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Histogram analysis of quantitative susceptibility mapping 
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dehydrogenase genotypes and tumor subtypes of adult-type 
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Background: Accurate preoperative identification of isocitrate dehydrogenase (IDH) genotypes and tumor 
subtypes is highly important for proper treatment planning and prognosis evaluation in patients with glioma. 
This study aimed to differentiate IDH genotypes and tumor subtypes of adult-type diffuse gliomas using 
histogram features of quantitative susceptibility mapping (QSM) and apparent diffusion coefficient (ADC).
Methods: This prospective study enrolled patients with suspected gliomas between March 2019 and 
January 2022 in a random series. Histogram features of QSM and ADC were extracted from the tumor 
parenchyma. The Mann-Whitney U test was used to compare the difference in histogram features between 
different IDH genotypes and among tumor subtypes. Receiver operating characteristic (ROC) curves were 
constructed to assess the corresponding diagnostic performance.
Results: This study included 47 patients with histopathologically confirmed adult-type diffuse gliomas. 
Totals of seven QSM features including 10th percentile (P10), 90th percentile (P90), interquartile range 
(IQR), maximum, mean absolute deviation (MAD), root mean squared (RMS), and variance, and five ADC 
features including P10, mean, median, RMS, and skewness exhibited significant differences between different 
IDH genotypes (P<0.05 for all), with the IQR of QSM demonstrating the highest area under curve (AUC) 
of 0.774 [95% confidence interval (CI): 0.635–0.913]. For separating tumor subtypes, the IQR of QSM also 
showed the highest AUC of 0.745 (95% CI: 0.566–0.924) for glioblastoma (GBM) versus astrocytoma and 
0.848 (95% CI: 0.706–0.989) for GBM versus oligodendroglioma, but none of the features could discriminate 
astrocytoma from oligodendroglioma. The combination of the IQR of QSM, P10 of ADC, and age achieved 
the highest AUC of 0.910 (95% CI: 0.826–0.994) for IDH genotypes, and 0.939 (95% CI: 0.859–1.000) and 
0.967 (95% CI: 0.904–1.000) for GBM versus astrocytoma and GBM versus oligodendroglioma, respectively.
Conclusions: QSM and ADC histogram features may serve as potential imaging markers for noninvasively 
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assessing IDH genotypes and tumor subtypes of adult-type diffuse gliomas. Combining significant features 
may enhance the diagnostic performance substantially.
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Introduction

Diffuse gliomas are the most common malignant brain 
tumors in adults (1,2). Reliable preoperative classification is 
crucial for the proper treatment and prognosis evaluation 
of patients with glioma. Since 2016, the isocitrate 
dehydrogenase (IDH) genotype, which is strongly linked 
to the internal heterogeneity and biological behavior of 
glioma, has been considered one of the most important 
molecular markers in the classification of gliomas (3). 
Compared with those with IDH-wildtype gliomas, patients 
with IDH-mutant gliomas usually have a much better  
prognosis  (4) .  Recent ly,  the 2021 World Health 
Organization Classification of Tumors of the Central 
Nervous System (CNS WHO classif ication 2021) 
further advanced the role of molecular diagnostics in the 
classification of CNS tumors (5). Hence, a non-invasive 
assessment of IDH genotypes and tumor subtypes is 
essential before choosing a proper treatment strategy.

Magnetic resonance imaging (MRI) is a non-invasive 
technique widely used for evaluating glioma (6,7). Diffusion, 
perfusion, and metabolic imaging have been extensively 
utilized in glioma grading and genotyping research. 
However, perfusion-weighted imaging requires the 
injection of a contrast agent, whereas magnetic resonance 
spectroscopy (MRS) has limitations such as the need 
for individualized positioning, complex operation, weak 
acquisition signal, susceptibility to interference, and time-
consuming nature (8-10). Susceptibility-weighted imaging 
(SWI) is a non-quantitative technique that employs gradient 
(recalled) echo (GRE) phase images to enhance the smallest 
susceptibility variations on the corresponding magnitude 
images (11). SWI can detect intratumoral hemorrhage, 
neovascularity, and calcification in glioma (12). However, 
SWI has limitations in accurately quantifying these features 
due to non-quantitative and blooming artifacts. Recently, 
a novel post-processing technique was introduced that 
produces quantitative maps of tissue magnetic susceptibility 

