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Abstract: Exposure to various agricultural pesticides has been linked to colorectal cancer (CRC),
mostly among farmworkers and applicators. Given the potential pesticide drift in ambient air,
residents near farmland may be exposed to carcinogenic pesticides even if they are not actively
engaged in pesticide application. Pesticide air pollution at the county level was estimated using the
2014 National Air Toxics Assessment. CRC incidence data were acquired from the Arkansas Central
Cancer Registry for 2013–2017. We ran ordinary least squares (OLS) regression models, finding
significant spatial autocorrelation of residuals for most models. Using geographically weighted
regression (GWR) we found age-adjusted CRC incidence rates vary in an increasing west-to-east
gradient, with the highest rates in the Arkansas Delta region. A similar gradient was observed in
the distribution of the population living below the poverty line and the population percentage of
Black people. Significant associations between Trifluralin (crude model only), Carbon Tetrachloride,
and Ethylene Dibromide with CRC incidence rates in OLS models only explained 5–7% of the
variation and exhibited spatial autocorrelation of residuals. GWR models explained 24–32% (adjusted
r2 9–16%) of CRC incidence rate variation, suggesting additional factors may contribute to the
association between pesticides and CRC.

Keywords: pesticide; ambient; colorectal cancer; geospatial

1. Introduction

The overall mortality rate for invasive colorectal cancer (CRC) has steadily declined
over the past decade. However, CRC remains the second most common cause of cancer-
related deaths in the United States [1]. Similar to many other cancer types, there are some
genetic mutations associated with CRC [2,3]. There are also many lifestyle [1] and environ-
mental factors [4–8] that may enhance the likelihood of such cancers. It is still relatively
unknown whether environmental exposures and/or lifestyle factors may exacerbate cancer
outcomes among CRC patients.

The mortality rate of CRC remains the highest in the Mississippi (MS) River Delta,
which includes the Arkansas (AR) Delta [9]. This cancer health disparity has been attributed
to various factors, such as higher proportions of elderly residents, higher proportions of
minorities, lower socioeconomic status, poor access to resources, and diet [1,9]. Agricultural
pesticide exposure, including herbicides, insecticides, fungicides, and many others, is
commonly thought to be linked to CRC risk [5,10,11]. Pesticide exposure can result from
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occupations relating to farming, pesticide application, and manufacturing. Additionally,
spouses of farmers, those living in rural areas, those who eat non-organic foods, or those
who apply or have pesticides applied to their yards can also be exposed [12–14].

Pesticides contribute to many types of pollution, including soil, water, and air pollution.
The air can also be contaminated through pesticide drift. This phenomenon occurs because
pesticides are emitted into the air when applied using a sprayer in a dry particle form [15].
Once pesticides enter the atmosphere, they can be moved through the air and across the
land to areas where the pesticide was not applied [16]. This can include crops and fields
that are near a pesticide application spot. When pesticides drift through the air and settle
on food that was not a part of the original pesticide application, humans can be exposed to
the pesticides from these contaminated crops [15,16].

The National Air Toxics Assessment (NATA) by the Environmental Protection Agency
(EPA) provides a systematic evaluation of air toxics in the U.S. since 1996 [17]. Air toxics
include hazardous air pollutants and diesel particulate matter. To date, there have been
six versions of the NATA. The latest assessment occurred in 2014 and was released in
2018. The NATA provides a variety of information, including types of pollutants, sources
of emissions, possible long-term health risks due to emission exposure, and cancer risk
estimation based on breathing air toxics over many years. The NATA data are collected
from the 48 contiguous states and include ambient air measurements for 131 chemicals
aggregated to the county level. The 2014 NATA used in this study contains information for
180 air toxics and diesel particulate matter [17].

Exposure to air toxics is related to increased cancer incidence rates and other adverse
health effects. The level to which individuals experience these health effects depends on
the type and concentration of pollutants they are exposed to, the frequency and length of
exposure, and their health characteristics. The NATA takes emissions data and estimates
health risks based on these factors. Many pesticides included in this analysis are reason-
ably anticipated to be human carcinogens based on their relationship to increased cancer
incidence and risk.

Exposure to various agricultural pesticides has been linked to CRC [18]. Given the
potential pesticide drift in the ambient air, residents near farmland may be inadvertently
exposed to carcinogenic pesticides even if they are not actively engaged in the pesticide ap-
plication. By investigating the relationship between ambient air concentrations of pesticides
and CRC incidence rates, the resulting information could help lead to policies concerning
the methods of applying pesticides to reduce the risk of CRC. The investigated chemicals
in this study focused on pesticides with known carcinogenic characteristics present in a
recent review article that examined the relationship between pesticide exposure and CRC
incidence rates [19]. We hypothesized that aggregated ambient air pesticide concentrations
are associated with CRC incidence rates at the county level. We presented a novel geospatial
assessment of the relationship between six specific pesticide chemicals found in ambient
air in Arkansas and CRC incidence rates from 2013 to 2017.

