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Abstract: The three-dimensional trajectory data of vehicles have important practical meaning for
traffic behavior analysis. To solve the problems of narrow visual angle in single-camera scenes and
lack of continuous trajectories in 3D space by current cross-camera trajectory extraction methods,
we propose an algorithm of vehicle spatial distribution and 3D trajectory extraction in this paper.
First, a panoramic image of a road with spatial information is generated based on camera calibration,
which is used to convert cross-camera perspectives into 3D physical space. Then, we choose YOLOv4
to obtain 2D bounding boxes of vehicles in cross-camera scenes. Based on the above information,
3D bounding boxes around vehicles are built with geometric constraints which are used to obtain
projection centroids of vehicles. Finally, by calculating the spatial distribution of projection centroids
in the panoramic image, 3D trajectories of vehicles are extracted. The experimental results indicate
that our algorithm can effectively complete vehicle spatial distribution and 3D trajectory extraction in
various traffic scenes, which outperforms other comparison algorithms.

Keywords: camera calibration; cross-camera traffic scene; road panoramic image; vehicle spatial
distribution; 3D trajectory extraction

1. Introduction

Vehicle spatial distribution and 3D trajectory extraction is an important sub-task in the field of
computer vision. With the development of intelligent transportation systems (ITS), a large amount of
vehicle trajectory data reflecting movements is obtained through traffic surveillance videos, which can
be used for traffic behavior analysis [1,2] such as speeding and lane change, traffic flow parameter
(volume, density, etc.) calculation and prediction [3–5] and so on. Based on these data, traffic state
estimation [6,7] and traffic management and control [8] can be conducted, which plays a key role in
ensuring traffic efficiency and is of great research significance and practical value.

In current applications, trajectories mainly refer to two-dimensional trajectories in the image
space, which do not contain spatial information of vehicles in the real world. Compared with 2D
trajectories, 3D trajectories have one more dimension of spatial information, which has more obvious
advantages in practical applications and can be further applied to traffic accident scene reconstruction
and responsibility identification [9], as well as vehicle path planning [10] in autonomous driving and
cooperative vehicle infrastructure system (CVIS) to avoid collision.

Currently, the most commonly used methods for obtaining 3D vehicle trajectories are based on
object detection and feature point methods [11–13], which have been maturely applied in single-camera
scenes. With the development of deep convolutional neural networks (DCNNs), several excellent
object detection networks [14–18] have emerged, which greatly improve the accuracy and speed of
object detection compared with the traditional feature extraction and classifier methods [19]. Based on
object detection, feature points are extracted for vehicles to obtain 3D trajectories in the world space
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combined with camera calibration. Although these methods have been widely and maturely used
in single-camera scenes, the trajectory results are not accurate under the condition of low camera
perspectives and vehicle occlusion. To solve the problem, 3D object detection is considered because only
the presence, 2D location and rough type of vehicles in the image space can be obtained by 2D object
detection method and it is difficult to achieve a fine-grained description of vehicles. Compared with
2D methods, perspective distortion can be eliminated by 3D object detection. Moreover, 3D bounding
box fits the vehicle better and can describe vehicle size, pose, and other information on the physical
scale. Therefore, 3D model is more suitable for 3D trajectory extraction in traffic scenes. At the same
time, the visual angle of single-camera scene is usually narrow, which is unable to meet the needs
of applications in wide range scenes, so it is necessary to solve the problem of 3D vehicle trajectory
extraction in the whole space.

At present, full space fusion mainly relies on multi-scene stitching methods, which can be
divided into two categories. (1) Image stitching based on image alignment [20,21]. The feature points
of the overlapping areas in multiple images are detected and matched to construct homography
matrixes between images. Then, the panoramic image is generated based on the matrixes. This kind
of method is mature and widely used, especially in the panoramic photography of mobile phone
applications [22]. However, camera calibration is not used in these methods, which means physical
information cannot be reflected in the panoramic image. (2) Image stitching based on camera
calibration [23,24]. The transformation between world coordinate systems of the scenes are determined
based on overlapping areas in the image and camera calibration to generate the panoramic image which
contains actual physical information and can be used to measure and locate the world coordinates in
the image. However, this kind of method requires complicated manual calibration of each camera,
and has rarely been used in large scope of road measurement.

Methods of vehicle trajectory extraction in the whole space is cross-camera vehicle tracking,
which means obtaining continuous vehicle trajectory from images taken by multiple cameras with or
without overlapping areas. These methods usually contain three essential steps: camera calibration,
vehicle detection, and tracking in single-camera scenes and cross-camera vehicle matching. For cameras
with overlapping areas, the spatial correlation can be calculated by overlapping areas to obtain
continuous trajectories. However, in practical applications, “blind areas” are often existed in images
taken by multiple cameras. In case of this condition, methods of re-identification are used to accurately
and efficiently match vehicles in different perspectives through vehicle apparent features. Then,
continuous vehicle trajectories in the whole space can be obtained by space-time information inference.

