential virulence factor produced by C. jacksonii and several other important
plant pathogens, can react with the free iron in the plant-soil interface and precipitate
as crystalline or amorphous solids. Also, in iron-deficient soils, induced bacterial pro-
duction of the siderophore pyoverdine repressed the expression of plant defense-
related genes, such as the genes involved in SA and ABA pathways, which can lead to
a higher plant susceptibility to diseases (47).

Low soil iron can also lead to low iron in the plant tissue. Iron plays multifaceted
roles in plant defense mechanisms and plant-pathogen interactions (48). For example,
iron serves as a key factor in plant disease defense via numerous regulatory genes
involved in microbe response and plant homeostasis, including upregulating the tran-
scription of pathogenesis-related genes and catalyzing the reactive oxygen species
when attacked by pathogens (49, 50). Unbalanced iron homeostasis in plants can have
serious impacts on disease outcomes. Low iron in Arabidopsis thaliana led to more
severe Dickeya dadantii infection due to less ferritin coding transcript AtFER1, callose
deposition, and reactive oxygen species production (51). These collective studies on
low soil and plant iron may help explain how samples with lower soil iron in our study
can lead to higher dollar spot susceptibility in turf and vice versa, especially under the
high pH conditions (average pH, 7.241) present in our study (52).

Numerous field and in vitro studies have shown the beneficial effect of iron in plant
disease suppression (53–55). The beneficial effects of iron are often found in conjunc-
tion with a pathogen-suppressive soil microbiome (17, 23), even though some studies
have also shown an adverse effect of iron in Fusarium wilt (Fusarium oxysporum) dis-
ease on flax (Linum usitatissimum) and banana (Musa spp.) (56, 57). Healthy blueberry
(Vaccinium corymbosum) plants were found to be associated with more diverse rhizo-
sphere bacterial communities and higher iron content in the roots than unhealthy
plants (23). An in vitro study demonstrated that soil Fe-ethylenediamine-N,N9-bis(2-
hydroxyphenylacetic acid) (EDDHA) amendment has an additive and complementary
effect in suppressing Fusarium wilt (Fusarium oxysporum f. sp. cubense) disease severity
in banana (Musa spp.) grown in a disease-suppressive soil (17). The mechanisms of
such a complementary effect of iron in our study remain unclear, but the Mantel test
results suggest that the rhizosphere bacterial community was likely mediated by an
interaction between soil iron levels and turfgrass plants, which in turn impacted dis-
ease development.

The rhizosphere microbiome is recruited or expelled from the bulk soil through the
production of phytochemicals (58, 59), including many organic acids and secondary
metabolites (60). More specifically, previous work by Pii et al. (61) demonstrated that
plant iron status had a significant impact on the formation of rhizosphere microbiome
structures, possibly via the release of different qualitative and quantitative root exu-
dates. In our study, higher Fe in the bulk soil of MS samples may have induced produc-
tion of root exudates that then recruited a particular rhizosphere bacterial community
that was more suppressive to dollar spot development.

This study revealed several factors that may contribute to the hyperlocal variation
in dollar spot disease development commonly observed in amenity turfgrass. Our find-
ings suggest that putative antibiotic-producing members in the rhizosphere bacterial
community play a role in the suppression of dollar spot on turfgrass. Furthermore, soil
iron-plant interactions regulated the assembly of a suppressive rhizosphere micro-
biome, and this soil-plant-microbe interaction ultimately resulted in the observed vari-
ation in disease development on monocultured turfgrass over a small area. Future
studies on whether the disease-suppressive function can be transplanted into a non-
suppressive soil, and how turfgrass physiologically mediates root exudates to recruit a
disease suppressive rhizosphere microbiome by responding to different levels of soil
iron, will be critical in further exploring the hypotheses raised by this research. Measuring
enzyme activities using assays such as fluorescein diacetate hydrolysis will provide insights
into the actual microbial functions. In addition, study of other communities in the micro-
biome, such as archaea, fungi, and protozoa, will yield a more comprehensive
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understanding of the plant-soil-microbe interactions and may provide novel strategies for
disease suppression.

