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Papillary thyroid carcinoma (PTC) is the most common subtype of differentiated thyroid cancers in Asian coastal cities, where the
patients have increased risk of potentially high or excessive iodine intake. Given the high metastasis and recurrence of patients
with BRAFV600E mutation, the mortality rate of thyroid cancer has recently shown an upward trend. A variety of therapies,
including surgery, radiotherapy, and chemotherapy, have been used to treat thyroid cancer, but these therapies still have
limitations, including postoperative complications, drug resistance, poor efficacy, or serious side effects. Recent studies have
shown the potential of active ingredients derived from herbal medicine in inhibiting PTC via various cell signaling pathways.
Some plant-derived compounds, such as apigenin, genistein, and curcumin, are also known to prevent and treat PTC.-is article
summarizes the recent advances in the structure-functional impact of anti-PTC active ingredients and their effects on PTC cells
and tumor microenvironments with an emphasis on their challenges from basic research to clinical practice.

1. Introduction

-yroid cancer is the most common endocrine neoplasms
accounting for 5.0% of head and neck cancers [1]. Studies
have shown that approximately 95% of thyroid cancers
originate from thyroid follicular epithelial cells, including
papillary thyroid carcinoma (PTC), follicular thyroid car-
cinoma (FTC), and anaplastic thyroid cancer (ATC); in
addition, a small amount is medullary thyroid carcinoma
(MTC) originated from parafollicular cells in the thyroid
gland [2, 3]. Among those subtypes, approximately 70% to
80% of all types of thyroid cancers is PTC. Epidemiological
studies have revealed that PTC prevalence has increased at
an average annual rate of nearly 4% in recent years, andmost
patients with thyroid cancer suffer from PTC, which is also
the main driver of the increased incidence of thyroid cancer
[4–7]. PTC has become one of the seven major causes of new
malignant tumors among women, and almost all thyroid

cancers among children are classified as PTC [8, 9]. Among
patients with PTC, the accompanying cervical lymph node
metastasis rate reaches 5.4% to 13% after surgery [10–12].
-e most common clinical therapies being used for man-
aging PTC include surgery, chemotherapy, and physio-
therapy, all of which are hindered by recurrence and
metastasis.

With irregular living habits (such as sleep deprivation
and long-term high calorie diet intaking) and environmental
factors (such as electromagnetic radiation), endocrine dis-
orders including thyroid dysfunction become more and
more common to human beings [13, 14]. Both genetic and
environmental factors act on thyroid cells and ultimately
lead to the transformation of normal thyroid cells into tumor
cells. During PTC pathogenesis, some critical genes (in-
cluding BRAF, RET, KRAS, and PI3KCA) through mutation
or chromosomal translocation continuously activate their
dependent downstream signaling pathways, such as
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mitogen-activated protein kinase (MAPK), phosphoinosi-
tide 3-kinase (PI3K)/AKT, nuclear factor-κB (NF-κB), and
Notch-1, and thereby lead to cellular proliferation, migra-
tion, invasion, and angiogenesis [15–17]. Recently, emerging
clinical trials and experimental researches also demonstrated
that some noncoding RNA expressions, such as miRs-21,
-34b, -221/222, lncRNA ATB, lncRNA H19, lncRNA
HOXA-AS2, circITCH, and circZFR, showed significant
association with aggressive clinicopathologic feature in PTC,
including tumor size, lymphovascular invasion, lymph node
metastases, and presence of BRAFV600E mutation [17–21].
Despite the advances in tumorigenesis, metastasis, and
therapy, the underlying mechanism of PTC remains unclear.
-erefore, further studies on the pathogenesis, prevention,
and treatment of PTC in the pharmaceutical circle should be
conducted.

Traditional herbal medicine has an important position in
PTC prevention and treatment in Asian countries for a long
history. Many active ingredients derived from food and
herbs could prevent the development of PTC. Characterized
by their mildness and long-lasting action, limited side ef-
fects, long-term use, and multitarget regulation, these herbal
active ingredients provide many advantages and cannot be
replaced by western medicine [22–24]. -ey not only inhibit
the proliferation and promote the apoptosis of PTC cells by
regulating critical signal pathways but also improve the
immunity of patients and decrease stress response [25–27] as
shown in Table 1. -is study discusses the role of phyto-
chemicals in thyroid signaling modulation and their possible
beneficial or unfavorable effects on the risk of thyroid
cancer.