using GRE phase data (13,14). This technique, called 
quantitative susceptibility mapping (QSM), has been 
offered accurate quantitative measurements of magnetic 
susceptibility distributions in the brain (15,16). QSM also 
has a higher contrast-to-noise ratio (CNR) than SWI for 
lesion depiction and can eliminate the negative effects 
observed at SWI in the process of reconstruction (17). QSM 
has been used to estimate the levels of various substances 
in the brain, such as iron, hemosiderin, deoxyhemoglobin, 
and calcification (17-19). Therefore, QSM can be used 
to identify microhemorrhages, microvascularity, and 
calcification in glioma, which may facilitate the diagnosis 
and classification of gliomas. A recently published research 
paper found that tumor parenchyma magnetic susceptibility 
had limited value in grading gliomas and identifying IDH 
mutation status, whereas the relatively low magnetic 
susceptibility of the tumor parenchyma helped to identify 
oligodendrogliomas in IDH mutated gliomas (20). 
However, as the sample size of this study was small, and it is 
still controversial whether QSM can be applied to identify 
IDH genotypes, data and research from other centers are 
needed to support the findings.

Diffusion-weighted imaging (DWI) and apparent 
diffusion coefficient (ADC) are applied routinely for 
gliomas, as it provides the valuable information of 
cellularity and extracellular spaces within tumors (21). 
The ADC is negatively correlated with cell density and 
certain proliferation indices (22). Furthermore, the ADC 
is significantly different between low-grade and high-
grade gliomas (23) and IDH-mutant and IDH-wildtype 
gliomas (24). A recent study found that PET using 
18F-fluoromisonidazole (18F-FMISO) and ADC might 
provide a valuable tool for differentiating IDH mutation 
status of 2021 WHO classification grade 3 and 4 adult-
type diffuse glioma (25). However, the association of ADC 
with the tumor subtypes of glioma based on CNS WHO 
classification 2021 has not been thoroughly investigated.

As two quantitative imaging techniques, QSM can reflect 
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Figure 1 Screening process for included glioma patients. IDH, isocitrate dehydrogenase; TERT, telomerase reverse transcriptase; EGFR, 
epidermal growth factor receptor; CDKN2A/B, cyclin-dependent kinase inhibitor 2A/B; NEC, not elsewhere classified. 
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microhemorrhages and microvascularity of the tumor, 
whereas ADC can quantify cellularity and extracellular 
spaces within a tumor. Therefore, we hypothesized that 
combining QSM and ADC would better evaluate the 
histopathological microstructures of gliomas. We aimed 
to determine the utility of these two techniques in non-
invasive assessment of the IDH genotypes and tumor 
subtypes of adult-type diffuse gliomas by histogram analysis. 
We present this article in accordance with the STARD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-23-832/rc).

Methods

Patients and clinical information

Patients with suspected gliomas were prospectively and 
randomly enrolled in this study between March 2019 and 
January 2022. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). The study 
was approved by the ethics committee board of Fujian 

Medical University Union Hospital, and informed consent 
was provided by all participants.

The following exclusion criteria were applied: (I) 
incomplete imaging data or poor image quality, namely, 
obvious artifacts or head motion; (II) without surgery or 
biopsy; (III) with histologically confirmed non-glioma 
lesions; (IV) failure of genetic detection due to insufficient 
tissue.

The screening process for included glioma patients is 
shown in Figure 1. The clinical information including age, 
gender, and recurrence rate were recorded. 