Currently, re-identification methods used in cross-camera vehicle tracking are mostly based on
vehicle features, such as vehicle color, shape, and texture, among which SIFT feature is the most
commonly used due to its invariance to light, rotation, and scale. However, robustness of SIFT
to affine transformation is low. To improve this problem, Hsu et al. [25] proposed a method of
cross-camera vehicle matching based on ASIFT feature and min-hash technique, which can overcome
the influence of multi-camera perspectives to feature detection but cannot obtain 3D vehicle trajectory
and solve the problem of vehicle occlusion. Castaneda et al. [26] proposed a method of multi-camera
detection and tracking of vehicles in non-overlapping tunnel scene, which uses optical flow and
Kalman filter for vehicle tracking and state estimation in single scenes. Due to the special light
environment in tunnel scene, vehicle color cannot be used as matching criterion. Thus, vertical and
horizontal signatures are proposed to describe the similarity between vehicles. Combined with
cross-camera vehicle travel time and lane position constraints, continuous vehicle trajectory can be
obtained. To some extent, the problem of vehicle occlusion can be solved in this method, but the
physical location of vehicle trajectory in 3D space is still not available. To further obtain vehicle
trajectory in 3D space, multi-scene cameras should be calibrated in advance and the topological
relationship between cameras should be determined to convert multi-camera perspectives into point
sets in 3D coordinate system. Straw et al. [27] proposed a method of cross-camera vehicle tracking
which uses DLT and triangulation for camera calibration and Kalman filter for vehicle state estimation.
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Although continuous trajectory in 3D space could be obtained, the accuracy is low, which cannot
meet practical applications. Peng et al. [28] proposed a method of multi-camera vehicle detection and
tracking in non-overlapping traffic surveillance, using convolutional neural network (CNN) for object
detection and feature extraction and homography matrix for displaying vehicle trajectory to satellite
map. This method can accurately show vehicle trajectory in panoramic map, but these trajectories do
not contain physical location in 3D space. Byeon et al. [29] proposed an online method of cross-camera
vehicle positioning and tracking, which uses Tsai two-step calibration method for camera calibration
and represents vehicle matching as multi-dimensional assignment to solve the problem of vehicle
matching in multi-camera scenes. Vehicle trajectory can be obtained in this method, but the road
panoramic image with spatial information is not generated. Qian et al. [30] proposed a cross-camera
vehicle tracking system for smart cities which uses object detection, segmentation, and multi-object
tracking algorithms to extract vehicle trajectories in single-camera scenes. Then, a cross-camera
multi-object tracking network is proposed to predict a matrix which measures the feature distance
between trajectories in single-camera scenes. The system won the first place in AI City 2020 Challenge
and can better solve the problem of vehicle matching in cross-camera scenes. However, continuous 3D
trajectories of vehicles and the panoramic image of the scene cannot be obtained.

In view of the problems existing in current cross-camera vehicle tracking methods, such as the
influence of visual angle, vehicle occlusion, and lack of continuous trajectories in 3D space, we propose
an algorithm of vehicle spatial distribution and 3D trajectory extraction in cross-camera traffic scene.
The main contributions of this paper are summarized as follows:

• A method of road space fusion in cross-camera scenes based on camera calibration is proposed to
generate a road panoramic image with physical information, which is used to convert cross-camera
perspectives into 3D physical space.

• A method of 3D vehicle detection based on geometric constraints is proposed to accurately obtain
projection centroids of vehicles, which is used to describe vehicle spatial distribution in the
panoramic image and 3D trajectory extraction of vehicles.

The rest of this paper is organized as follows. The proposed algorithm to complete vehicle spatial
distribution and 3D trajectory extraction is illustrated in Section 2. Experiment results and some
comparison experiments are presented in Section 3. Conclusions and future work are given out in
Section 4.

2. Materials and Methods

2.1. Framework

The overall flow chart of the proposed algorithm is shown in Figure 1. First, a panoramic image
of the road with spatial information is generated based on camera calibration, which is used to convert
the cross-camera perspective into 3D physical space. Secondly, 3D bounding box is constructed
by geometric constraints, which is used to obtain the projection centroid of the vehicle. Finally,
3D trajectory of the vehicle is extracted by calculating the spatial distribution of the projection centroid
in the road panoramic image.
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2.2. Road Space Fusion in Cross-Camera Scene

2.2.1. Camera Calibration Model and Parameter Calculation

To complete road space fusion in cross-camera scenes, the relationship between 2D image space
and 3D world space must be derived through camera calibration. In this paper, we refer to the
study [31] and our previous work [32,33] to define coordinate systems and camera calibration model,
and choose the single vanishing point-based calibration method VWL (One Vanishing Point, Known
Width and Length) to complete the calculation of calibration parameters.

Schematic diagram of coordinate system and camera calibration model is shown in Figure 2.
In this paper, three coordinate systems are defined, all of which are right-handed. The world coordinate
system is defined by the x, y, z axis, and the origin Ow is located at the projection point of the camera
on the road plane, whereas z is perpendicular to the road plane upwards. The camera coordinate
system is defined by the xc, yc, zc axis, and the origin Oc is located at the camera optical center, and xc

is parallel to x, zc pointing to the ground along the camera optical axis, yc perpendicular to the plane
xcOczc. The image coordinate system is defined by u, v axis, and the origin Oi is located at image center.
In the image coordinate system, u is horizontal right and v is vertical downward. zc intersects the road
plane at r = (cx, cy) in the image coordinate system, which is called the principal point and its default
location is at the center of the image. cx, cy represent half of the image width and height, respectively.Sensors 2020, 20, x FOR PEER REVIEW 5 of 25 
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In camera calibration, calibration parameters usually include camera focal length f , camera height
h above the road plane, tilt angle φ and pan angle θ. In addition, roll angle can be represented by a
simple image rotation, which has no effect on calibration results and is not considered in this paper.
Through the camera model, the projection expression from the world coordinate system to the image
coordinate system can be deduced as follows:

α


u
v
1

 =


f 0 0 0
0 − f sinφ − f cosφ f h cosφ
0 cosφ − sinφ h sinφ




x
y
z
1

, (1)

where α , 0 is the scale factor, the homogeneous coordinates of the world point and its projection are[
x y z 1

]T
and

[
u v 1

]T
.
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In this paper, the single vanishing point-based calibration method VWL [31,32] is adopted to solve
the calibration parameters f , h,φ,θ, and the vanishing point VP = (u0, v0) along the direction of traffic
flow is extracted by road edge lines.

As shown in Figure 3, a line segment in the world coordinate system and its projection in the image
coordinate system are presented, respectively. In Figure 3a, due to the pan angle θ, the point at infinity

along the road direction can be expressed as x0 =
[
− tanθ 1 0 0

]T
in the world homogeneous

coordinate. In Figure 3b, according to the vanishing point principle, (u0, v0) is the projection of x0

in the image coordinate system. From Equation (1), the calibration parameters φ,θ can be solved as
follows:

φ = arctan(−v0/ f ), (2)

θ = arctan(−u0 cosφ/ f ), (3)
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Besides vanishing points, markings on the road plane are also commonly used signs. In Figure 3a,
the physical length of a line segment parallel to the road direction is l. The vertical coordinates of the
front and back point are yb, y f and vb, v f , where y represents the world coordinate system while v the
image. The physical width of the road is w with a pixel length δ in the corresponding image coordinate
system. It can be obtained from literature [31] that h can be expressed by w or l indirectly as follows:

h =
f w sinφ
δ cosθ

, (4)

h =
fτl cosφ
f 2 + v02 , (5)

where τ = (v f − v0)(vb − v0)/(v f − vb), sinφ, cosφ, cosθ can be solved from Equation (2) and (3).
By equating Equations (4) and (5) and substituting into sinφ, cosφ, cosθ, a fourth-order equation in f
can be derived as:

f 4 + [2(u0
2 + v0

2) − kV
2] f 2 + (u0

2 + v0
2)

2
− kV

2v0
2 = 0 (6)

where kV = δτl/(wv0).
From Equation (6), f can be solved first. When f is uniquely determined, φ,θ can be solved

according to Equations (2) and (3), and h can be finally solved according to Equations (4) or (5).
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Thus, all the calibration parameters are calculated and the mapping between world and image can be
described according to Equation (1).

To illustrate the road space in a straightforward way, the origin of the image coordinate system Oi
and the y axis of the world coordinate system are adjusted. First, the origin of the image coordinate
system is moved to the upper left corner of the image, corresponding to the change of the internal
parameter matrix K:

K =


f 0 cx

0 f cy

0 0 1


Then, the y axis is adjusted to the direction along the traffic flow. Therefore, the rotation matrix R

contains two parts, respectively representing a rotation of φ+ π/2 about the x axis and θ about the z
axis, which can be specifically expressed as:

R = Rx(φ+ π/2)Rz(θ) =


cosθ − sinθ 0

− sinφ sinθ − sinφ cosθ − cosφ
cosφ sinθ cosφ cosθ − sinφ


The translation matrix is:

T =


1 0 0 0
0 1 0 0
0 0 1 −h


Therefore, the adjusted mapping from world point (x, y, z) to image point (u, v) in homogeneous

form can be expressed as:

s


u
v
1

 = KRT


x
y
z
1

 = H


x
y
z
1


where H =

[
hi j

]
, i = 1, 2, 3; j = 1, 2, 3, 4 is the 3× 4 projection matrix from the world coordinate to the

image coordinate, and s is the scale factor.
Finally, according to the derivation, the adjusted mapping between world and image can be

described as follows:

World− to− Image

 u =
h11x+h12 y+h13z+h14
h31x+h32 y+h33z+h34

v =
h21x+h22 y+h23z+h24
h31x+h32 y+h33z+h34

, (7)

Image− to−World

 x =
b1(h22−h32v)−b2(h12−h32u)

(h11−h31u)(h22−h32v)−(h12−h32u)(h21−h31v)

y =
−b1(h21−h31v)+b2(h11−h31u)

(h11−h31u)(h22−h32v)−(h12−h32u)(h21−h31v)

, (8)

where
{

b1 = u(h33z + h34) − (h13z + h14)

b2 = v(h33z + h34) − (h23z + h24)
.

2.2.2. Unified World Coordinate System and Road Panoramic Image Generation

The mapping between world and image in a single scene can be described through camera
calibration. To complete 3D vehicle trajectory extraction in cross-camera scenes, the road space
needs to be fused. At present, image stitching methods are often used, but most of them rely on
overlapping areas to extract feature points for matching and obtaining transformation of scenes.
However, feature extraction and matching are time-consuming. For multi-scene (more than two
scenes) stitching, accumulated errors are existed in transformation of scenes, which will affect the
quality of final image stitching result and the measurement accuracy of physical distance. Therefore,
we propose a road space fusion algorithm in cross-camera scenes based on camera calibration which is
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not completely dependent on overlapping areas between scenes. When there are no overlapping areas
between scenes, only the distances between cameras are needed.