2. Tannins (Phenolic Acids)

On the basis of their chemical structure, tannins can be
categorized into hydrolyzable, condensed, and complex
tannins. Condensed tannins manifest numerous pharma-
cological effects, such as antioxidant, antitumor, antihuman
immunodeficiency virus, anti-inflammatory, and antimi-
crobial properties, and are widely found in many medicinal
plants and dietary sources, including fruits, nuts, grains,
spices, and beverages [58, 59]. Similarly, hydrolyzable tan-
nins have a variety of pharmacological effects, such as an-
tiviral, antibacterial, antitumor, hypolipidemic, and
antioxidant properties, and serve as pharmacodynamic bases
of many commonly used medicinal plants [60–64].

Epigallocatechin-3-gallate (EGCG), which is the major
catechin in tea, shows remarkable protective effects against
several chronic inflammatory and cardiovascular diseases,
such as cancer, obesity, diabetes, myocardial ischemia,
bronchitis, and asthma [65–70]. EGCG exerts chemo-
preventive effects on various tumors and selectively inhibits
various cancer cell proliferation, metastasis, and invasion via
regulating VEGF, MAPK, PI3K, and Wnt pathways [71–73].
Wu et al. treated human PTC cell lines (TT and TPC-1) and
the ATC cell line (ARO) with EGCG at concentrations of
10∼200 μM and observed that EGCG concentration-
dependently inhibited the proliferation of these PTC cells and
made the cell cycle arrest at the S phase. EGCG also induces

the apoptosis of both PTC and ATC cells by inhibiting the
EGFR-dependent ERK pathway. In addition, it could inhibit
growth and angiogenesis but induce the apoptosis of PTC
xenograft tumors in nude mice [28]. De Amicis et al. dem-
onstrated that treatment with EGCG at the doses of
10–60mM inhibited the proliferation of PTC (FB-2) and FTC
(WRO) cell lines through suppressing the phosphorylation of
AKT and ERK1/2; furthermore, EGCG reduced cell motility
and migration by modulating cell adhesion, reorganizing the
actin cytoskeleton, increasing E-cadherin expression, and
suppressing SNAIL, ZEB, TWIST, Vimentin, N-cadherin,
and α5-integrin, thereby indicating that EGCG inhibited the
proliferation and epithelial-to-mesenchymal transition
(EMT) of PTC cells [29].

Resveratrol is a polyphenolic phytoalexin with antioxi-
dant and chemopreventive activities [74].-is material has a
wide spectrum of targets, including COX2, Sirt1, p53, and
miR-17/miR-20b [75], and can inhibit multiple cellular
signaling pathways, which were associated with carcino-
genesis and progression [76]. Plenty of studies over the past
decades have shown that resveratrol downregulated thyroid
cancer stem cell markers (including aldehyde dehydroge-
nases (ALDH), SOX2, OCT4, and NANOG), decreased
proliferation and invasiveness, induced apoptosis, reduced
ALDH-associated cancer cell stemness, and upregulated
thyroid differentiation markers TTF-1 and NIS, which
contributed to radioiodine uptake in the treatment of ag-
gressive thyroid cancers [30]. Notably, it was more effective
on the redifferentiation of PTC than that of ATC with a high
CSC content [22, 30].

Punicalagin is a large polyphenol compound extracted
from pomegranates and is classified as an ellagitannin, a
family of hydrolyzable tannins [77]. Punicalagin not only
induces the cell death of the PTC cell line BCPAP by
triggering ATM-mediated DNA damage response [31] but
also leads to the G0/G1 phase arrest and senescence-asso-
ciated secretory phenotype by triggering NF-κB activation
[32].

