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Abstract
The discovery, in 2006, that loss-of-function mutations in the filaggrin gene (FLG) are the cause
of ichthyosis vulgaris – the most common disorder of keratinization – and also a strong genetic
risk factor for atopic eczema, marked a significant breakthrough in the understanding of eczema
pathogenesis. Subsequent investigations of the role of FLG null mutations have identified a series
of significant associations with atopic disease phenotypes, including atopic asthma, allergic
rhinitis and peanut allergy. However, many questions remain to be answered in relation to the
precise mechanisms by which deficiency of an intracellular protein expressed primarily in the
differentiating epidermis may contribute to the development of cutaneous and systemic pathology.
This review aims to highlight the key milestones in filaggrin research over the past 25 years, to
discuss the mechanistic, clinical and therapeutic implications and to consider possible future
directions for ongoing investigation.
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A brief history of filaggrin, from ichthyosis vulgaris to modern molecular
genetics

Ichthyosis vulgaris (OMIM #146700) is the most common inherited disorder of
keratinisation, with an estimated prevalence of between 1 in 80 and 1 in 250 English
schoolchildren (Brown et al., 2008a; Wells and Kerr, 1966). It is an autosomal
semidominant condition with incomplete penetrance and variable expressivity, such that
disease severity can vary considerably even within affected families (Smith et al., 2006).
The ichthyosis is often asymptomatic, although patients may complain of dry, rough skin
and cosmetic embarrassment. The disease is characterized by fine scaling which is most
apparent on the lower abdomen, extensor aspects of arms and lower legs, with sparing of the
flexures (Judge et al., 2004). The semi-adherent scales are white or grey and the ichthyosis
varies with environmental conditions, being more severe in cold, dry weather and sometimes
resolving completely in a hot, humid environment (DiGiovanni, 2003). The palms and soles
are not scaly, but show hyperlinearity, particularly on the thenar eminence (Brown et al.,
2009; Judge et al., 2004). Keratosis pilaris is another feature of ichthyosis vulgaris
(DiGiovanni, 2003; Mevorah et al., 1985), but since keratosis pilaris is also very common in
the normal population, it is not a discriminatory clinical sign (Brown et al., 2008a).
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Historically, several convergent lines of reasoning led to a study of the filaggrin gene as a
cause for ichthyosis vulgaris. Skin biopsies from patients with ichthyosis vulgaris showed a
reduction or absence of keratohyalin granules (the main component of which is profilaggrin)
by light microscopy (Manabe et al., 1991; Smith et al., 2006; Sybert et al., 1985) and by
electron microscopy the granules were noted to be abnormally shaped or completely absent
(Smith et al., 2006; Sybert et al., 1985). Immunostaining of ichthyosis vulgaris skin biopsies
showed a reduction in filaggrin protein expression (Fleckman et al., 1987; Sybert et al.,
1985) and a reduction in profilaggrin mRNA within keratinocytes was also reported
(Manabe et al., 1991; Nirunsuksiri et al., 1995; Nirunsuksiri et al., 1998). The recessive
mutant flaky tail mouse, an animal model of ichthyosis vulgaris, demonstrated genetic
linkage to the mouse epidermal differentiation complex (Smith et al., 2006) and it expressed
abnormal profilaggrin that is not proteolytically processed to filaggrin (Presland et al.,
2000). More recently, the phenotype of an absence of granules within the cells of the
granular layer was mapped to the epidermal differentiation complex (Mischke et al., 1996)
on chromosome 1q21 (Compton et al., 2002).

These observations date from the mid-1980s (Figure 1) and the profilaggrin gene was
partially sequenced in 1992 (Presland et al., 1992). However the identification of loss-of-
function mutations was delayed until 2006 because FLG is such a very large and repetitive
gene (Figure 2), making sequencing using conventional polymerase chain reaction (PCR)
technically difficult. The formidable challenge of fully sequencing FLG exon 3 was
eventually conquered by the use of long range PCR to amplify the whole of exon 3,
combined with short specific PCRs to amplify multiple overlapping fragments which could
then be used to reconstruct the repetitive sequence as a jig-saw (Figure 2)(Smith et al.,
2006). The initial two loss-of-function mutations (R501X and 2282del4) were thus
identified in the first repeat of FLG exon 3 (Smith et al., 2006).

The large and repetitive structure of the FLG gene remains a significant challenge for
routine PCR-based sequencing. However, detailed knowledge of selected SNPs, which are
unique to each repeat in the extensively studied white European DNA collections, has
facilitated the development of repeat-selective PCR primers for sequencing and genotyping
assays (Sandilands et al., 2007). The use of next generation sequencing techniques for FLG
genotyping is anticipated, but careful application will be required since it will be difficult to
accurately align relatively short sequence reads (e.g. 50-100 base pairs) across the highly
repetitive third exon, particularly in ethnic populations for which the FLG sequence is not
yet well annotated.