2. Materials and Methods

We used the 2014 edition of the NATA released in 2018 to estimate air pollution from
pesticides. The methodology used to gather and organize the NATA data is described
in detail by the EPA [20]. Cancer incidence data from the AR Central Cancer Registry
for the years 2013–2017 was used [21]. This dataset includes the number of cases, the
crude cancer rate, and the age-adjusted cancer rate for all invasive cancers reported in
AR, from which we extracted age-adjusted CRC incidence rates per 100,000. We acquired
population characteristics at the county level from the U.S. Census Bureau and the American
Community Survey [22], which included the population percentage over 65, percentage
living under the poverty line, percentage of Black people, and percentage of males.

We mapped each of the 131 chemicals from the NATA at the county level for the
state of AR using ArcGIS Pro mapping software (Esri, Redlands, CA, USA). Chemical
concentrations were classified into five categories using Jenks natural breaks classification
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to visualize the distribution and gradients across the state. Following initial exploratory
analyses and based on a recent review we conducted on the association between pesticides
and CRC [19], we selected six chemicals for this study. The selected chemicals are commonly
used as pesticides and in other agricultural activities. They are 2,4-dichlorophenoxyacetic
acid (2,4-D), carbon tetrachloride, carbon disulfide, ethylene dibromide, methyl bromide,
and trifluralin.

We performed ordinary least squares (OLS) regression for the selected chemicals and
demographic variables with CRC incidence rate as the dependent variable. Spatial data
commonly exhibit relationships that vary over space, such as positive associations in one
area and negative associations in another. This is called nonstationarity. To address this,
we further performed geographically weighted regression (GWR) in ArcGIS Pro. GWR
creates a separate regression equation for each county, allowing the relationships between
the pesticide, demographic, and cancer incidence to vary across the state, avoiding the
problem of nonstationarity. For each model, we conducted Global Moran’s I tests of spatial
autocorrelation on the model residuals. A statistically significant Global Moran’s I test result
indicates spatial clustering of the errors, a potential indicator of model misspecification.

3. Results

Age-adjusted CRC incidence rates vary across AR in an increasing west-to-east gradi-
ent, with the highest rates in the AR Delta region (Figure 1). A similar gradient is observed
in the distribution of the population living below the poverty line (Figure 2b) and the
population percentage of Black people (Figure 2c). The other two demographic factors,
the population percentage over age 65, and the percentage of males (Figure 2a,d), did
not appear to exhibit the same spatial pattern at the county level. Among the selected
chemicals, only the distribution of trifluralin appeared to exhibit an obvious west-to-east
increasing gradient when mapped using Jenks natural breaks (Figure 3f).
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The OLS results are shown in Table 1, along with Global Moran’s I results. Trifluralin
was significant (p = 0.03) in the crude model, yet only explained approximately 5% of the
variation in CRC incidence rates at the county level; it was not significant in the adjusted
model. Both Carbon Tetrachloride and Ethylene Dibromide were significant (p = 0.03 and
p = 0.029 respectively) in the adjusted model, but similarly explained only about 7% of the
variation in CRC incidence rates. The residuals from the OLS models are shown in Figure 4,
where red represents underestimates and blue represents overestimates of CRC incidence
rates. For all six chemicals, a gradient was apparent with overestimates more common in
the western part of the state and underestimates more common in the eastern part of the
state (i.e., in the AR Delta). This apparent spatial pattern of OLS residuals was confirmed
with the Global Moran’s I test of spatial autocorrelation, which found significant (p < 0.05)
spatial clustering of residuals in each chemical’s crude OLS model, and in four of the six
adjusted models. Spatial clustering of OLS residuals indicates a spatial structure of the data
not captured by the OLS model.
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Table 1. Ordinary least square regression for the relationship between selected agricultural chemicals
and CRC at the county level. Global Moran’s I results of spatial autocorrelation on OLS residuals.