Curcumin is a natural polyphenol extracted from Rhi-
zoma curcumae longae, which is the main component of
Curcuma longa. Curcumin is one of the best-selling natural
edible pigments all over the world and is widely used as a
food additive approved by the World Health Organization
and most countries. It had various chemopreventive
properties, such as antioxidant, antitumoral, antiviral, anti-
inflammatory, antihepatotoxic, antidiabetic, hypolipidemic,
and neuroprotective properties [78–82]. Several studies have
also revealed that curcumin induced PTC cell BCPAP ap-
optosis and cell arrested at the G2/M phase with the con-
centration increased involving in multitargeting
mechanisms, including the activation of reactive oxygen
species (ROS)-independent DNA damage by recruiting
ATM-mediated Chk2-Cdc25C-Cdc2 pathway [33], the ac-
tivation of endoplasmic reticulum (ER) stress by disrupting
intracellular calcium homeostasis [34], the inhibition of the
β-catenin pathway [35], and the modulation of the mito-
chondrial Bcl-2/Bax pathway [36]. Furthermore, curcumin
inhibits invasion andmetastasis in PTC cells by upregulating
E-cadherin expression and downregulating matrix
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metalloproteinase-9 (MMP-9) [37]. Curcumin can also in-
hibit TGF-β1-induced EMT via the downregulating phos-
phorylation of Smad2/3, which in turn inhibits the
metastasis of human PTC BCPAP cells [38]. Hypoxia plays a

crucial role in tumormetastasis, which is the leading cause of
death in patients with PTC [83]. Curcumin significantly
reduces the production of hypoxia-induced ROS and the
binding capacity of HIF-1α to its downstream oncogenes

Table 1: Anti-PTC mechanisms of herbal active ingredients.
Phytochemicals Cell lines/patient Dose (μM) Mechanisms References

EGCG TPC-1, ARO 10∼200 Induce apoptosis via inhibiting EGFR/RAS/ERK pathway [28]
FB-2, WRO 10∼60 Inhibit EMT [29]

Resveratrol TPC-1, BCPAP 5∼50 Induce apoptosis and differentiation of CSC [22, 30]

Punicalagin BCPAP 12.5∼100
Induce cell death by triggering ATM-mediated DNA

damage;
inhibit senescent growth via NF-κB pathway.

[31, 32]

Curcumin

TPC-1, BCPAP, K1 12.5–50

Induce apoptosis via
(1) induction of ROS-independent DNA damage by
triggering an ATM-activated Chk2-Cdc25C-Cdc2

pathway;
(2) activation of ER stress by disruption of intracellular

calcium homeostasis;
(3) inhibition of β-catenin pathway;

(4) modulation of mitochondrial Bcl-2/Bax pathway.

[33]

[34]

[35]

[36]

BCPAP 12.5∼50

Inhibit invasion and metastasis via
(1) upregulating E-cadherin and downregulating MMP-9;

(2) reversing EMT by inhibiting TGF-β1/Smad2/3
pathway.

[37]

[38]

Apigenin
BCPAP 12.5∼100 Arrest the cell growth in G2/M phase; induce autophagy

via ROS-mediated DNA damage. [39]

PCCl3 with BRAFV600E,
primary TPC cells 20 Synergistic effects with akt inhibitor [40]

Quercetin BCPAP 50–75 Induce apoptosis via inhibiting Hsp90 and caspase-3/parp
pathways [41, 42]

Myricetin SNU-790 25∼50 Induce apoptosis via inhibiting the caspase-dependent
mitochondrial pathway [43]

Icariin SW579, TPC1 20–50
Induce apoptosis via downregulation of miR-625-3p and

inactivation of PI3K/Akt and MEK/ERK signaling
pathways

[44]

Flavokawain B ARO, WRO, TPC-1 3.5–25 Induce autophagy via regulating AMPK/mTOR pathway [45]
Genistein BHP10-3, BCPAP, IHH4 9.5–300 Inhibit β-catenin and EMT [46]

Silibinin TPC-1 10–100 Suppress migration and MMP-9 expression via ERK
pathway [47]

Ginsenoside Rg1 IHH-4, BCPAP 5–40 Inhibit cell malignancies by upregulating Cx31 [48]
Ginsenoside Rg3 TPC-1, BCPAP 6.25–100 Inhibit invasion and metastasis via reducing rho GTPase [49]

Capsaicin BCPAP 25–100 Inhibit invasion and metastasis via activation of TRPV1
and subsequently regulating EMT [50]

Berberine TPC-1 10–160 Induce apoptosis, G0/G1 cell cycle arrest and migration via
PI3K/Akt and MAPK pathways [51]

Paclitaxel PTC patient with SCC
component

Weekly
80mg/m2

-e response rate was 67% and the clinical benefit rate was
100% [52]

Pseudolaric acid B SW1579 1.25–5 Induce G2/M cell cycle arrest by activating autophagy by
decreasing nuclear p53 expression [53]