The presence of intragenic copy number variation (CNV) in FLG adds a further level of
complexity to the sequence analysis. Using Southern blot analysis, three common size
alleles encoding 10, 11 or 12 filaggrin repeats were correctly inferred (Gan et al., 1990).
These were subsequently confirmed by sequencing and shown to be due to duplication of
filaggrin repeat 8 or, duplication of both repeat 8 and repeat 10 (Sandilands et al., 2007).
Thus, null mutations aside, the number of filaggrin units varies from 20 to 24 in the human
population. Very recently, methods have been developed to allow the genotyping of
filaggrin CNV across large populations (Brown et al., 2011b). The CNV allele frequencies
in the Irish population were found to be 33.9% 10 repeats, 51.5% 11 repeats and 14.6% 12
repeats. The shortest genotype (10,10), carried by 11.5% of Irish people, was found to infer
an eczema risk of 1.67, independent of the loss-of-function mutations. Interestingly, when
null mutations are excluded, each additional filaggrin repeat gained decreases the odds ratio
for atopic eczema by 0.88 (Brown et al., 2011b). Thus, filaggrin CNV makes a significant,
dose-dependent contribution to eczema risk and even a modest 10-20% increase in
epidermal filaggrin expression is predicted to be therapeutic for eczema or protective against
developing eczema.
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It may be pertinent to ask why the strong association of FLG with atopic eczema was not
detected by earlier genome-wide association studies? There are a number of possible
explanations for this. One early genome-wide genetic study using microsatellite markers did
show linkage to the 1q21 locus (Cookson et al., 2001). Factors such as the type of markers
used and the study design based on allele transmission (rather than the current more
powerful case-control design using high density single-nucleotide polymorphisms – SNPs)
led to the importance of this locus being under-recognized. Furthermore, the very strong
association of FLG with atopic eczema that we now recognize, results from the combined
null genotype reflecting the effect of two or more null mutations, a mechanism that genome-
wide association using tagging SNPs is not designed to detect. The most recently published
genome-wide study was designed with SNPs tagging the FLG locus and a strong signal was
observed (Esparza-Gordillo et al., 2009). It remains to be determined whether this signal is
entirely attributable to FLG loss of function mutations or whether other genetic factors
nearby in the epidermal differentiation complex of genes also contribute to eczema risk.
CNV within the FLG gene contributes to eczema risk, independent of the null mutations
(Brown et al., 2011b). This has yet to be factored into interpretation of the genome-wide
association data for the 1q21 locus.

Profilaggrin and filaggrin are multi-functional proteins in the maintenance
of an optimal skin barrier

The large (>400kDa), insoluble polyprotein profilaggrin is dephosphorylated and degraded
to produce monomeric filaggrin in the stratum corneum and then further proteolyzed to
release its component amino acids. Profilaggrin, filaggrin and the amino acids each make
different contributions to epidermal structure and barrier function (Figure 3), but the exact
mechanisms by which profilaggrin and filaggrin, as intracellular proteins, contribute to what
appears to be a paracellular barrier defect (Gruber et al., 2011; Scharschmidt et al., 2009)
remain to be defined.

Profilaggrin forms the major component of the keratohyalin granules that are visible by light
microscopy within the granular layer of the epidermis. The profilaggrin molecule (Figure 2)
is composed of an N-terminal domain which has calcium-binding and nuclear localization
components, followed by 10, 11 or 12 nearly identical filaggrin repeats which have keratin-
binding properties, plus a C-terminal domain of unknown function (Sandilands et al., 2009).
Each of these components has a different function in the differentiating epidermis. The
S100-like calcium binding domain (Markova et al., 1993) may play a role in the regulation
of calcium-dependent events during terminal epidermal differentiation (Nirunsuksiri et al.,
1995; Presland et al., 1992) or conversely, calcium may be involved in the control of
profilaggrin processing (Presland et al., 2004; Sandilands et al., 2009). The N-terminal
domain is cleaved from profilaggrin and translocates to the nucleus where it may play a role
in the enucleation of keratinocytes in the outer stratum corneum (Sandilands et al., 2009).
The precise function of the C-terminal domain is unclear but it is known to be required for
the processing of profilaggrin to filaggrin. Loss-of-function mutations within FLG exon 3
result in a truncated profilaggrin molecule which lacks the C-terminus, resulting in an
almost complete absence of filaggrin monomers (Sandilands et al., 2007). Each of the
reported FLG null mutations therefore have an equivalent molecular biological effect, since
they each produce biochemically unstable truncated profilaggrin which cannot be processed
to release functional filaggrin.