MRI data acquisition

All participants underwent structural MRI, QSM, and 
DWI imaging on a 3T MR scanner (MAGNETOM 
Prisma; Siemens Healthineers, Erlangen, Germany) with 
a 64-channel head coil. The structural MRI protocols 
included sagittal T1-weighted magnetization-prepared 
rapid gradient echo sequence (T1-MPRAGE), axial T2-

https://qims.amegroups.com/article/view/10.21037/qims-23-832/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-832/rc
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weighted (T2W) fast spin-echo (FSE) images, axial fluid-
attenuated inversion recovery (FLAIR) T2W images, and 
contrast-enhanced axial/sagittal/coronal T1W (CE-T1W) 
images.

QSM maps were created based on a 3-dimensional (3D) 
flow-compensated multi-echo GRE sequence in the axial 
plane [repetition time (TR) =35 ms; first echo time (TE) 
=6.67 ms, uniform echo spacing =6.24 ms, last TE =25.39 ms; 
number of echoes =4; fractional anisotropy (FA) =15°; field of 
view (FOV) =280×320 mm2; voxel size =0.72×0.72×2 mm3].

A single-shot echo planer imaging sequence was used 
for the DWI imaging with the following parameters: TR/
TE =3,800 ms/74 ms; slice thickness =5 mm, gap =1 mm;  
FOV =23 cm × 23 cm; acquisition matrix =128×128, 
reconstruction matrix =256×256; and pixel bandwidth 
=2,055 Hz/pixel. The sequence was performed with two 
different b values (0 and 1,000 s/mm2).

Data processing and analysis

Calculation of QSM and ADC maps
QSM maps were produced using the susceptibility tensor 
imaging (STI) Suite V3.0 software package (https://
chunleiliulab.github.io/software.html) as follows: (I) Phase 
unwrapping: the raw phase was unwrapped using Laplacian-
based phase unwrapping, and the normalized phase 
was calculated (26,27); (II) V_SHARP: the normalized 
background phase was removed using spherical-mean-value 
filtering (V_SHARP) (28); and (III) STAR-QSM: tissue 
susceptibility was calculated using the STAR-QSM method 
(streaking artifact reduction for QSM) (29,30). Wu et al. (31) 
also used this QSM processing method. ADC maps were 
calculated by fitting the b0 images and DWI images into 
the mono-exponential equation: Sb/S0 = exp (–b × ADC), 
where Sb is the diffusion-weighted signal intensity for the 
b value, and S0 is the signal intensity obtained with the b0 
value.

T1-MPRAGE, T2W, FLAIR, and CE-T1W images 
were co-registered to the QSM and ADC images by rigid-
body registering to the first echo magnitude image from 
the GRE pulse sequence and b0 images respectively, using 
the SPM12 software (www.fil.ion.ucl.ac.uk/spm/software/
spm12).

Region of interest (ROI) placement and measurement
All MR images were independently reviewed by two 
radiologists (R.J. and Y.S., with 15 and 12 years of 
experience, respectively) who were unaware of the clinical 

information and histopathological results. They then 
performed semi-automatic delineation of ROIs over the 
tumor parenchyma slice by slice using ImageJ (version 
1.49o, National Institutes of Health [NIH], https://imagej.
nih.gov/ij/). Then, multiple 2-dimensional (2D) plane 
ROIs were converted into 3D ROIs. The ROIs over the 
solid enhancing tumor were delineated on transverse 
CE-T1W, and the ROIs over the non-enhancing tumor 
were delineated on the transverse FLAIR or T2W. Cystic 
components, necrosis, hemorrhage, and calcification in the 
solid region of the tumor were avoided. ROIs delineation 
over the solid region of the tumor and representative cases 
of different tumor subtypes are shown in Figure 2.

Subsequently, the ROIs were spatially transferred to the 
QSM and ADC maps to obtain the quantitative histogram 
characteristics using the pyradiomics software (version 
3.0.1, https://github.com/AIM-Harvard/pyradiomics). The 
following histogram characteristics were extracted: 10th 
percentile (P10), 90th percentile (P90), interquartile range 
(IQR), kurtosis, maximum, mean absolute deviation (MAD), 
mean, median, minimum, root mean squared (RMS), 
skewness, and variance.