Schematic diagram of road space fusion in cross-camera scenes is shown in Figure 4. In Figure 4a,
number of cameras in the scene is N(N ≥ 2), the set of sub-scene world coordinate systems is
defined as

{
Wi

s : Oi
w − xiyizi; i = 1, 2, · · · , N

}
, which is the same as the world coordinate system in

the single scene described in the previous section. The unified world coordinate system is defined
as Wu : Ou − xuyuzu, and the origin Ou is located in the road edge close to the camera. OuO1

w is
perpendicular to the road edge. The mapping matrix between the world coordinate system and
the image coordinate system of each scene is the adjusted result described in the previous section,
which is defined as Hi, i = 1, 2, · · · , N. The red dots in Figure 4 are the control points set to identify
the road areas. Two control points are set for each scene. The sets of control points in image and
world coordinate system are

{
Pi

2d : pi
1, pi

2; i = 1, 2, · · · , N
}

and
{
Pi

3d : Pi
1, Pi

2; i = 1, 2, · · · , N
}

respectively.
In Figure 4b, the panoramic image coordinate system is defined as Op − upvp, and the origin Op is
located at the upper left corner of the panoramic image, which is similar to the image coordinate system.
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Figure 4. Schematic diagram of road space fusion in cross-camera scenes. (a) The unified world
coordinate system; (b) The panoramic image of road space.

Schematic diagram of road distribution in the panoramic image is shown in Figure 5. The proposed
road space fusion algorithm in cross-camera scenes is specifically illustrated with this figure.

Step 1: Camera calibration. The calibration method proposed in this paper is used to calculate calibration
parameters of each camera in the scene, including internal parameter matrix Ki, rotation matrix
Ri, translation matrix Ti and projection matrix of each camera Hi = KiRiTi; i = 1, 2, · · · , N.

Step 2: Road area identification by setting control points. Harris corner extraction algorithm is used to obtain
the image coordinate set of the nearest and furthest marking endpoints on the road plane in each
scene, which is denoted as

{
Pi

2d : pi
1 = (xi

1, yi
1), pi

2 = (xi
2, yi

2); i = 1, 2, · · · , N
}
. Equation (8) is used
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to convert Pi
2d to the world coordinate set

{
Pi

3d : Pi
1 = (Xi

1, Yi
1, 0), Pi

2 = (Xi
2, Yi

2, 0); i = 1, 2, · · · , N
}
.

The range of road area is calculated from Pi
3d as

{
Ri

l :
∣∣∣Yi

2 −Yi
1

∣∣∣; i = 1, 2, · · · , N
}
.

Step 3: Set control parameter groups and divide pixels of the panoramic image Mp into corresponding scenes.
The width of the road is w (mm). The scale in the road space along the width direction is rw (pixel/mm)

and the length direction rl. The height and width of Mp are wrw and rl
N∑

i=1

∣∣∣Yi
2 −Yi

1

∣∣∣, where the

corresponding length of each scene on the panoramic image Mp is rl
∣∣∣Yi

2 −Yi
1

∣∣∣; i = 1, 2, · · · , N.

Step 4: Generate the complete panoramic image Mp. The panoramic image coordinates are traversed
from the origin at the upper left corner. A point (u, v) in the image coordinate system belongs to
scene i and its corresponding world coordinate point is (Xi

1 + v/rw −w/2, Yi
1 + (u−Ri)/rl, 0),

where Ri =


0 i = 1
i−1∑
t=1

rl
∣∣∣Yt

2 −Yt
1

∣∣∣ i = 2, 3, · · · , N
.
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Figure 5. Schematic diagram of road distribution in the panoramic image.

The pixel in the road area Ipixel corresponding to the world coordinate point is taken out (if any)
and put to the position of the panoramic image coordinate point. Repeat this process until all the pixels
of the corresponding road areas in all scenes are taken out and put into the panoramic image correctly.

Since the generated panoramic image contains physical information of road space, the position in
the sub-scene world coordinate system and the unified world coordinate system can be calculated
directly from a point in the panoramic image. In addition, the position in the unified world coordinate
system and the panoramic image coordinate system can also be analyzed from a point in the sub-scene
world coordinate system. The specific mapping equation group is as follows:

• panoramic image-to-world

{
Uni f ied world coordinate (v/rw + Xi

1 −w/2, u/rl + Y1
1, 0)

Subscene world coordinates (v/rw + Xi
1 −w/2, (u−Ri)/rl + Yi

1, 0)
, (9)

where a point in the panoramic image is denoted as (u, v), i represents the number of the sub-scene,

Ri =


0 i = 1
i−1∑
t=1

rl
∣∣∣Yt

2 −Yt
1

∣∣∣ i = 2, 3, · · · , N
.