Monomeric filaggrin binds to keratins 1 and 10 and other intermediate filament proteins
within the keratinocyte cytoskeleton to form tight bundles (Manabe et al., 1991), facilitating
the collapse and flattening of cells in the outermost stratum corneum to produce squames.
This process of cell flattening is still seen to occur in the absence of processed filaggrin, but

Brown and McLean Page 3

J Invest Dermatol. Author manuscript; available in PMC 2012 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



on an ultrastructural level, it appears that loss-of-function mutations in FLG may be
associated with disorganized keratin filaments, impaired lamellar body loading and
abnormal architecture of the lamellar bilayer (Gruber et al., 2011). A reduction in
corneodesmosome density and tight junction protein expression has also been observed in
the skin from ichthyosis vulgaris patients (Gruber et al., 2011). It is unclear as to how these
observations may be attributable to filaggrin deficiency from our current understanding of
filaggrin processing and they may represent secondary effects. Filaggrin contributes to the
protein-lipid cornified cell envelope which replaces the plasma membrane of differentiating
keratinocytes and is extensively cross-linked by transglutaminases, forming a barrier to
water loss and minimizing the entry of allergens and micro-organisms (Candi et al., 2005).

Filaggrin is ultimately deiminated and degraded on the skin surface to release its component
amino acids. A mixture of hygroscopic amino acids, at an estimated concentration of 100
millimolar (Candi et al., 2005) is produced, the so-called ‘natural moisturising factor’
(Rawlings and Harding, 2004), which contributes to epidermal hydration and barrier
function. FLG null mutations are associated with lower levels of hygroscopic amino acids in
the stratum corneum of human subjects, measured using Raman spectroscopy and there is a
concomitant increase in transepidermal water loss (Kezic et al., 2008).

Three published studies describing murine models of filaggrin haploinsufficiency have
shown a barrier impairment and enhanced percutaneous allergen sensitization (Fallon et al.,
2009; Man et al., 2008; Oyoshi et al., 2009). The barrier integrity phenotype associated with
FLG null mutations in human skin is currently emerging, with evidence of a significant
reduction in natural moisturizing factors in the stratum corneum, to which filaggrin
breakdown products contribute (Kezic et al., 2008; Kezic et al., 2011; O’Regan et al.,
2010b) as well as FLG genotype-related impairment in stratum corneum integrity and
cohesion (Angelova-Fischer et al., 2011). However, eczema severity is itself associated with
a reduction in natural moisturizing factor concentrations and the debate is set to continue
regarding the relative importance of epidermal defects and immune dysregulation as the key
initiating factors in eczema pathogenesis (Elias and Schmuth, 2009; Hudson, 2006;
Simpson, 2010; Vercelli, 2009).

Filaggrin is a histidine-rich protein (Lynley and Dale, 1983) and histidine is metabolized to
trans-urocanic acid (trans-UCA); pyrrolidone-5-carboxylic acid (PCA) is the other main
breakdown product of filaggrin and together these organic acids help to maintain the pH
gradient of the epidermis as evidenced by a higher surface pH in FLG null mutation carriers
(Jungersted et al., 2010). The ‘acid mantle’ of the stratum corneum has a well-known
antimicrobial effect and there is evidence that filaggrin breakdown products at physiological
concentrations demonstrate an inhibitory effect on the growth of Staphyloccus aureus
(Miajlovic et al., 2010). An acidic pH within the stratum corneum is also important for the
functional activity of enzymes involved in ceramide metabolism (Fluhr et al., 2010). The
acidic pH also modulates the activity of the serine protease cascade (Ovaere et al., 2009)
required for co-ordinated epidermal differentiation and cornified cell envelope formation.
Finally, a possible role of filaggrin breakdown products in UV photo-protection has been
suggested. The photo-isomerisation of trans- to cis-urocanic acid (Elias and Choi, 2005)
produces a molecule with an action spectrum of 280-310nm (McLoone et al., 2005) which is
within the UVB range and there is in vitro evidence that cis-UCA has immunomodulatory
actions in human keratinocytes and leukocytes (Gilmour et al., 1993; McLoone et al., 2005).
There is also recent in vitro evidence from an organotypic siRNA FLG knock-down model
that lack of filaggrin leads to a reduction in urocanic acid concentration and an increased
sensitivity to UV-induced apoptosis (Mildner et al., 2010).
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Filaggrin and filaggrin-related proteins are expressed in the skin of mammals including
monotremes, but these molecules are not well conserved and are difficult to identify in lower
animal orders. Filaggrin biology has been most extensively studied in mouse and canine
species (Chervet et al.; Fallon et al., 2009; Hoste et al.; Man et al., 2008; Marsella and
Girolomoni, 2009; Matsui et al.; Moniaga et al.; Oyoshi et al., 2009). These and other
experimental models will continue to contribute to our understanding of the functions of this
remarkable molecule.

Filaggrin haploinsufficiency plays a key role in phenotypic variation and common disorders
of the skin

Filaggrin haploinsufficiency (that is, a lack of filaggrin protein resulting from a heterozyous
loss-of-function mutation) contributes to several common dermatological disorders.
Ichthyosis vulgaris is a semidominant disorder in which individuals with two FLG null
mutations have a more severe phenotype than those with one FLG null mutation. The
characteristic skin scaling in ichthyosis vulgaris may logically be attributed to the known
functions of FLG, but the mechanisms by which FLG haploinsufficiency contributes to the
associated features of keratosis pilaris and palmoplantar hyperlinearity are currently
unknown.