Glioma classification based on pathological and genetic 
detection
Pathological tests were performed to determine the tumor 
type. Immunohistochemical staining was performed using 
the EnVision (Dako, Hamburg, Germany) method. The 
Ki-67 labeling index (Ki-67 LI) was measured, which was 
defined as the percentage of nuclear staining-positive cells 
with any intensity in the high-density staining area in the 
total cells. 

Multiplexed polymerase chain reaction (PCR) followed 
by next-generation sequencing (NGS) was used to obtain 
necessary molecular features. Single nucleotide variants 
(SNV) detection was used to detect the gene mutation of 
IDH1 codon 132, IDH2 codon 172, telomerase reverse 
transcriptase (TERT) codon C228T, and TERT codon 
C250T. Copy number variation (CNV) detection was 
used to detect the heterozygous deletion on chromosome 
1p/19q, loss of chromosome 10, and gain of chromosome 7. 
Real-time quantitative PCR (qRT-PCR) was used to detect 
epidermal growth factor receptor variant III (EGFRvIII) 
amplification and cyclin-dependent kinase inhibitor 2A/B  
(CDKN2A/B). A mutation in any one of IDH1 codon 132 
and IDH2 codon 172 was diagnosed as IDH mutation; 
otherwise, it was diagnosed as IDH wildtype. 

Patients were first grouped according to IDH genotypes 

https://chunleiliulab.github.io/software.html
https://chunleiliulab.github.io/software.html
http://www.fil.ion.ucl.ac.uk/spm/software/spm12
http://www.fil.ion.ucl.ac.uk/spm/software/spm12
https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
https://github.com/AIM-Harvard/pyradiomics
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Figure 2 ROI delineation of representative cases and the role of QSM and ADC histogram parameters in evaluation of IDH genotypes and 
tumor subtypes. They are a 53-year-old female patient with astrocytoma, IDH-mutant (grade 2) in the left frontal lobe (A), a 32-year-old 
female patient with astrocytoma, IDH-mutant (grade 4) in the left frontal lobe (B), a 47-year-old female patient with oligodendroglioma, 
IDH-mutant, and 1p/19q-codeleted (grade 2) in the right temporal lobe (C), and a 62-year-old male patient with glioblastoma, IDH-
wildtype in the right occipital lobe (D), respectively. CE, contrast-enhanced; QSM, quantitative susceptibility mapping; ADC, apparent 
diffusion coefficient; ROI, region of interest; IDH, isocitrate dehydrogenase.
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(i.e., IDH-wildtype and IDH-mutant). Subsequently, 
according to the current CNS WHO classification 
2021 criteria (5), patients were further divided into 
astrocytoma, IDH-mutant (including grade 2, 3, and 4); 
oligodendroglioma, IDH-mutant and 1p/19q-codeleted 
(including grade 2 and 3), and glioblastoma (GBM), IDH-
wildtype.

Statistical analysis

Statistical analysis was performed using the software SPSS 
26.0 (IBM Corp., Armonk, NY, USA). The inter-observer 
variability of measurements in glioma patients was evaluated 

using the intra-class correlation coefficient. The Kruskal-
Wallis test was used to compare the difference of the age 
and Ki-67 LI, and Fisher’s exact test was used to compare 
the difference of gender and recurrence rate among groups. 
The Mann-Whitney U test was used to compare the 
differences in the histogram features between different IDH 
genotypes and tumor subtypes, and corrected for multiple 
comparisons using the Benjamini-Hochberg method. Binary 
logistic regression analysis was used to combine significant 
histogram features of QSM and ADC to create regression 
equations and calculate the corresponding prediction 
probability for identifying the IDH genotypes and tumor 
subtypes. Receiver operating characteristic (ROC) curve 
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Table 1 Demographic, clinical and pathological characteristics of participants