Shikonin
8505c, 8305c, FTC133,

BCPAP, C643, TPC-1, IHH4,
K1, HTori-3

3–6

Induce apoptosis via suppression of ERK/Akt and
DNMT1, and activation of p16/Rb and caspase-3-

dependent mitochondrial pathways;
[54–56]

Inhibit migration and invasion by suppressing EMT and
expression of slug and MMP-2, -9, and -14. [54]

Allicin H--7 10 Activating autophagy via inactivation of akt and S6
pathways [57]

EGCG: Epigallocatechin-3-gallate; ATM: ataxia telangiectasia-mutated; ROS: reactive oxygen species; EMT: epithelial-to-mesenchymal transition; CSC:
cancer stem cell; ER: endoplasmic reticulum; PTC: papillary thyroid carcinoma; SCC: squamous cell carcinoma; EGFR: epidermal growth factor receptor.
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and weakens the migration of PTC cells under hypoxic
conditions [84]. Meanwhile, when combined with sorafenib,
curcumin significantly inhibits the apoptosis of FTC133 cells
via PI3K/AKTand ERK pathways; moreover, compared with
chemotherapy drugs, curcumin has lower cytotoxic effects
on normal cells [85]. When cotreated with other natural
extracts such as spirulina and Boswellia, curcumin can ef-
fectively reduce the size of benign thyroid nodules and
restore thyroid hormonal dysfunction, thereby preventing
the progress of PTC canceration [86].

3. Flavonoids

Flavonoids are a group of phenolic antioxidants with strong
biological activity that have been widely used in pharma-
ceutical and food additives. Some flavonoids, such as soy
genistein, naringenin, phloretin, and chrysin, are structur-
ally similar to estrogen and have little or weak estrogen-like
effects [87].-ese phytoestrogens can affect not only thyroid
hormone synthesis but also thyroid hormone metabolism
[88–90]. -erefore, the beneficial or adverse effects of fla-
vonoids depend on their target tissue and their daily con-
sumption. However, an excessive intake of phytoestrogens,
especially soy isoflavones, can undo any benefits of flavo-
noids and interfere in the iodination of human thyroid
hormones [91, 92].

Many studies have shown that the estrogenic potencies
of these compounds depend mainly on the presence/absence
of bicyclic and hydroxyl structures. (1)-e B ring position of
flavonoids affects their estrogen-like activity, and the
strongest activity is present on the 3 position; (2) the hy-
droxyl groups on the 5 position of the A ring increase the
activity; (3) the hydroxyl groups on the 5′ position of the B
ring reduce the activity; (4) the conjugated double bond on
the 2 and 3 positions of the C ring greatly enhances the
activity; and (5) both glycosyl and isopropenyl inhibit the
activity. Moreover, different flavonoids perform selective
functions during the estrogen receptor subtype stimulation
[87, 93].

Apigenin and quercetin are flavonoids that are most
commonly found in a variety of fruits, vegetables, and herbs
[94, 95]. Treatment with apigenin at concentrations of
12.5∼100 μM can inhibit the proliferation of BCPAP cells
arrested in the G2/M phase and induce autophagy via ROS-
mediated DNA damage [39]. Moreover, combining with
apigenin and AKT inhibitors enhances the antitumor effects
of radioiodine in both BRAFV600E-expressed rat thyroid cells
and primary cultured PTC cells from TRβPV/PV mice [40].
Unlike those of apigenin, the effects of quercetin on thyroid
cells have been disputed. Some studies showed that
1.25∼20 μM of quercetin inhibited normal thyroid cell
growth in association with the inhibition of the insulin-
induced PI3K/AKTpathway. Moreover, quercetin decreases
the expression of thyroid-stimulating-hormone-modulated
thyroid-restricted gene sodium/iodide symporter (NIS)
[96, 97]. By contrast, treatment with 50∼75 μM quercetin
shows an excellent anticancer activity by inducing S phase
arrest and apoptosis via Hsp90 and Caspase-3/PARP
pathways in BCPAP cells [41, 42]. Similarly, myricetin, of

which the B ring presents one more hydroxyl group at the 5′
position compared with quercetin, dependently induces
apoptosis and DNA condensation of SNU-790 PTC cells,
which also involves caspase-dependent mitochondrial dys-
function [43].