Ichthyosis vulgaris is frequently associated with atopic eczema and hence it was a logical
next step to investigate the association of FLG null mutations with this disease. A significant
association was initially demonstrated in 15 Irish families and then replicated in three
separate case/control studies from Irish, Scottish and Danish populations (Palmer et al.,
2006). The strong and highly significant association of FLG null mutations with atopic
eczema has subsequently been replicated in over 20 independent studies, including case/
control studies, family studies and unselected population cohorts. Two recent meta-analyses
of these data have estimated the odds ratio of developing atopic eczema to be 4.78 (van den
Oord and Sheikh, 2009) and 3.12 (Rodriguez et al., 2009) in association with FLG null
genotype. The eczema sub-phenotype that is most strongly associated with FLG null
mutations is that of early onset, severe and persistent disease (Barker et al., 2007; Brown et
al., 2008b) and with the associated ‘extrinsic’ features of raised total IgE and allergic
sensitization (Weidinger et al., 2006; Weidinger et al., 2007). Population cohort studies
include atopic eczema of mild-moderate severity and this phenotype has also demonstrated
significant association with FLG null mutations (Brown et al., 2008a; Gruber et al., 2010;
Henderson et al., 2008). However, mild-moderate eczema shows a lower odds ratio than
moderate-severe eczema and its association with FLG null mutations may be significant
only in individuals carrying two null mutations (Brown et al., 2008a). Taking into account
all the clinical signs that may be attributable to FLG haploinsufficiency (including atopic
eczema, ichthyosis, xerosis, palmar hyperlinearity and keratosis pilaris), FLG null mutations
are highly penetrant (Brown et al., 2009).

In the light of the very significant association of atopic eczema with FLG null mutations,
several other sub-groups of eczema have been investigated for their link with filaggrin.
There is a well recognized genetic susceptibility to contact dermatitis (Kezic, 2011) but it is
often difficult to distinguish the sub-groups of irritant and allergic contact dermatitis from
atopic dermatitis, hence these genetic studies are difficult to interpret (Brown and Cordell,
2008; de Jongh et al., 2008; Lerbaek et al., 2007). Studies on FLG genotype as a risk factor
for experimentally-induced irritant dermatitis have given conflicting results (Angelova-
Fischer et al., 2011; Jungersted et al., 2010) and this may be due to methodological
differences in the concentration of irritant. Studies published to date have reported no
association of FLG genotype with allergic contact dermatitis defined by a positive patch test
result to one or more substance (Carlsen et al., 2010) nor with a subset of patients having
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both atopic eczema and contact allergy (Carlsen et al., 2011b). In contrast, FLG null
genotype has shown significant association with nickel sensitization, but only in a subgroup
of cases reporting intolerance of costume jewellery (Novak et al., 2008) and in a subgroup of
women who had not had their ears pierced (Thyssen et al., 2010b). The proposed
explanation for this observation is that ear piercing is a stronger risk factor than FLG
genotype (Ross-Hansen et al., 2010), emphasising the importance of environmental
exposures in allergy development as well as the need for careful phenotype definition in
genetic studies.

One small study has investigated FLG genotype as a risk factor for a type I hypersensitivity
reaction to latex (Carlsen et al., 2011a) and found no significant association. However this
study should be interpreted with caution since it included only three FLG heterozygotes and
therefore may not have had sufficient power to exclude a significant association.

Another subgroup of atopic eczema is the severe viral infection eczema herpeticum. Case-
control studies from European and African population groups have shown that the loss-of-
function mutation R501X confers an even greater risk of eczema herpeticum than atopic
eczema (Gao et al., 2009), suggesting a possible role for defective skin barrier in this viral
infection.

Two other common cutaneous disorders have been investigated with respect to a
hypothetical FLG association: psoriasis, because of its co-association with the 1q21 locus in
genome-wide scans (Bowcock et al., 2001); and acne vulgaris, because of a possible
protective effect of FLG null mutations (Sergeant et al., 2009). However, adequately
powered studies have shown that there is no association of FLG loss-of-function mutations
with psoriasis in the UK and Irish populations (Zhao et al., 2007) nor with acne vulgaris in
the Singaporean Chinese population (Common et al.).