Characteristic IDH-wildtype (n=27)
IDH-mutant

P value
1p/19q-non-codeleted (n=14) 1p/19q-codeleted (n=6)

Age (years) 53 [46–62] 37 [32–50] 46 [34–47] 0.002*

Gender (male/female) 15/12 10/4 2/4 0.282

Recurrent glioma 5 4 1 0.738

Subtypes

Glioblastoma 23 NA NA NA

Astrocytoma

Grade 2 NA 9 NA NA

Grade 3 NA 1 NA NA

Grade 4 NA 4 NA NA

Oligodendroglioma

Grade 2 NA NA 5 NA

Grade 3 NA NA 1 NA

Ki-67 LI (%) 40 [12.5–55] 8 [5–30] 5 [4–5] 0.001*

Values are presented as median [inter-quartile range]. *, represents a statistical difference (P<0.05). IDH, isocitrate dehydrogenase; 1p/19q-
codeleted, synchronous deletion of the short arm of chromosome 1 and long arm of chromosome 19; Ki-67 LI, Ki-67 labeling index; NA, 
not applicable. 

and the corresponding area under the curve (AUC) 
were constructed to assess the corresponding diagnostic 
performance of each histogram feature and the prediction 
probability. Delong test was further used to compare the 
differences of AUCs. The Spearman correlation analysis 
was used to evaluate the correlation between Ki-67 LI and 
each histogram feature. A default alpha level of 0.05 was 
used for all tests, and all the tests were 2-tailed.

Results

Demographic, clinical, and pathological characteristics of 
participants

The demographic, clinical, and pathological characteristics 
of the included glioma patients are summarized in Table 1. A 
total of 47 patients with pathologically confirmed adult-type 
diffuse gliomas were included in this study. Among them, 27 
were with IDH-wildtype glioma, including 23 with GBM 
and 4 classified as not elsewhere classified (NEC) due to the 
insufficient molecular status analysis, and the other 20 were 
with IDH-mutant glioma, including 14 with astrocytoma 
and 6 with oligodendroglioma. There were 37 primary 
and 10 recurrent gliomas. The gender and recurrence rate 

showed no significance across three groups of gliomas. A 
significant difference was found in age and Ki-67 LI among 
three groups of gliomas (P=0.002 and 0.001), and both 
age and Ki-67 LI were significantly higher for glioma with 
IDH-wildtype.

Repeatability of measurements between two radiologists

The average sizes of the ROIs over the tumor parenchyma 
were 40.54±30.84 cm3 on QSM and 40.44±30.92 cm3 
on ADC for the neuroradiologist R.J. and 37.49±29.35 
cm3 on QSM and 37.42±29.48 cm3 on ADC for the 
neuroradiologist Y.S.. The intraclass correlation coefficients 
of averages of QSM and ADC were between 0.830 and 0.984 
and between 0.521 and 0.977, respectively. Due to R.J.’s 
seniority and extensive clinical experience, the measurement 
data from R.J. were used for subsequent statistical analysis.

Comparisons of QSM and ADC histogram features in 
identifying IDH genotypes and glioma subtypes

The results of the differences in QSM and ADC histogram 
features between different IDH genotypes are shown in 
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Figure 3 The box and whisker plots displaying QSM and ADC histogram parameters in evaluation of IDH genotypes and tumor subtypes. 
Box and whisker plots show the distribution of QSM and ADC histogram parameters between different IDH genotypes (A,B) and different 
subtypes (C,D). * represents a statistical difference (P<0.05). The P values in the figure have been corrected for multiple comparisons using 
the Benjamini-Hochberg method. QSM, quantitative susceptibility mapping; IDH, isocitrate dehydrogenase; P10, 10th percentile; P90, 
90th percentile; IQR, interquartile range; MAD, mean absolute deviation; ADC, apparent diffusion coefficient. 
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Tables S1,S2, and the corresponding box and whisker plots 
are shown in Figure 3A,3B. The average susceptibility of 
QSM was lower (P=0.121), whereas the average ADC was 
significantly higher (P=0.020) in IDH-mutant gliomas than 
that in IDH-wildtype gliomas. For histogram features, the 
P10 of QSM was significantly higher (P=0.016), whereas 
the P90, IQR, maximum, MAD, RMS, and variance of 
QSM were significantly lower (P=0.007, 0.001, 0.037, 0.003, 
0.005, and 0.006, respectively) in IDH-mutant gliomas than 
those in IDH-wildtype gliomas. The skewness of ADC was 
significantly lower (P=0.017), whereas the P10, median, and 
RMS of ADC were significantly higher (P=0.004, 0.022, 