Icariin is the main active ingredient of Epimedium
davidii Franch. and has gained much attention because of its
erectogenic and neurotrophic effects [98]. Recently, many
studies have demonstrated the application of icariin on
hormone-dependent neoplasia and in the treatment of
prostatic, ovarian, and thyroid cancers [44, 99–101]. Icariin
can inhibit cell proliferation, migration, and invasion via
downregulating miR-625-3p and suppressing PI3K/AKT
and ERK pathways in both SW579 and TPC1 cells [39].

Flavokawain B is a hepatotoxic constituent extracted
from kava root [102] and shows potent cytotoxicity by in-
ducing ROS-mediated apoptotic and autophagic cell death
in various tumor cells [103, 104]. -is material also inhibits
cell viability, migration, and invasion and causes autophagy
via the activation of the AMPK/mTOR pathway in thyroid
cancer ARO, WRO, and TPC-1 cells [45].

Genistein is the main active ingredient of Leguminosae.
-is isoflavone inhibits the invasion and metastasis of the
PTC-derived BHP10-3 cell (with RET/PTC 1 rearrange-
ment), BCPAP, and IHH4 (with BRAFV600E mutation) by
inhibiting β-catenin and EMT [46]. However, genistein
upregulates most thyroid transcript signals, except for
thyroid peroxidase, in zebrafish embryos, thereby indicating
potential disruptions [105].

Silibinin is a natural hepatoprotective drug and has
excellent antioxidant and anticancer properties. It also in-
duces apoptosis, autophagy, makes cell cycle arrest, and
inhibits onco-miRNAs which is involved in the PTC tu-
morigenesis [106]. Previous studies showed that it sup-
pressed cell migration and MMP-9 expression by regulating
the ERK pathway in thyroid cancer cells [47].

4. Saponins

Saponins are steroid or triterpenoid glycosides commonly
found in plants. Extensive studies have shown that saponins
have various pharmacological effects, including hypogly-
cemic, antitumor, anti-inflammatory, immunomodulatory,
and vasoprotective properties, and thus they have been
widely used for preventing and treating cardiovascular and
immunodeficiency diseases [107]. Ginsenosides are by far
the most investigated group of saponins with a triterpenoid
dammarane skeleton and are the main active ingredients of
the ginseng genus (Panax ginseng C. A. Mey. Panax
notoginseng (Burk.) F. H. Chen and Panax quinquefolium
L.) in Araliaceae and Gynostemma pentaphyllum (-unb)
Makino. in Cucurbitaceae [108, 109]. At high concentra-
tions (>100 μM), ginsenosides exert cytotoxic and hae-
molytic effects, while treatment at low concentrations
(10∼100 μM) inhibits the proliferation of PTC cells, thereby
indicating its multidirectional effects on cancer cells [110].
Despite similarities in the structure of dexamethasone,
both 20(S)-protopanaxadiol (PPD)-type ginsenosides
(such as Rb1, Rb2, Rc, Rd, Rh2, and Compound K) and
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20(S)-protopanaxatriol (PPT)-type ginsenosides (such as
Re, Rf, Rg1, and Rh1) do not have any effects on gluco-
corticoid receptor transactivation or transrepression [111].
However, they exert synergistic anti-inflammatory effects
when in combination with glucocorticoids at the low doses
[112]. Previous studies show that PPT-type ginsenosides
(Rg1 and Rg3) can reduce the proliferation, migration, and
invasion of PTC cells by upregulating Cx31 and inhibiting
Rho GTPase to an alternate cytoskeleton [48, 49]. Fur-
thermore, Rg3 remarkably reduces the expression of the
VEGF-C protein in TPC-1, BCPAP, C643, and Ocut-2c
cells and inhibits lymph node metastasis in mice [49].
Structure-activity relationships elucidate the association
between chemical structures and the anticancer activities of
a series of ginsenosides. As shown in Table 2, the anticancer
activities of ginsenosides generally take the descending
order of CK >Rg1≈20(S)-Rh2≈20(S)-Rg3 > PPT≈PPD,
thereby suggesting that the ginsenoside with less polar
chemical structures has stronger cytotoxic effects on PTC
cells [50, 51].

5. Other Bioactivities

Capsaicin (CAP), a major active component of chili peppers,
selectively binds to transient receptor potential vanilloid
type 1 (TRPV1). CAP (25–100 μM) dose-dependently sup-
presses the migration, invasion, and adhesion of BCPAP
cells by activating TRPV1 and subsequently regulating EMT
[52].