• Sub-scene world-to-panoramic image

panoramic image coordinate (rl(Y −Yi
1 + Ui), rw[X − (Xi

1 −w/2)]) , (10)

where a point in sub-scene i is denoted as (X, Y, 0), Ui =


0 i = 1
i−1∑
t=1

∣∣∣Yt
2 −Yt

1

∣∣∣ i = 2, 3, · · · , N
.
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2.3. 3D Vehicle Detection for Distribution and Trajetory Extraction

2.3.1. 3D Bounding Boxes and Projection Centroids of Vehicles

Based on road space fusion in cross-camera scenes, to further obtain vehicle spatial distribution
and 3D trajectory, vehicle detection in the scene is needed. Since the height of vehicle feature points
is unknown, projection centroid is adopted in this paper instead, which depends on 3D vehicle
detection. Considering actual application requirements, we choose YOLOv4 [34] for 2D vehicle
detection. The detection results contain center point, width, and height of 2D bounding box in the
image coordinate system, vehicle type (car, truck, bus) and its confidence. Then, the best 3D vehicle
detection result and projection centroid are obtained by geometric constraints for vehicle spatial
distribution and 3D trajectory extraction.

Figure 6 shows the vehicle model of 2D/3D bounding box from left and right perspectives. In each
sub-figure, the left represents 2D model while the right 3D model. 2D model is in the image coordinate
system. The axes in 3D model are the same direction as the world coordinate system, and the origin
is the bottom left point of the 3D model. The vertices of 2D bounding box model are numbered
from 0 to 3, and the corresponding image coordinates are denoted as P2D

i = (u2D
i , v2D

i ), i = 0, 1, 2, 3.
In the same way, the vertices of 3D bounding box model are numbered from 0 to 7, and the
corresponding world and image coordinates are denoted as P3D

i = (x3D
i , y3D

i , z3D
i ), i = 0, 1, · · · , 7 and

P3Di
j = (u3Di

j , v3Di
j ), j = 0, 1, · · · , 7. The world coordinates of eight vertices and projection centroid of

the vehicle from different perspectives are presented in Table 1.
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3D 3D 3D
1 1 v 1( ,  ,  )x y l z+  

3 3D 3D 3D
1 v 1 v 1( ,  ,  )x w y l z− +  

3D 3D 3D
1 v 1 v 1( ,  ,  )x w y l z+ +  

4 3D 3D 3D
1 v 1 1 v( ,  ,  )x w y z h− +  

3D 3D 3D
1 v 1 1 v( ,  ,  )x w y z h+ +  

5 3D 3D 3D
1 1 1 v( ,  ,  )x y z h+  

3D 3D 3D
1 1 1 v( ,  ,  )x y z h+  

6 3D 3D 3D
1 1 v 1 v( ,  ,  )x y l z h+ +  

3D 3D 3D
1 1 v 1 v( ,  ,  )x y l z h+ +  

7 3D 3D 3D
1 v 1 v 1 v( ,  ,  )x w y l z h− + +  

3D 3D 3D
1 v 1 v 1 v( ,  ,  )x w y l z h+ + +  

Projection centroid 3D 3D 3D
1 v 1 v 1( 2 ,  2 ,  )x w y l z− +  

3D 3D 3D
1 v 1 v 1( 2 ,  2 ,  )x w y l z+ +  

Schematic diagram of 2D/3D vehicle detection is shown in Figure 7 (the left represents 2D 
detection while the right 3D detection) and the algorithm is specifically described as follows: 

Figure 6. Schematic diagram of vehicle model of 2D/3D bounding box from different perspectives.
(a) Left perspective; (b) Right perspective.

Table 1. Eight vertices and projection centroid in 3D bounding box model from different perspectives.

Number
Perspective

Left Right

0
(
x3D

1 −wv, y3D
1 , z3D

1

) (
x3D

1 + wv, y3D
1 , z3D

1

)
1

(
x3D

1 , y3D
1 , z3D

1

) (
x3D

1 , y3D
1 , z3D

1

)
2

(
x3D

1 , y3D
1 + lv, z3D

1

) (
x3D

1 , y3D
1 + lv, z3D

1

)
3

(
x3D

1 −wv, y3D
1 + lv, z3D

1

) (
x3D

1 + wv, y3D
1 + lv, z3D

1

)
4

(
x3D

1 −wv, y3D
1 , z3D

1 + hv
) (

x3D
1 + wv, y3D

1 , z3D
1 + hv

)
5

(
x3D

1 , y3D
1 , z3D

1 + hv
) (

x3D
1 , y3D

1 , z3D
1 + hv

)
6

(
x3D

1 , y3D
1 + lv, z3D

1 + hv
) (

x3D
1 , y3D

1 + lv, z3D
1 + hv

)
7

(
x3D

1 −wv, y3D
1 + lv, z3D

1 + hv
) (

x3D
1 + wv, y3D

1 + lv, z3D
1 + hv

)
Projection centroid

(
x3D

1 −wv/2, y3D
1 + lv/2, z3D

1

) (
x3D

1 + wv/2, y3D
1 + lv/2, z3D

1

)
Schematic diagram of 2D/3D vehicle detection is shown in Figure 7 (the left represents 2D detection

while the right 3D detection) and the algorithm is specifically described as follows:

Step 1: YOLOv4 is used to obtain the vertices in the image coordinate system P2D
i = (u2D

i , v2D
i ), i = 0,1, 2, 3

and vehicle type. The base point of 2D bounding box is set as P2D
1 = (u2D

1 , v2D
1 ) in the image



Sensors 2020, 20, 6517 10 of 24

coordinate system, which can be converted into P3D
1 = (x3D

1 , y3D
1 , z3D

1 ) in the world coordinate
system by Equation (8), where z3D

1 = 0.