FLG mutations contribute to genetic risk at each step of the atopic march
The ‘atopic march’ (Hahn and Bacharier, 2005; Spergel, 2010; Wuthrich and Schmid-
Grendelmeier, 2003) describes the tendency for atopic eczema to precede the development
of food allergies, asthma and allergic rhinitis in a temporal sequence. FLG null mutations
have been reported as a risk factor for each step in this march: atopic eczema (Palmer et al.,
2006); allergic sensitisation (van den Oord and Sheikh, 2009); the sub-group of asthma in
association with eczema (Brown et al., 2008a; Henderson et al., 2008; Marenholz et al.,
2006; Weidinger et al., 2008b); allergic rhinitis (Schuttelaar et al., 2009; Weidinger et al.,
2008b); and most recently peanut allergy (Brown et al., 2011). Thus, FLG null alleles are a
significant risk factor for all aspects of atopy, but with differing odds ratios for each specific
phenotype. Overall these studies underscore the role of skin barrier dysfunction as a key
driver of allergic disease.

FLG loss-of-function mutations show population specificity
Since the discovery of the first two FLG loss-of-function mutations (R501X and 2282del4)
in 2006 (Smith et al., 2006), these two mutations along with the less prevalent S3247X and
R2447X have been extensively studied and are present in 7-10% of the white European
population. Subsequently a total of more than 20 other rare or family-specific loss-of-
function mutations within FLG exon 3 have been discovered in populations of white
European ancestry. However, these mutations are population-specific and cannot be used for
the basis of genetic epidemiology studies in other populations. The population specificity of
FLG null mutations indicates that they have arisen after one population has become split
away from another. Thus populations arising from common ancestors share common
ancestral mutations, but populations that have not experienced genetic admixture show
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different mutations. The presence of rare and family-specific mutations indicates that FLG
null mutations are still arising within the UK and Irish populations that we have studied.

Asian populations have been shown to have their own mutation spectra, following detailed
study of the Japanese population (Enomoto et al., 2008; Hamada et al., 2008; Nemoto-
Hasebe et al., 2009b; Nomura et al., 2008; Nomura et al., 2009; Nomura et al., 2007; Osawa
et al., 2010) and more recently the Han Chinese (Zhang et al., 2011) and Singaporean
Chinese populations (Chen et al., 2011; Chen et al., 2008). In the white European population
two prevalent FLG mutations account for over 80% of the FLG null alleles, whereas in the
Singaporean Chinese population there are eight different FLG null mutations that account
for 80% of the spectrum of FLG mutations (Chen et al., 2011).

The filaggrin story represents an unusual situation in complex trait genetics because the
causative variants are either nonsense or frame-shift mutations in a protein-encoding exon
and therefore new causative variants can be identified purely from their sequence. In
contrast, the vast majority of loci detected in other complex traits are anonymous regions of
DNA conferring disease susceptibility. Such loci are not clearly associated with a specific
gene and the causative variant(s) either remain unknown or require considerable functional
analysis to confirm and understand them. In the case of filaggrin, the readily identifiable
causative mutations have revealed the complex genetic architecture of this locus, where each
ancestral population has it own unique spectrum of mutations, some rare and some common,
each of which are found on a different haplotype of nearby SNPs. Thus, individual SNPs can
only reveal part of the signal coming from the FLG locus, further masking its importance in
conferring eczema susceptibility.

A smaller number of FLG loss-of-function mutations have so far been reported in other
Asian populations, including Korean (Kang et al., 2009), Taiwanese (Hsu et al., 2009), and
Bangladeshi (Sinclair et al., 2009) ichthyosis vulgaris and atopic eczema case collections
plus one European patient whose mother was from the Philippines (Greisenegger et al.,
2010). Until recently, FLG null mutations had not been detected within African populations
and an Ethiopian study, including direct sequencing of FLG in 40 cases, has identified only
one loss-of-function mutation (Winge et al.). Furthermore, skin biopsies taken from 7 of the
Ethiopian cases with palmar hyperlinearity did not show a reduction in filaggrin expression
as expected on immunohistochemistry (Winge et al.). These are small numbers from which
to draw any firm conclusions, but this study suggests that ichthyosis vulgaris in the
Ethiopian population may have a different genetic mechanism from that seen in Europeans.

The prevalence of FLG null mutations varies across Europe, but R501X and 2282del4 are
the two most common mutations and they have consistently shown significant association
with atopic eczema across the continent (Rodriguez et al., 2009), with the one exception of
the Italian population. R501X and 2282del4 are rare in Italian atopic eczema cases (allele
frequency <1% for each)(Giardina et al., 2008) and full sequencing of FLG exon 3, exon 2
and the promoter region in a total of 220 Italian atopic dermatitis patients identified only 3
additional mutations and no association with atopic eczema (Cascella et al., 2011). The
pattern of FLG mutations in other Mediterranean populations has not yet been examined but
the Italian data suggest that different genetic factors may predispose to atopic eczema in
these populations and this warrants further investigation.

Filaggrin mutations may act as genetic modifiers in rare genodermatoses
It has been reported that the co-existence of FLG null mutations may be associated with a
more severe phenotype of X-linked ichthyosis (Liao et al., 2007) and pachyonychia
congenita (Gruber et al., 2009) within an affected family. However, it is not possible to be
certain whether FLG is truly acting as a genetic modifier of disease in these single pedigrees
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because each disease shows considerable inter-individual variation and greater numbers of
cases will be needed to clarify this question.