Berberine is an isoquinoline alkaloid mainly isolated
from Coptis chinensis Franch. and Berberis wilsonae Hemsl.
et Wils. Numerous studies have shown that it had multiple
pharmacological effects, including antimicrobial, hypogly-
cemic, anti-inflammatory, antifibrotic, and antineoplastic
properties. Berberine can also induce mitochondrial apo-
ptosis, trigger G0/G1 cell cycle arrest, and suppress the
migration of TPC-1 cells via inhibiting PI3K/AKT and
MAPK pathways [113].

Paclitaxel is a tetracyclic diterpenoid derived from the
dried roots, branches, leaves, and barks of Taxus chinensis.
Paclitaxel is a first-line chemotherapeutic agent for PTC
patients with a squamous cell carcinoma component, of
which response rates are 67% and the clinical benefit rate
(PR+ SD) is 100%. -erefore, weekly paclitaxel may be
applied as effective adjuvant chemotherapy after surgery
[114].

Pseudolaric acid B (PAB) is a diterpenoid acid extracted
from the root barks or barks near the roots of Pseudolarix
amabilis (Nelson) Rehd. (Pinaceae) and is known as an
antitubulin therapeutic agent that can suppress microtubule
assembly to inhibit the proliferation of cancer cells [53, 115].
PAB can also inhibit the proliferation, invasion, and mi-
gration of SW579 cells by preventing the regulation of Bcl-2
and Beclin-1 expression but decreases the expression of
nuclear p53 and induces G2/M cell cycle arrest by increasing
the ratio of autophagic cells [54].

Shikonin is a natural bioactive naphthoquinone derived
from Lithospermum erythrorhizon Sieb. et Zucc (also called
Zi Cao in Asia). It has been recently considered as a natural

food additive and antitumor agent for breast cancer, leu-
kemia, hepatoma, and nonsmall cell lung cancer
[55, 56, 116]. Previous studies reveal that shikonin dra-
matically inhibits the migration and invasion of PTC cells via
suppressing EMTand inhibiting the expressions of slug and
MMP-2, -9, and -14. Furthermore, shikonin induces PTC
cell apoptosis by targeting several signaling pathways,
suppressing ERK/AKT and DNMT1, and activating p16/Rb
and caspase-3-dependent mitochondrial pathways
[57, 117, 118].-e oral administration of 2.0mg/kg shikonin
does not cause any liver injury in mice, thereby indicating its
safety [117].

Allicin, as another well-known natural food additive, is
mainly isolated from garlic. Allicin inhibits the proliferation
of cancer cells, induces cell apoptosis, and increases the
intracellular levels of ROS [57, 118]. It can also improve
multidrug resistance in thyroid cancer cells via inducing
autophagy but inactivating AKT and S6 pathways [119].

6. Conclusions and Outlook

Although the problems of overdiagnosis and overtreatment
now seem to be acknowledged, how to acquire survival
benefit for PTC patients becomes to be a basic challenge
[120]. -erefore, it is obviously important to explore new
mild strategies to prevent and treat PTC. Phytochemicals
have received much attention over the past three decades as
potential sources of new candidates for cancer chemo-
prevention and treatment. Given the fact that many
available anticancer drugs are derived from plant sub-
stances (e.g., taxol, vinblastine, homoharringtonine,
β-elemene, indole-3-carbinol) as prototypes, this review
focuses on herbal active ingredients with high potentials for
the prevention and treatment of PTC. -e benefits of these
ingredients in PTC prevention and treatment have been
well investigated, but their underlying mechanism and
direct molecular targets remain unclear. Due to the latent
toxicological, low bioavailability, foreseeable multidrug
resistance, and deficient clinical trials, the extensive as-
sessment of those untapped natural compounds on hu-
manized immune system mouse models and achievable
doses and drug delivery systems compatible for human
studies still need to be further explored. Moreover, the
development and progression of tumors are strongly as-
sociated with the physiological and pathological charac-
teristics of the tumor microenvironment (TME) [121], in
which hypoxia, chronic inflammation, oxidative stress, and
acidosis contribute to cancer progression, including im-
mune escape, angiogenesis, and metastasis. Given their
multihydroxy structures, most phytochemicals with an-
tioxidant and anti-inflammatory potentials can be pre-
ponderant on the improvement of TME profiles. According
to the different features of cell subsets in TME, the patients
could derive benefits from the intervention of multidrug
combination. However, the effectiveness of herbal active
ingredients on TME has been rarely reported. -e appli-
cation of those strategies might promote the clinical
translation of these herbal active ingredients for PTC pre-
vention and treatment.
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[41] E. Mutlu Altundağ, T. Kasacı, A. M. Yılmaz et al., “Quer-
cetin-induced cell death in human papillary thyroid cancer
(B-cpap) cells,” Journal of)yroid Research, vol. 2016, Article
ID 9843675, 10 pages, 2016.