Step 2: Suppose 3D vehicle physical size (lv, wv, hv), lv,wv,hv represent vehicle length, width, and height
respectively. According to Table 1, the world coordinates of the eight vertices in 3D bounding box
model are calculated as P3D

i = (x3D
i , y3D

i , z3D
i ), i = 0, 1, · · · , 7.

Step 3: Thecalculation results inStep 2areconvertedto the image coordinatesP3Di
j = (u3Di

j , v3Di
j ), j = 0,1, · · · , 7

through Equation (7) to complete 3D vehicle detection.
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2.3.2. Geometric Constraints

According to the above 3D vehicle detection algorithm, obtaining accurate 3D vehicle physical
size is the premise to complete precise 3D vehicle detection. Due to the factor of perspective distortion
and lack of depth information in monocular image, accurate size cannot be obtained by vehicle type
which is derived from YOLOv4. Therefore, geometric constraints are considered to accurately calculate
3D vehicle physical size, which includes diagonal constraint and vanishing point constraint.

3D vehicle detection is equivalent to obtaining 3D vehicle physical size X = (lv, wv, hv), and the
diagonal pixel length of 2D bounding box is defined as:

l2D =
∥∥∥∥P2D

1 − P2D
3

∥∥∥∥
2
, (11)

where ‖ · ‖2 denotes the Euclidean distance between two points.
According to 3D bounding box model, P3Di

1 and P3Di
7 are selected, and the diagonal pixel length of

3D bounding box can also be defined as:

l3D =
∥∥∥∥P3Di

1 − P3Di
7

∥∥∥∥
2
, (12)

The difference of Equation (11) and (12) consists of a set of diagonal constraint. Figure 8 shows
the vehicle diagonal constraint. The red/yellow wireframe represents 2D/3D bounding box. When 2D
bounding box and 3D bounding box are completely fitted, the blue line segment indicates that the
2D/3D diagonals completely coincide in the image coordinate system and the value of diagonal
constraint is 0, which means 3D vehicle physical size is relatively accurate. The word relatively means
the size is accurate in the case of diagonal constraint.

According to the principle of vanishing point, the straight line composed of 0–3, 1–2, 4–7, 5–6
point pairs in the 3D bounding box model must pass the vanishing point along the road direction
in the image coordinate system. Therefore, it can be used as another set of constraints to accurately
calculate 3D vehicle physical size.
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In the image coordinate system, the included angle between two lines (one formed by point pairs,
the other formed by one point and the vanishing point along the road direction) can be denoted as θ.

For four point pairs, according to the cosine theorem, we can derive θ1,θ2,θ3,θ4 as follows:

cosθ1 =

∥∥∥P3Di
0 − P3Di

3

∥∥∥2
2 +

∥∥∥P3Di
0 −VP

∥∥∥2
2 −

∥∥∥P3Di
3 −VP

∥∥∥2
2

2 ·
∥∥∥P3Di

0 − P3Di
3

∥∥∥2
2 ·

∥∥∥P3Di
0 −VP

∥∥∥2
2

, (13)

cosθ2 =

∥∥∥P3Di
1 − P3Di

2

∥∥∥2
2 +

∥∥∥P3Di
1 −VP

∥∥∥2
2 −

∥∥∥P3Di
2 −VP

∥∥∥2
2

2 ·
∥∥∥P3Di

1 − P3Di
2

∥∥∥2
2 ·

∥∥∥P3Di
1 −VP

∥∥∥2
2

, (14)

cosθ3 =

∥∥∥P3Di
4 − P3Di

7

∥∥∥2
2 +

∥∥∥P3Di
4 −VP

∥∥∥2
2 −

∥∥∥P3Di
7 −VP

∥∥∥2
2

2 ·
∥∥∥P3Di

4 − P3Di
7

∥∥∥2
2 ·

∥∥∥P3Di
4 −VP

∥∥∥2
2

, (15)

cosθ4 =

∥∥∥P3Di
5 − P3Di

6

∥∥∥2
2 +

∥∥∥P3Di
5 −VP

∥∥∥2
2 −

∥∥∥P3Di
6 −VP

∥∥∥2
2

2 ·
∥∥∥P3Di

5 − P3Di
6

∥∥∥2
2 ·

∥∥∥P3Di
5 −VP

∥∥∥2
2
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The sum of four equations above consists of a set of vanishing point constraint. As shown in
Figure 8, the red line segment is used to extract the vanishing point. When 2D bounding box and 3D
bounding box are completely fitted, the deep blue line shows that the line formed by point pairs and
the vanishing point completely coincide in the image coordinate system and the value of vanishing
point constraint is 0, which means 3D vehicle physical size is relatively accurate. The word relatively
means the size is accurate in the case of vanishing point constraint.

In this paper, the steps to obtain the vehicle geometric constraints are as follows:

Step 1: YOLOv4 is used to obtain the vertices in the image coordinate system P2D
i = (u2D

i , v2D
i ), i = 0, 2, 3,

base point P2D
1 = (u2D

1 , v2D
1 ) and vehicle type.