What is the role of FLG-related barrier dysfunction in other inflammatory diseases?

Other inflammatory barrier diseases, including Crohn’s disease, ulcerative colitis and
sarcoidosis, share common susceptibility loci with atopic eczema (O’Regan et al., 2010a;
Schreiber et al., 2005) but do not show association with FLG null mutations (Ruether et al.,
2006; Van Limbergen et al., 2009).

Autoantibody formation to citrullinated profilaggrin is a highly sensitive and specific
serological marker for rheumatoid arthritis (Sanmarti et al., 2009) and can predate the onset
of joint disease (Perez et al., 2007). Levels of anti-filaggrin antibody may also correlate with
arthritis activity (Choi et al., 2005). However, filaggrin is not expressed in articular tissues
and these autoantibodies appear to be produced as a result of cross-reaction between
deiminated peptide sequences which are present within fibrin chains in the synovium
(Mohrenschlager et al., 2006) and deiminated sequences produced during the post-
translational processing of profilaggrin (Perez et al., 2007). Anti-filaggrin antibodies are
therefore not believed to be pathogenic (Van Steendam et al., 2011). FLG null mutations
R501X, 2282del4 and 3702delG, have been studied in rheumatoid arthritis patients and
controls (Huffmeier et al., 2008) and FLG mutation carriers showed no increased risk of
developing rheumatoid arthritis. However in a separate study FLG heterozygotes did show
significantly elevated levels of autoantibodies to citrullinated peptides compared to controls
(p=0.018)(Van Steendam et al., 2011) and FLG null mutations may therefore contribute to
the development of humoral autoimmunity in early rheumatoid arthritis (Huffmeier et al.,
2008) by an as yet undefined mechanism.

Alopecia areata is a tissue-specific autoimmune disease and genetic factors make a
significant contribution to its aetiology (Petukhova et al., 2010). Alopecia areata is known to
be associated with atopic disease and it has been shown that co-morbidity with atopic
eczema as well as the FLG null variants (R501X and 2282del4) predict a more severe form
of alopecia areata (Betz et al., 2007; Goh et al., 2006).

FLG demonstrates gene-environment interactions
Eczema is a complex trait, in which multiple genetic and environmental factors contribute to
pathogenesis and the interactions of several putative environmental risk factors for atopic
disease with FLG genotype have been investigated. It has been hypothesized that FLG
haploinsufficiency may weaken the epidermal barrier and hence potentiate the effects of
environmental allergens (Bisgaard et al., 2008) resulting in eczema. Birth cohort studies
from Denmark and the UK have shown that cat ownership early in life increases the risk of
atopic eczema as an additional effect on top of the risk associated with FLG null genotype,
whereas dog exposure has no effect (Bisgaard et al., 2008). A separate cohort study from the
Netherlands has replicated this finding, showing an increased risk of atopic eczema in FLG
null mutation carriers that is further enhanced by early-life exposure to cats (Schuttelaar et
al., 2009). However, these data are difficult to interpret mechanistically because, whilst
other studies have shown an association of FLG null mutations with raised IgE to cat dander
(Henderson et al., 2008) and a significant correlation with atopic eczema severity and
specific IgE level for cat dander (Nemoto-Hasebe et al., 2009a), there was no such
association with sensitization in the Danish or English cohorts.

Another key environmental influence early in life is the presence or absence of other
children, including siblings and contacts in the day-care situation, since these individuals
may result in contact with pathogens and allergens. Again these complex epidemiological
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data are difficult to interpret. A risk analysis of early childhood eczema from a high-risk
cohort of children born to mothers with asthma showed no association with time spent in
day-care (Bisgaard et al., 2009) but interaction with FLG genotype was not examined.
Conversely, two large birth cohort studies from Germany (Cramer et al., 2010) have shown
that children with FLG null mutations have a significantly higher risk of eczema if they have
an older sibling and attendance at a day-care centre lessened this risk (Cramer et al., 2010).
Environmental influences on eczema pathogenesis are therefore not clearly defined and
these findings demonstrate the importance of stratification for FLG genotype in future
epidemiological studies.

The development of irritant and allergic contact dermatitis is largely dependent on
environmental exposure to the irritant or allergic substances, but FLG genotype is also a
strong risk factor. However, as discussed above, it is currently unclear whether FLG
haploinsufficiency is the risk per se, or whether the risk is mediated via atopic eczema.

The co-existence of FLG mutations and early food sensitization has been shown to improve
the positive predictive value for childhood asthma (Marenholz et al., 2009). This observation
was interpreted as a representation of two distinct mechanisms interacting in the
pathogenesis of asthma (Marenholz et al., 2009). However, it is also possible that the
increased risk of asthma occurs as a result of gene-environment interaction between FLG
and food allergen exposure. A deeper understanding of the mechanisms within the atopic
march will be required for the correct interpretation of these interesting observations.