MATERIALS ANDMETHODS
Experimental design, sampling scheme, and sample preparation. The experiment was conducted

on a mature stand of creeping bentgrass (Agrostis stolonifera ‘Alpha’) at the O. J. Noer Turfgrass Research
Facility in Verona, WI. The turf was grown on a native Troxel silt loam and mowed three times per week
at a height of 1.25 cm. Eighteen turfgrass samples and the associated soil were randomly taken using a
soil sampler with a 13-cm diameter and a 15-cm depth in a 256-m2 square plot on 10 October 2019. The
samples were divided into a top layer (the top 7.5 cm) and a bottom layer (7.5- to 15-cm depth) by care-
fully inserting the soil sampler to the specified depths. Due to the nature of the turfgrass and soil proper-
ties, there was hardly any soil without direct contact with roots in the top layer and rarely any root pres-
ence in the bottom layer. Therefore, we defined the bulk soil as the soil from the bottom layer without
direct root contact. The soil samples of each layer were stored separately as turf and bulk soil samples.
The turf samples were then used for inoculation experiments after they were subsampled for rhizo-
sphere microbiome analysis. Bulk soil samples were subsampled from the homogenized bottom layer
soil for both microbiome and chemical property analysis. Two 1-cm-diameter subsamples to 5-cm depth
containing approximately 10 to 15 individual creeping bentgrass plants were taken from each turf sam-
ple for microbiome analysis using a custom-made soil probe, which was converted from a golf club that
produced soil cores in a 1-cm-diameter circular shape. The subsamples from the same turf sample were
immediately crushed with a sterile spatula and tweezer, and the soil loosely attached to the root system
was separated from plant and rhizosphere soil by aggressively shaking into a sterile glass petri dish.
Rhizosphere soil that remained closely attached to the root was then carefully collected using a spatula
by avoiding the root tissues. The intact turf samples, from which the subsamples were taken, were then
inoculated with 1 milliliter of dollar spot inoculum using a vaporizer within 1 h of sampling. The dollar
spot inoculum was created by growing C. jacksonii in potato dextrose broth for 72 h, rinsing three times
in distilled water, and homogenizing in sterile 0.85% saline water in a blender for 1 minute. The final
inoculum had an approximate C. jacksonii density of 4.1 � 104 CFU/ml, as determined by testing with tri-
plicated serial dilutions on potato dextrose agar.

After inoculation, the turf samples were incubated in a growth chamber at 25°C, 70% relative humid-
ity, and 15-h photoperiod. Each sample was placed on a sterile filter paper with an individual glass water
pan. The turf samples were maintained at a 0.5-cm height using sterile scissors, supplied with distilled
water through wetting the filter paper, and measured for dollar spot severity every other day for 16 days
(see Fig. S1 in the supplemental material). Dollar spot severity was assessed by taking digital photos
30 cm directly above the turf surface and counting the percentage of green pixels using imageJ. Bulk
soil samples were sent to the Cornell Nutrient Analysis Laboratory (Ithaca, NY) to analyze the chemical
properties, including pH; organic matter content; and Al, Ca, Cu, Fe, K, Mg, Mn, Mo, Na, P, S, Zn, C, and N
content according to procedures outline in Gugino et al. (62). Briefly, soil samples were dried in open
containers overnight and sieved to remove pebbles and plant tissues. Soil organic matter content was
measured by dry combustion at 550°C for 2 hours, and pH was measured as 1:1 soil to water solution by
volume using an automatic pH probe (Lignin, Albuquerque, NM). Soil nutrients were extracted using
Morgan’s solution and quantified with inductively coupled argon plasma spectrophotometry (Thermo
Fisher Scientific, Cambridge, UK).

Library preparation and short-amplicon sequencing. Overall, 36 soil samples (18 bulk soil and 18
rhizosphere soil samples) along with 1 negative control containing PCR-grade water were used in this
study. For each sample, 0.25-g soil was used for DNA extraction using a DNeasy PowerLyzer PowerSoil
kit (Qiagen Inc., Germantown, MD) following the manufacturer’s protocol. All extractions were quantified
for nucleic acid concentration using a NanoDrop 1000 instrument (Thermo Fischer Scientific, Waltham,
MA). The PCR was performed according to Dill-McFarland et al. (63) with minor modifications. Briefly,
each reaction contained 5 ml of the DNA template at 10 ng/ml, 12.5 ml Kapa HiFi HotStart ReadyMix, 6.5
ml PCR-grade water, and 0.5 ml of each barcoded forward and reverse primer (64), which targeted the v4
region of the 16S rRNA gene. The thermocycling conditions were 3min at 95°C prior to 25 cycles of 30 s
at 95°C, 30 s at 55°C, and 30 s at 72°C, with a final step of 5min at 72°C. The amplicons were purified
using a ZR-96 Zymoclean gel DNA recovery kit (Zymo Research, Irvine, CA) and normalized with a Mag-
Bind EquiPure library normalization kit (Omega Bio-Tek Inc, Norcross, GA). The amplicons were then
pooled and quantified to 4 nM with a Qubit double-stranded DNA (dsDNA) high-sensitivity (HS) assay kit
(Thermo Fischer Scientific). The final pool was sequenced on Illumina MiSeq instrument with a 2 � 250-
bp paired-end (PE) reagent kit v2 (Illumina, Inc., San Diego, CA) in the Biotechnology Center at the
University of Wisconsin–Madison.