Step 2: (lv, wv, hv) is considered to be a set of unknown parameters. The base point in the world
coordinate system can be obtained by Equation (8) as P3D

1 = (x3D
1 , y3D

1 , z3D
1 ), where z3D

1 = 0.
Then, According to Table 1, the world coordinates P3D

0 , P3D
2 to P3D

7 can be calculated.

Step 3: According to Equation (11), the diagonal pixel length of 2D bounding box is calculated.
Then, the world coordinates of vertex 1 and 7 are converted to the image coordinates according
to Equation (7) as P3Di

1 , P3Di
7 . Finally, the diagonal pixel length of 3D vehicle bounding box is

calculated according to Equation (12), and a set of diagonal constraints are formed.
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Step 4: According to Equation group (8), the world coordinates of vertices from 0 to 7 are converted to
image coordinates as P3Di

0 to P3Di
7 . The values of cosθ1 to cosθ4 can be calculated according to

Equations (13) to (16), and a set of vanishing point constraints are formed.

According to the above algorithm, the diagonal constraint and vanishing point constraint are
obtained to construct the constraint error as lcal − ltruth. Where lcal is the actual constraint value obtained
by calculation, and ltruth is the ideal constraint value when 2D bounding box and 3D bounding box
are completely fitted. By analyzing the above algorithm, it can be easily seen that the variables in the
constraint error are composed of parameters lv, wv, hv, which can constitute the nonlinear constraint
space of parameter vectors.

To sum up, the nonlinear constraint function of the parameter X = (lv, wv, hv) is:

argmin
X

1
2
(

N f∑
i=1

λd(l2D − l3D)
2 +

4∑
j=1

λv(cosθ j − 4)2), (17)

where N f is the occurrence time of the same vehicle in video frames, λd and λv respectively represent
the error coefficient of the diagonal constraint and vanishing point constraint which are usually set to 1
and can be adjusted in different conditions, and min

X
represents the value of X when the constraint

function reaches the minimum.
The constraint function is nonlinear. LM (Levenberg-Marquardt) method is adopted in this paper

to solve the constraint function, which is easy to reach convergence. The initial value X0 can be obtained
by referring to the national road vehicle size standard [35] based on the vehicle type derived by YOLO.

After solving accurate 3D vehicle physical size, 3D vehicle detection can be completed. Then,
the world coordinates of projection centroids can be calculated. According to Equations (9) and (10),
coordinates of vehicles in the panoramic image and other scenes can be obtained. As shown in Figure 9,
vehicle spatial distribution and 3D trajectory in cross-camera scenes can be obtained by vehicles in
continuous motion.
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3. Results

In our experiments, we used the Intel Core i7-8700 CPU, NVIDIA 1080Ti GPU (Graphics Processing
Unit), 32GB memory, and Windows 10 operating system. The open source framework Darknet is used
for vehicle detection.

Experiments are carried out on the public dataset BrnoCompSpeed [36] and actual road scene
respectively, and the algorithm illustrated in Section 2 is adopted in the experiments. First, road space
fusion algorithm in cross-camera scenes is used to generate the panoramic image of road with spatial
information. Secondly, YOLOv4 combined with geometric constraints is used for 3D vehicle detection
to obtain projection centroids. Finally, the projection centroids are projected to the panoramic image
to derive vehicle spatial distribution and 3D trajectories. The experiments can be divided into the
following two aspects: (1) Verify the accuracy of projection centroids obtained by 3D vehicle detection
algorithm for vehicle spatial distribution. (2) Compare the proposed 3D vehicle trajectory extraction
algorithm with several 3D tracking methods in this paper.

3.1. BrnoCompSpeed Dataset Single-Camera Scene

Due to the lack of cross-camera datasets from road surveillance perspectives, we choose a public
dataset of single-camera scenes from surveillance perspectives published by researchers of Brno
University of Technology for our experiments. The cross-camera dataset made by ourselves and
experiments carried out on this scene are described in detail in Section 3.2.

The public dataset BrnoCompSpeed contains six traffic scenes captured by roadside surveillance
cameras. Each scene can be divided into left, middle, and right perspectives, with a total of 18 HD
(High Definition) videos (about 200 GB). The resolution of all the videos is 1920 × 1080. The dataset
contains various types of vehicles such as hatch-back, sedan, SUV, truck and bus, and the position and
velocity of vehicles are accurately recorded by radar. Therefore, this dataset can be used to verify the
accuracy of vehicle spatial distribution and 3D trajectories in single-camera scenes.

As shown in Figure 10, we select three scenes of different perspectives from six scenes for
verification which do not contain winding roads. In all the three scenes, the width of a single lane is
3.5 m, the length of a single short white marking line is 1.5 m, the length of a single long white marking
line is 3 m, and the length between the starting points of the long white marking lines is 9 m. First,
the three scenes are calibrated separately. Calibration results are shown in Table 2. Based on calibration,
the road space fusion algorithm described in Section 2.2.2 is adopted to generate the panoramic image
with physical information. Since the scenes in the dataset are single-camera scenes, we generate a
roadblock containing physical information for convenience which is shown in Figure 11. Each small
square of the roadblock represents the actual road space size of 3.5 × 9 m.
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Table 2. Camera calibration results of dataset road scene.