Chemical Name Model 1 * Model 2 *

Adj. R2 p-Value Moran’s I p-Value Adj. R2 p-Value Moran’s I p-Value

2,4-D −0.009 0.556 0.274 <0.001 0.031 0.164 0.148 0.021

Carbon
Tetrachloride 0.015 0.152 0.267 <0.001 0.069 0.030 0.140 0.028

Carbon
Disulfide −0.003 0.375 0.294 <0.001 0.007 0.625 0.130 0.040

Ethylene
Dibromide 0.023 0.102 0.251 0.001 0.070 0.029 0.123 0.050

Methyl
Bromide 0.005 0.243 0.273 <0.001 0.055 0.056 0.138 0.030

Trifluralin 0.050 0.030 0.199 0.010 0.027 0.200 0.075 0.208

* Model 1: Crude model; Model 2: Adjusted for county population characteristics presented in Figure 2.

GWR models were created for each chemical corresponding to the adjusted OLS
models, resulting in R-squared values ranging from 0.244 to 0.318, and adjusted R-squared
values ranging from 0.083 to 0.164 (Table 2). The GWR residuals are more randomly
distributed when compared with the OLS residuals (Figure 5), confirmed by Global Moran’s
I results.
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4. Discussion

Each of the six selected pesticide chemicals exhibited a nonrandom spatial distribution
in AR, as evidenced in the spatial patterns of the OLS residuals (Figure 4). These distribu-
tions violate the assumption of independence of observations, which partially explains the
poor explanatory power of the OLS models, peaking at approximately 5% for trifluralin
(see Table 1, Model 1). By allowing the regression equations to vary spatially with GWR, the
problems of spatial autocorrelation of model residuals and nonstationarity were remedied
and explanatory power grew substantially (ranging from 24.4 to 31.8%, see Table 2). This
geospatial study examining the relationship between the concentration of several pesticides
in the ambient air and CRC incidence suggests nonstationarity or relationships that vary
over space. This means the relationship between a given pesticide, demographic factors,
and CRC incidence partially depends on resident location rather than reflecting a constant
and/or global linear relationship.

Heightened cancer mortality disparity in the AR Delta, particularly for CRC, has
been reported since 2007 and has drawn the attention of both the scientific and media
communities [1,9,23–27]. It has primarily been attributed to poverty and lack of CRC
screening [9,24,25]. Significant efforts have been devoted to increasing CRC screening
among Black populations in the AR Delta. We have observed a steady increase in CRC
screening among Black populations based on the results from the Behavior Risk Factor
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Surveillance System telephone surveys [28]. However, the CRC mortality rate remained
high in the region.

There has been considerable interest and concern about possible adverse health effects
from persistent environmental pesticides as early as the 1960s [29]. A study compared
the serum pesticide levels of adolescent CRC patients and their family members, from
MS, AR, and Tennessee (TN) treated at St. Jude Children’s Hospital in Memphis, TN
between 1974 and 1976 [30] to that of the general population in MS. They found blood
pesticide levels on average among 10 out of 13 participants were not significantly higher
than those of the MS general population. Two patients had exceptionally high levels
of total dichloro-diphenyl-trichloroethane (DDT) (more than 200 parts per billion). One
patient’s parents had significantly elevated levels of DDT. Other pesticides, such as dieldrin,
β-hexachlorocyclohexane, and heptachlor, were examined but were not systematically
higher than the comparison group. A few exceptional concentrations of these chemicals
were reported among these adolescents or their family members. Serum pesticide residue
levels are indexes for both intake and mobilization from adipose tissue stores. However,
they may or may not reflect the levels of pesticides in the environment, the colon, or
rectum, nor information on the route of exposure. Additionally, it is particularly worth
mentioning that these pesticides were detectable among all patients and even among the
comparison group. It is a concern how widespread the exposure to these pesticides was
among the general population in the MS River Delta; thus, the comparison group used in
this cross-sectional study may not have been appropriate.

Our group has recently reviewed the effect of the six pesticides examined for CRC [19].
Trifluralin is an herbicide that interrupts mitosis to prevent root development and is toxic
to aquatic life because degradation results in different products. The International Agency
of Research on Cancer (IARC) concluded in 1991 that, although trifluralin was found to
be positively associated with non-Hodgkin’s lymphoma, there was insufficient evidence
that trifluralin is a human carcinogen [31]. More recent reviews of the relationship between
pesticide exposure and CRC concluded that a medium to large positive association exists
between exposure to trifluralin and colon cancer [10,32,33]. A chlorophenoxy herbicide,
2,4-dichlorophenoxyacetic acid (2,4-D), is a growth regulator and is degraded in soil. Fer-
tility problems in males have been related to 2,4-D, and the IARC has classified 2,4-D as
a possible human carcinogen [34]. Two reviews that examined the association between
specific pesticide exposure and CRC risk concluded that 2,4-D has a significant, medium to
large positive association with colon cancer [10,33] and has also found to be significantly
associated with rectal cancer [35]. This is of high concern because not only have both
trifluralin and 2,4-D been shown to have a significantly positive association with colon and
rectal cancers, but neither have been banned for agricultural use in the U.S. [36,37].