Filaggrin deficiency forms one portion of a common pathway in eczema
pathophysiology

The filaggrin story demonstrates how the study of a monogenic disorder can provide insight
into complex trait disease and the striking significance of FLG null mutations as a genetic
risk factor for atopic eczema has placed a new focus on the role of barrier impairment in
eczema pathogenesis. There is an inherent barrier defect in atopic skin which is present even
in the absence of eczema (Flohr et al., 2010; Jakasa et al., 2006; Jakasa et al., 2007) and it is
clear that barrier dysfunction can occur as a result of many different molecular mechanisms
– independently of filaggrin – but these are outwith the scope of this current review.
Focussing on filaggrin, it is apparent that not all filaggrin deficiency is related to FLG null
mutations and down-regulation of filaggrin may be brought about by the interplay of other
factors. The degree of barrier impairment assessed by transepidermal water loss and stratum
corneum hydration shows some correlation with FLG null genotype (Jakasa et al., 2011),
although active inflammation further increases the degree of transepidermal water loss
(Flohr et al., 2010; Nemoto-Hasebe et al., 2009a). Acute eczematous inflammation itself
down-regulates filaggrin expression (Howell et al., 2007) and inflammatory cytokines have
been reported to down-regulate filaggrin expression in vitro, including interleukins-4 and
−13 (Howell et al., 2007), IL-22 (Gutowska-Owsiak et al., 2011) and IL-25 (Hvid et al.,
2011b). Inflammatory cytokines may also down-regulate enzymes required for profilaggrin
processing: IL-22 down-regulates cathepsin D in vitro (Gutowska-Owsiak et al., 2011) and
Th2-associated cytokines have been shown to reduce caspase 14 mRNA levels in cultured
keratinocytes (Hvid et al., 2011a). Similarly, genetic variation in enzymes known to play a
role in profilaggrin processing, including caspase 14 (Denecker et al., 2007; Hoste et al.,
2011), SASPase (Matsui et al., 2011), calpain I and bleomycin hydrolase (Kamata et al.,
2011) may affect the levels of functional filaggrin monomers. In this way inflammatory
mediators and enzymatic processing within the stratum corneum may each lead to filaggrin
deficiency, forming a common pathway in eczema pathophysiology.
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Large collaborative projects are required for the investigation of genetic
effects on a population level

One of the hidden stories within the filaggrin field is the fact that many of the significant
findings described above have resulted from the collaborative work of national and
international groups of skin scientists and clinicians. The work required ‘behind-the-scenes’
to co-ordinate such collaborations is not formally reported, but is clearly an important part of
the success of large studies. Similarly, the organization required to collect high quality
samples and clinical data from birth cohorts, case collections and population-matched
control groups is a very significant undertaking. Within the field of eczema research there
are now several large cohorts and case collections which have been used to further our
understanding of the role of FLG genotype, including the Irish case collection based in
Dublin (Brown et al., 2011; O’Regan et al., 2010a; O’Regan et al., 2010b; Sandilands et al.,
2007; Weidinger et al., 2008a), MAS (Marenholz et al., 2006), KORA (Novak et al., 2008;
Weidinger et al., 2008a) and ETAC (Muller et al., 2009) in Germany, GENUFAC in
Northern Europe (Marenholz et al., 2006), PIAMA in the Netherlands (Schuttelaar et al.
2009), COPSAC in Denmark (Bisgaard et al. 2008; Bisgaard et al. 2009), ALSPAC
(Henderson et al., 2008; Weidinger et al., 2008a), NCCGP (Brown et al., 2009; Brown et al.,
2008a) and the EAT Study (Flohr et al., 2010) in England, ADVN in the USA (Gao et al.,
2009), a Danish population sample (Thyssen et al., 2010a), a Canadian peanut allergy cohort
(Brown et al., 2011) and internationally, the ISAAC (Weidinger et al., 2008b). These
clinical resources will undoubtedly be useful in future studies and the established
collaborative networks may be used to facilitate clinical trials forthcoming from the
translational work as a result of new insight into genetic factors in eczema pathogenesis.

What may the next 25 years hold for the field of eczema genetic research?
Key strategic goals for the field of eczema genetics in the next 25 years may be categorized
into understanding pathomechanisms, methods for the prevention of atopic disease and
therapy development (Figure 1).