Data analysis. The raw sequences were processed using the software package “DADA2” in R 3.6.0.
Forward and reverse reads were quality filtered to 248 and 160 bases, respectively, according to average
quality score, allowing a maximum of 2 errors each of the reverse and forward read; denoised by learn-
ing the error rate from pooled reads; and merged to a target length between 243 and 253 bases. The
taxonomy levels associated with each amplicon sequence variant (ASV) were assigned according to the
SILVA database (v.132) after removing the chimeras using de novo identification (“consensus” method in
function “removeBimeraDenovo”) in each sample. The ASV and taxonomic tables were then exported as
.txt files and analyzed using R packages “phyloseq” and “vegan.” The reads for each sample were nor-
malized using variance stabilizing transformation with the “DeSeq2” package due to a relatively even
read variation among the samples in the library (65). Microbial compositional differences and
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correlations were analyzed using Bray-Curtis dissimilarity [“vegdist()” in “vegan”] and visualized using
two-dimensional PCoA. Multivariate analysis was performed using PERMANOVA [“adonis()” in “vegan”]
or paired PERMANOVA with Bonferroni correction when the independent variable had more than two
levels, with the Bray-Curtis dissimilarity of the sample bacterial community as the dependent variable,
the disease susceptibility or disease severity of each DAI as the independent variable alone with DAI or
soil type as covariate when necessary, and each analysis with 999 permutations. The samples among
variable levels were checked with dispersion using “betadisper()” in “vegan,” which were all nonsignifi-
cant. Shannon diversities of HS and MS were compared using a nonparametric Wilcoxon rank-sum test
in JMP Pro 14 (SAS Institute, Cary, NC).

The microbial co-occurrence networks of HS and MS samples were constructed using Molecular
Ecological Network Analysis (MENA) (66), which uses a random matrix theory (RMT)-based method to
predict the microbial interactions and capture the magnitude of the interactions. The nodes and the
edge lists were then imported into Gephi 0.9.2 (67) for network visualization. Since approximately 90%
of the ASVs had less than 0.02% of overall reads, postnormalization ASVs that represented less than
0.02% of the total reads were filtered out to make the result more readable. The community of the HS
and MS microbial networks were compared to quantify the rewiring of the taxa in the networks by calcu-
lating the neighborhood shift and change of betweenness for the nodes using NetShift (68). Nodes with
the highest degree change among these parameters are considered drivers. When analyzed at family
and genus levels, the ASVs were aggregated at each taxonomic level to create the edge list. Microbial
balance analysis was performed using the “selbal” package in R at family and genus levels using unnor-
malized ASV counts, as the compositional nature of the short-amplicon sequencing result and the
uneven sequencing depths were both accounted for in the analysis (69). Differential relative abundances
were analyzed using Welch’s t test at a significance level of a = 0.05 in using Statistical Analysis of
Taxonomic and Functional Profiles (STAMP) (70).

Rhizosphere microbiome functional prediction was performed using the R-based tool Tax4Fun2 (24),
which used the sequences of the ASV to perform a blast search against the SILVA (v.132) reference ge-
nome database and to create a metagenome profile. The genetic functions were then assigned by
BLASTp against KEGG orthology (KO) (25) as a reference database. Differences in functional pathways at
level two were statistically analyzed using Welch’s t test in STAMP. The associations of Bray-Curtis dissim-
ilarity among bulk soil chemical properties, bulk soil microbiome, and rhizosphere microbiome samples
were examined using Mantel tests in R.

Soil chemical properties among the disease groups were statistically analyzed with the nonparamet-
ric Wilcoxon rank-sum test in JMP Pro 14 (SAS Institute, Cary, NC), and regression with average disease
severity of peak disease development stage (4 to 10 DAI) was performed using a stepwise selection for
the optimal predictive model in R. Collinearity variable selection and removal were performed using the
customized function vif_func (71) for calculating the variance inflation factor. The best model was con-
structed with backward selection using the function stepAIC under package “MASS.”

Data availability. All raw sequences generated from this study were deposited at the NCBI
Sequence Read Archive and are publicly accessible under the BioProject number PRJNA642971.
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