and 0.026, respectively) in IDH-mutant gliomas than those 
in IDH-wildtype gliomas. 

The differences in QSM and ADC histogram features 
among tumor subtypes are shown in Tables S1,S2, and 
the corresponding box and whisker plots are shown in  
Figure 3C,3D. The average susceptibility of QSM was 
higher, whereas the average ADC was lower in GBM than 
those in astrocytoma and oligodendroglioma (P>0.05). For 
histogram features, the IQR and MAD of QSM were found 
to be significantly lower in both astrocytoma (P=0.020 and 
0.036, respectively) and oligodendroglioma (P=0.030 and 
0.045, respectively) than those in GBM after the correction 

https://cdn.amegroups.cn/static/public/QIMS-23-832-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-832-Supplementary.pdf
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Table 2 The diagnostic performance of histogram features in evaluating glioma

Parameters AUC 95% CI Threshold value Sensitivity (%) Specificity (%)

IDH-wildtype vs. IDH-mutant

QSM_IQR* 0.774 0.635–0.913 2.42×10−2 70.0 81.5

ADC_P10* 0.757 0.613–0.901 8.72×102 89.5 58.3

GBM vs. astrocytoma

QSM_IQR* 0.745 0.566–0.924 2.35×10−2 71.4 82.6

ADC_P10 0.685 0.503–0.866 8.43×102 92.3 50.0

GBM vs. oligodendroglioma

QSM_IQR* 0.848 0.706–0.989 2.88×10−2 73.9 100.0

ADC_P10 0.825 0.667–0.983 9.54×102 100.0 70.0

Astrocytoma vs. oligodendroglioma

QSM_IQR 0.548 0.273–0.823 2.37×10−2 66.7 71.4

ADC_P10 0.744 0.522–0.965 9.69×102 100.0 61.5

*, represents a statistical difference (P<0.05). AUC, area under the curve; CI, confidence interval; IDH-wildtype; QSM, quantitative 
susceptibility mapping; IQR, interquartile range; ADC, apparent diffusion coefficient; P10, 10th percentile; GBM, glioblastoma.

using the Benjamini-Hochberg method. The RMS of QSM 
was also significantly lower in oligodendroglioma than that 
in GBM (P=0.047). In contrast, no statistical difference was 
found for the other QSM histogram features and all the 
ADC histogram features in separating tumor subtypes.

Evaluation of the diagnostic performance of QSM and 
ADC histogram features

The best diagnostic performance of QSM and ADC 
histogram features in identifying IDH genotypes are shown 
in Table 2, and the ROC curves with the top three AUCs 
are shown in Figure 4A. The IQR of QSM demonstrated 
the highest diagnostic performance among QSM histogram 
features, with an AUC of 0.774, a sensitivity of 70.0%, 
and a specificity of 81.5%. Similarly, the P10 of ADC 
demonstrated a higher diagnostic value among ADC 
histogram features, with an AUC of 0.757, a sensitivity 
of 89.5%, and a specificity of 58.3%. The other QSM 
and ADC histogram features exhibited relatively lower 
diagnostic performance.