There are several rather fundamental questions that remain to be answered in relation to the
filaggrin molecule: what are the patterns of filaggrin expression throughout the body; what
are the mechanisms by which profilaggrin/filaggrin/amino acids act in healthy tissues; and
how exactly does filaggrin deficiency lead to eczema and other atopic diseases? We can be
reasonably optimistic that answers to these questions are likely to emerge over the coming
years, particularly in view of the worldwide interest in filaggrin research. The field of
complex trait genetics is progressing rapidly but one specific challenge is the dissection of
the multiple gene-gene interactions that are likely to contribute to the heritability that
remains to be explained in atopic eczema. Some genetic interactions with FLG have already
been identified: FLG is known to show an independent and multiplicative effect with an
eczema risk variant on 11q13.5 (O’Regan et al., 2010a) and with polymorphisms in the
genes encoding IL-10 and IL-13 (Lesiak et al., 2011). However many other examples of
genes interacting in the pathogenesis of atopic eczema are likely to emerge and these may
well provide opportunities for disease prevention and novel therapies. It is hoped and
anticipated that the application of next generation sequencing will speed up progress in the
discovery of additional eczema genes. An understanding of the importance of FLG
mutations in each population group will also facilitate the identification of other important
genetic factors. In parallel with this, progress within the field of bioinformatics and
statistical genetics is vital in order to make sense of the vast quantities of data produced by
the latest high-throughput sequencing.
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A clearer understanding of gene-environment interaction is needed in order to explain the
dramatic rise in incidence of atopic disease in the industrialized nations over the recent
decades. This will require careful epidemiological study of human populations, but the use
of mouse models of atopic disease will also be useful in allowing experimental manipulation
of both genetic and environmental effects. Gene-environment interactions are key to future
preventative strategies, with the ultimate aim of preventing atopic eczema and halting the
atopic march.

Another unanswered question is why filaggrin mutations are so prevalent in various human
populations? It has been suggested that filaggrin deficiency may confer some heterozygote
advantage and that “natural vaccination” against microbial pathogens via the skin barrier
may have driven natural selection for these sequence variants during pandemics in our
ancient past (Irvine & McLean, 2006). Filaggrin deficient animal models should allow this
question to be addressed experimentally in the future (Fallon et al., 2009).

There is potential for the application of filaggrin research to novel
therapeutic approaches and personalized medicine

The understanding that has been gained from filaggrin research offers real potential for
future improvements in the therapies available for atopic disease. It is clear that the clinical
phenotype of ichthyosis vulgaris-related eczema has a poor prognosis in terms of atopic
eczema as well as associated atopic asthma, allergic rhinitis and food allergy. We may
therefore sub-classify atopic eczema cases according to FLG genotype for the purposes of
pharmacogenetic studies. Feasibility studies are currently underway in the UK and USA to
investigate the therapeutic potential of barrier enhancement using emollients (BEEP, 2011)
and experimental evidence is emerging to show that the FLG gene is amenable to up-
regulation. Clarification of the relative importance of the different functions of profilaggrin/
filaggrin/amino acids (Figure 3) will allow the further development of strategies to enhance
or replace these molecules within human skin.

It is noteworthy that eczema, in contrast to psoriasis, currently lacks any widely effective
biological treatment and a clearer understanding of the key functional mechanisms in atopy
will be required to identify appropriate biological targets. In the meantime, there is an
opportunity to focus on barrier improvement with bespoke emollients such as ceramide-lipid
(Elias, 2011) or filaggrin replacement. These barrier improvement therapies have a lower
likelihood of undesirable systemic immune effects. Other potential therapeutic strategies
include the use of a peroxisome-proliferator-activated receptor-alpha (PPARα) ligand along
with topical corticosteroid therapy, since PPARα ligand has been shown in a mouse model
to have anti-inflammatory synergy whilst reducing the barrier impairment that results from
topical steroids used in isolation (Hatano et al.). TNF-alpha antagonists improve the skin
barrier in psoriasis (Kim et al., 2011) and therefore may also be beneficial in eczema.

Concluding remarks
In conclusion, the discovery of loss-of-function mutations within the filaggrin gene
represents the single most significant breakthrough in understanding the molecular genetic
mechanisms of a wide range of atopic and allergic disorders. Future research into the
remarkable filaggrin molecule holds great potential to improve the care of atopic eczema
patients and ultimately to prevent the development of atopic disease.
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Figure 1.
Historical perspective on filaggrin research
Insert shows immunohistochemical staining of human epidermis, with filaggrin in green,
basal-specific keratin 5 in red and nuclei stained blue.
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Figure 2.
Diagrammatic representation of FLG gene structure and sequencing strategy?
FLG is a large gene located on chromosome 1q21, within the epidermal differentiation
complex, a dense cluster of genes involved with keratinocyte terminal differentiation. The
gene product is profilaggrin, an insoluble polyprotein which is proteolyzed to release
functional filaggrin monomers. Full sequencing of the FLG gene is time-consuming and
requires 10 or more PCR reactions and more than 30 sequencing reactions. UTR,
untranslated region; bp, base pairs; PCR, polymerase chain reaction
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Figure 3.
Profilaggrin, filaggrin and their constituent amino acids are multifunctional proteins
contributing to the formation and function of the skin barrier
Diagram summarizing the known and possible functions of profilaggrin, filaggrin and amino
acids released by filaggrin proteolysis.
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