[42] E. Mutlu Altundag, A. Mine Yilmaz, T. Kasaci, C. Corek,
Y. Taga, and A. Suha Yalçin, “-e role of HSP90 in quercetin-
induced apoptosis in human papillary thyroid (B-CPAP)
cancer cells,” Free Radical Biology and Medicine, vol. 75,
no. Suppl 1, p. S43, 2014.

[43] T. K. Ha, I. Jung, M. E. Kim, S. K. Bae, and J. S. Lee, “Anti-
cancer activity of myricetin against human papillary thyroid
cancer cells involves mitochondrial dysfunction-mediated
apoptosis,” Biomedicine & Pharmacotherapy, vol. 91,
pp. 378–384, 2017.

[44] L. Fang, W. Xu, and D. Kong, “Icariin inhibits cell prolif-
eration, migration and invasion by down-regulation of
microRNA-625-3p in thyroid cancer cells,” Biomedicine &
Pharmacotherapy, vol. 109, pp. 2456–2463, 2019.

[45] Q. He, W. Liu, S. Sha et al., “Adenosine 5′-monophosphate-
activated protein kinase-dependent mTOR pathway is in-
volved in flavokawain B-induced autophagy in thyroid
cancer cells,” Cancer Science, vol. 109, no. 8, pp. 2576–2589,
2018.

[46] C. Zhang, B. Lv, C. Yi et al., “Genistein inhibits human
papillary thyroid cancer cell detachment, invasion and

BioMed Research International 7



metastasis,” Journal of Cancer, vol. 10, no. 3, pp. 737–748,
2019.

[47] S.-J. Oh, S. P. Jung, J. Han et al., “Silibinin inhibits TPA-
induced cell migration and MMP-9 expression in thyroid
and breast cancer cells,” Oncology Reports, vol. 29, no. 4,
pp. 1343–1348, 2013.

[48] L. Xu, S.-W. Chen, X.-Y. Qi, X.-X. Li, and Y.-B. Sun,
“Ginsenoside improves papillary thyroid cancer cell malig-
nancies partially through upregulating connexin 31,” )e
Kaohsiung Journal of Medical Sciences, vol. 34, no. 6,
pp. 313–320, 2018.

[49] W. Wu, Q. Zhou, W. Zhao et al., “Ginsenoside Rg3 inhi-
bition of thyroid cancer metastasis is associated with alter-
nation of actin skeleton,” Journal of Medicinal Food, vol. 21,
no. 9, pp. 849–857, 2018.

[50] K. Quan, Q. Liu, J. Y. Wan et al., “Rapid preparation of rare
ginsenosides by acid transformation and their structure-
activity relationships against cancer cells,” Scientific Reports,
vol. 5, no. 1, p. 8598, 2015.

[51] H. Dong, L.-P. Bai, V. K. W. Wong et al., “-e in vitro
structure-related anti-cancer activity of ginsenosides and
their derivatives,”Molecules, vol. 16, no. 12, pp. 10619–10630,
2011.

[52] S. Xu, L. Zhang, X. Cheng, H. Yu, J. Bao, and R. Lu, “Capsaicin
inhibits the metastasis of human papillary thyroid carcinoma
BCPAP cells through the modulation of the TRPV1 channel,”
Food & Function, vol. 9, no. 1, pp. 344–354, 2018.

[53] G.-d. Yao, J. Yang, X.-x. Li et al., “Blocking the utilization of
glucose induces the switch from senescence to apoptosis in
pseudolaric acid B-treated human lung cancer cells in vitro,”
Acta Pharmacologica Sinica, vol. 38, no. 10, pp. 1401–1411,
2017.