The diagnostic performance of QSM and ADC 
histogram features in separating tumor subtypes are shown 
in Table 2, and the ROC curves with the top three AUCs 
are shown in Figure 4B,4C. For GBM versus astrocytoma, 
the IQR of QSM demonstrated the highest diagnostic 
performance among QSM histogram features, with an AUC 

of 0.745, a sensitivity of 71.4%, and a specificity of 82.6%. 
Similarly, for GBM versus oligodendroglioma, the IQR of 
QSM also showed a higher diagnostic value among QSM 
histogram features, with an AUC of 0.848, a sensitivity of 
73.9%, and a specificity of 100.0%. The other histogram 
features showed weak to moderate diagnostic performance. 

Combination of features to improve the diagnostic 
performance

In this study, age showed a good diagnostic performance 
in identifying IDH genotypes and glioma subtypes, with 
AUCs of 0.785 for IDH-wildtype versus IDH-mutant, 0.793 
for GBM versus astrocytoma, and 0.822 for GBM versus 
oligodendroglioma. Therefore, the histogram features with 
the best diagnostic performance of QSM and ADC (i.e., 
IQR of QSM and P10 of ADC) and age were combined to 
create regression equations, as shown in Appendix 1. 

For separat ing IDH genotypes,  the diagnost ic 
performance of the regression equation improved compared 
with those of IQR of QSM (P=0.090) and P10 of ADC 
(P=0.021), with an AUC of 0.910, a sensitivity of 94.7%, 
and a specificity of 75.0%, as shown in Figure 4A.

For separat ing tumor subtypes,  the diagnostic 
performance of the regression equation also improved 
accordingly. The AUC was 0.939 for GBM versus 
astrocytoma, which was higher than those of IQR of QSM 
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Figure 4 ROC curves of QSM and ADC histogram parameters in identifying IDH genotypes and tumor subtypes. ROC curves for QSM 
and ADC histogram parameters with top AUCs and combinations of histogram features of QSM and ADC and age in differentiating (A) 
IDH-wildtype from IDH-mutant, (B) glioblastoma, IDH-wildtype from astrocytoma, IDH-mutant. (C) Glioblastoma, IDH-wildtype from 
oligodendroglioma, IDH-mutant. IDH, isocitrate dehydrogenase; AUC, area under curve; QSM, quantitative susceptibility mapping; IQR, 
interquartile range; ADC, apparent diffusion coefficient; P10, 10th percentile; ROC, receiver operating characteristic.
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(P=0.071) and P10 of ADC (P=0.009). Similarly, the AUC 
was 0.967 for GBM versus oligodendroglioma, which was 
also higher than those of IQR of QSM (P=0.075) and P10 
of ADC (P=0.053), as shown in Figure 4B,4C.

Correlation of Ki-67 LI with histogram features of QSM 
and ADC

Positive correlations between the Ki-67 LI and the 
following QSM histogram features were identified: P90, 
IQR, maximum, MAD, RMS, skewness, and variance 
(rho ranged from 0.407 to 0.531, P<0.01 for all). Negative 
correlations with Ki-67 LI were found for P10 of QSM 
(rho=–0.452, P= 0.001) and P10 of ADC (rho=–0.554, 
P<0.001), as shown in Table S3 and Figure 5. 

Discussion

Preoperative classification of gliomas is clinically important. 
The present study showed that the average susceptibility of 
QSM was higher, whereas the average ADC was lower in 
IDH-wildtype gliomas than in IDH-mutant gliomas, and 
in GBM than in non-GBM, but these differences were not 
significant. We found that histogram features of QSM and 
ADC were significantly associated with the IDH genotypes, 
tumor subtypes, and cellular proliferation of glioma; a 
recent study also found that compared to conventional MRI 

modalities, DL-assisted QSM shows great advantages in 
distinguishing other grade gliomas (OGG) from GBM, and 
predicting IDH1 subtypes (32). Our findings in identifying 
the IDH genotypes using average susceptibility of QSM 
are similar to those in a previous study (20), but unlike 
that study, average susceptibility of QSM did not help 
in identifying oligodendroglioma. The ADC histogram 
features are largely consistent with those in some previous 
studies (24,33-35). 