Carbon tetrachloride, ethylene dibromide, methyl bromide, and carbon disulfide are
used as a fumigant in agriculture [38–40]. The major source of carbon tetrachloride in the
air is industrial emissions [38]. It has been detected in surface water, groundwater, and
drinking water as the result of agricultural activities. According to the evaluation by the
IARC, there is insufficient evidence that tetrachloride is a human carcinogen, even though
there is sufficient evidence in experimental animals.

Ethylene dibromide has been used as a scavenger for lead in gasoline, as a general
solvent in waterproofing preparation, in organic synthesis, and as a fumigant for grain
and tree crops [39]. An important but localized source of ethylene dibromide emissions is
from grain and citrus fumigation centers and soil fumigation operations. There are many
studies, both human and animal, evaluating the relationship between ethylene dibromide
and cancer. Similar to carbon tetrachloride, the IARC concluded that there is insufficient
evidence that ethylene dibromide is a human carcinogen, despite sufficient evidence in
experimental animals. Methyl bromide is used as a soil and space (i.e., enclosed chamber)
fumigant; as a pesticide on potatoes, tomatoes, and other crops; and as an extraction solvent
for vegetable oil [40]. According to the IARC, there is insufficient evidence that methyl
bromide is a human carcinogen, and there is limited evidence in experimental animals.
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Carbon disulfide was one of the first fumigants employed on a large scale. As far back as
the 1800s in France, carbon disulfide was injected into the soil to control infesting insects
at the roots of grapevines [41]. It was widely used as a soil or space fumigant and is used
in areas with high temperatures, which favor the volatilization of the chemical. Carbon
disulfide is toxic to humans, but the carcinogenic effect is inconclusive [19].

This geospatial study took advantage of the existing county-level cancer incidence data
from the AR Central Cancer Registry, and the national ambient air toxic chemical data from
EPA to generate a hypothesis regarding pesticide exposure and CRC risk. However, there
are several limitations to this study’s approach. First of all, the ecologic study design used
in this geospatial study examines the exposures and cancer outcomes at the aggregated
population level. There is no information about exposure to pesticides studied by the
individual, such that patients with cancer may or may not have been exposed to those
specific pesticides. The concentration they were exposed to may depend on the type of
occupation they held, their time spent outdoors, and household pesticides containing the
same chemicals. Pesticide applicators and farmers are likely to have a higher level of
exposure that cannot be distinguished in this study.

Additionally, the cancer incidence and ambient air toxic chemical data covered roughly
the same time as the cancer incidence data, including a few extra years after the ambient air
toxic chemical data sample collection. Cancer generally has a latent period from a few years
to a few decades after the initial exposure. The timing of ambient air collection may be far
removed from actual exposure unless exposure has been continuous. The lack of detailed,
documented exposure history of the individual could further exacerbate the inadequacy
of this geospatial examination. The cross-sectional nature of this study assumed exposure
was consistent in the same geographic area. It cannot address the temporal relationship
between pesticide exposure and CRC development. Finally, pesticide exposure may enter
the human body through various routes, such as ingestion and dermal contact, in addition
to inhalation from the ambient air. Although ambient air pesticide concentration may be
a general indication for the use of pesticides in the region, it does not address pesticide
exposure from other sources.

5. Conclusions

This study clearly identified a west-to-east increased pattern of CRC incidence in
AR. We also observed similar patterns of increasing from west-to-east for the population
percentage living under the poverty line, percentage of Black populations, and ambient
air concentrations of trifluralin and 2,4-D. The results from the OLS and GWR models of
pesticide chemicals and CRC incidence further the west-to-east geospatial pattern on all
six chemicals examined. Both spatial autocorrelation and nonstationarity were detected,
suggesting the need for GWR or similar spatial regression methods. However, even
with GWR, only a relatively small percentage of the variance can be explained in the
regression models (peaking at under 32% for Carbon Tetrachloride, adjusted r2 of 0.164,
see Table 2). This moderate explanatory power suggests other individual-level factors
may be more critical for the relationship between a given pesticide and CRC than a global
linear relationship, or even county-specific relationships. Nevertheless, this geospatial
examination offers preliminary support for collecting individual-level information on
exposures, creating structured questionnaires, and exploring potential exposure biomarkers
in epidemiologic studies in the future.
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