[54] J. Yu, P. Ren, T. Zhong et al., “Pseudolaric acid B inhibits
proliferation in SW579 human thyroid squamous cell car-
cinoma,” Molecular Medicine Reports, vol. 12, no. 5,
pp. 7195–7202, 2015.

[55] F.Wang, X. Yao, Y. Zhang, and J. Tang, “Synthesis, biological
function and evaluation of Shikonin in cancer therapy,”
Fitoterapia, vol. 134, pp. 329–339, 2019.

[56] Q. Yang, M. Ji, H. Guan, B. Shi, and P. Hou, “Shikonin
inhibits thyroid cancer cell growth and invasiveness through
targeting major signaling pathways,” )e Journal of Clinical
Endocrinology & Metabolism, vol. 98, no. 12, pp. E1909–
E1917, 2013.

[57] J. Borlinghaus, F. Albrecht, M. Gruhlke, I. Nwachukwu, and
A. Slusarenko, “Allicin: chemistry and biological properties,”
Molecules, vol. 19, no. 8, pp. 12591–12618, 2014.

[58] A. P. Laddha and Y. A. Kulkarni, “Tannins and vascular
complications of diabetes: an update,” Phytomedicine,
vol. 56, pp. 229–245, 2019.

[59] Y. Cai, J. Zhang, N. G. Chen et al., “Recent advances in
anticancer activities and drug delivery systems of tannins,”
Medicinal Research Reviews, vol. 37, no. 4, pp. 665–701,
2017.

[60] C. Liu, D. Cai, L. Zhang et al., “Identification of hydrolyzable
tannins (punicalagin, punicalin and geraniin) as novel in-
hibitors of hepatitis B virus covalently closed circular DNA,”
Antiviral Research, vol. 134, pp. 97–107, 2016.

[61] Z.-H. Jiang, X.-Y. Wen, T. Tanaka et al., “Cytotoxic hy-
drolyzable tannins fromBalanophora japonica,” Journal of
Natural Products, vol. 71, no. 4, pp. 719–723, 2008.

[62] J.-B. Liu, Y.-S. Ding, Y. Zhang et al., “Anti-inflammatory
hydrolyzable tannins from myricaria bracteata,” Journal of
Natural Products, vol. 78, no. 5, pp. 1015–1025, 2015.

[63] M. Costa, S. P. Alves, A. Cappucci et al., “Effects of con-
densed and hydrolyzable tannins on rumen metabolism with
emphasis on the biohydrogenation of unsaturated fatty
acids,” Journal of Agricultural and Food Chemistry, vol. 66,
no. 13, pp. 3367–3377, 2018.

[64] D. Y. Lee, H. W. Kim, H. Yang, and S. H. Sung, “Hydro-
lyzable tannins from the fruits of Terminalia chebula Retz
and their α-glucosidase inhibitory activities,” Phytochemis-
try, vol. 137, pp. 109–116, 2017.

[65] L. Xing, H. Zhang, R. Qi, R. Tsao, and Y. Mine, “Recent
advances in the understanding of the health benefits and
molecular mechanisms associated with green tea polyphe-
nols,” Journal of Agricultural and Food Chemistry, vol. 67,
no. 4, pp. 1029–1043, 2019.

[66] Q. Y. Eng, P. V. -anikachalam, and S. Ramamurthy,
“Molecular understanding of Epigallocatechin gallate
(EGCG) in cardiovascular and metabolic diseases,”
Journal of Ethnopharmacology, vol. 210, pp. 296–310,
2018.

[67] D.-L. Hu, G. Wang, J. Yu et al., “Epigallocatechin-3-gallate
modulates long non-coding RNA and mRNA expression
profiles in lung cancer cells,” Molecular Medicine Reports,
vol. 19, no. 3, pp. 1509–1520, 2019.

[68] S. K. Dhatwalia, M. Kumar, P. Bhardwaj, and D. K. Dhawan,
“White tea-a cost effective alternative to EGCG in fight
against benzo (a) pyrene (BaP) induced lung toxicity in SD
rats,” Food and Chemical Toxicology, vol. 131, Article ID
110551, , 2019.

[69] N. Yang and Y.-X. Shang, “Epigallocatechin gallate ame-
liorates airway inflammation by regulating Treg/-17 im-
balance in an asthmatic mouse model,” International
Immunopharmacology, vol. 72, pp. 422–428, 2019.
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