On the one hand, IDH-wildtype glioma and GBMs 
are more aggressive, and immature new microvessels 
proliferated in the tumor are more likely to rupture and 
bleed. In this sense, the difference of the above QSM 
histogram features is reasonable, and there seemed 
to be a clear trend of increased average susceptibility 
associated with more aggressive tumors, suggesting that 
QSM can be used as an independent measure of tumor 
aggression and heterogeneity in brain tumors. On the other 
hand, IDH-mutant gliomas including astrocytoma and 
oligodendroglioma tend to have fewer diffusion barriers 
and a lower degree of tissue complexity such as less invasion 
in anatomic structures, decreased cellularity, and a more 
homogeneous tumor population, indicating that diffusion of 
the water molecule is not highly restricted in the tissue. In 
contrast, GBM is a mitotically active tumor characterized by 
microstructural changes with increased cellularity, cellular 
heterogeneity, hemorrhage, necrosis, and microvascular 
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Figure 5 Correlations between Ki-67 LI and histogram features. Scatter diagrams demonstrating the correlations between Ki-67 LI, QSM_
IQR, and ADC_P10. **, P<0.01. QSM, quantitative susceptibility mapping; IQR, interquartile range; ADC, apparent diffusion coefficient; 
P10, 10th percentile; NEC, not elsewhere classified; Ki-67 LI, Ki-67 labeling index.
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proliferation, which can obviously restrict the movement of 
water molecules (36). These histopathological differences 
could well explain the differences found in ADC histogram 
features between different IDH genotypes and tumor 
subtypes of gliomas. 

In terms of analysis, compared with the average value, a 
usual measurement of the ROI, histogram analysis provides 
more abundant information on tumor characteristics, especially 
when the intensity distribution is inhomogeneous (37). The 
changes of histogram shape, asymmetry, and variation 
can also better reflect the change of tumor structure, 
physiology, molecules, and metabolism (38). This method 
showed potential for predicting tumor grade and differential 
diagnosis (39,40). This study found 7 of 12 QSM histogram 
features and 5 of 12 ADC histogram features exhibiting 
statistical differences between different IDH genotypes, 
and 5 of 12 QSM histogram features and 1 of 12 ADC 
histogram features exhibiting significant differences among 
tumor subtypes. QSM had more histogram features with 
significant differences than did ADC. The AUCs of QSM 
histogram features were also higher, particularly for 
those that describe the degree of numerical dispersion. 
This suggests that QSM histogram features can better 
capture the heterogeneity of tumors, and thus better 
discriminate IDH genotypes and tumor subtypes of adult-
type diffuse gliomas based on CNS WHO classification 
2021. Interestingly, no significant difference was found for 
the average susceptibility of QSM between different IDH 
genotypes, or for the average susceptibility of QSM and 
average ADC between different tumor subtypes. However, 
by using the histogram analysis, more abundant information 

or useful features on tumor characteristics were extracted 
(6,38), which enhanced the diagnostic performance of QSM 
and ADC in classifying gliomas. Another important finding 
was that the combination of age and the best histogram 
features of QSM and ADC achieved a great improvement in 
the diagnostic performance, suggesting that those combined 
indexes may serve as more effective imaging markers in 
identifying IDH genotypes and tumor subtypes of gliomas. 

There are some limitations in this study. First, this 
is a single center study, and the sample size is relatively 
small, especially for the patients with oligodendroglioma. 
The ability of QSM and ADC histogram features for 
differentiating between the 3 tumor subtypes should be 
further validated in a larger patient cohort. Second, the 
ROI-based measurement might have caused some bias, 
especially in gliomas with unclear boundary.

Conclusions

QSM and ADC histogram features may serve as potential 
imaging markers for noninvasively assessing IDH genotypes 
and tumor subtypes of adult-type diffuse gliomas based 
on the CNS WHO classification 2021 by capturing more 
intrinsic microstructural and physiological information of 
tumors. Combining significant features may substantially 
improve the diagnostic performance.
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