Parameter
Scene

Scene 1 Scene 2 Scene 3

f 2878.13 3994.17 3384.25
φ/rad 0.17874 0.15717 0.26295
θ/rad 0.26604 0.03535 −0.24869
h/mm 10119.08 8071.00 8126.49

VP (144.74, 34.78) (812.62, −109.12) (1855.68, −373.44)

H


3025.25 154.76 −170.68 1.727× 106

5.17 18.99 −2928.28 2.963× 107

0.26 0.95 −0.18 1799.11




4025.18 806.43 −150.27 1.213× 106

−3.25 −91.80 −4029.46 3.252× 107

0.03 0.99 −0.16 1263.33




3051.98 1731.45 −249.54 2.028× 106

88.18 −347.23 −3408.29 2.770× 107

−0.24 0.94 −0.26 2112.36


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The real position of the vehicle in the world coordinate system is defined as Pr and the measured
position is Pm. The effective field of view of the scene is set to Ls(m). Then, the vehicle spatial
distribution error can be defined as:

error =
||Pr − Pm||2

Ls/2
× 100%, (18)

Examples of the vehicle spatial distribution and 3D trajectories in dataset scenes are shown in
Figure 12. In this experiment, Ls is set to 450 m, and the base point in scene 2 can be selected using
either left or right perspective. Each scene contains multiple vehicles, and there are some cases of
vehicle occlusion. For each instance, the top image contains 3D vehicle detection and 2D trajectory
results, and the roadblock on the bottom side contains vehicle spatial distribution and 3D trajectory
results. Each vehicle corresponds to one color without repetition. Tables 3–5 correspond to the 3D
physical size, the image, and world coordinates and spatial distribution error of each vehicle in dataset
scene 1 to scene 3. The value of y-axis in the world coordinate system is presented in an ascending
order which indicates the distance between the vehicle and the camera is from near to far. To present
the results in a straightforward way, the position and direction of the vehicle is marked in the roadblock
with a white line segment and a white arrow respectively.

Table 3. Measurement of vehicle spatial distribution errors in dataset scene 1.

Instance Size/m Image Coordinate World Coordinate/mm Error/%

1

Car1 (4.30, 1.80, 1.40) [963, 861] [8956.79, 32,729.00, 0] 1.40%
Car2 (4.30, 1.80, 1.35) [676, 597] [8340.02, 49,855.60, 0] 1.85%
Car3 (4.30, 1.80, 1.35) [778, 510] [11,971.37, 58,457.92, 0] 2.54%
Car4 (4.20, 1.60, 1.35) [993, 456] [18,405.90, 64,583.41, 0] 3.66%

2
Car1 (4.40, 1.80, 1.45) [773, 692] [8525.12, 42,167.95, 0] 0.86%
Car2 (4.30, 1.70, 1.40) [836, 588] [11,274.48, 49,911.95, 0] 1.61%

Truck1 (11.00, 2.70, 2.80) [901, 358] [21,181.46, 84,556.09, 0] 3.89%

3
Truck1 (20.00, 2.80, 3.80) [817, 708] [8950.18, 40,973.38, 0] 2.12%
Car1 (4.20, 1.60, 1.35) [1291, 603] [18,714.95, 46,472.42, 0] 1.39%



Sensors 2020, 20, 6517 15 of 24

Table 4. Measurement of vehicle spatial distribution errors in dataset scene 2.

Instance Size/m Image Coordinate World Coordinate/mm Error/%

1

Car1 (4.50, 1.80, 1.50) [868, 881] [382.40, 32,656.53, 0] 1.60%
Car2 (4.50, 1.80, 1.50) [1276, 859] [3892.26, 33,316.97, 0] 1.44%
Car3 (4.50, 1.90, 1.65) [828, 380] [144.69, 68,624.58, 0] 2.80%
Car4 (4.50, 1.90, 1.55) [1381, 310] [11,383.98, 80,370.24, 0] 3.35%

2

Truck1 (11.00, 2.90, 2.80) [539, 595] [−3345.10, 46,901.24, 0] 2.03%
Car1 (4.25, 1.70, 1.35) [1455, 395] [10,631.62, 66,104.90, 0] 2.34%
Car2 (4.30, 1.80, 1.40) [859, 380] [679.93, 68,605.65, 0] 1.75%
Car3 (4.25, 1.70, 1.35) [1451, 285] [13,652.22, 85,716.80, 0] 3.84%

3

Car1 (4.40, 1.80, 1.35) [835, 793] [120.70, 36,037.78, 0] 1.63%
Car2 (4.30, 1.70, 1.40) [798, 515] [−300.43, 53,117.64, 0] 1.75%
Car3 (4.30, 1.80, 1.35) [1539, 453] [10,753.86, 58,902.55, 0] 2.03%
Car4 (4.40, 1.70, 1.30) [1038, 418] [3486.72, 63,307.65, 0] 3.14%
Car5 (4.30, 1.60, 1.30) [1582, 374] [13,332.64, 69,056.44, 0] 3.16%
Car6 (4.30, 1.70, 1.40) [836, 307] [342.68, 81,376.07, 0] 3.18%

Table 5. Measurement of vehicle spatial distribution errors in dataset scene 3.

Instance Size/m Image Coordinate World Coordinate/mm Error/%

1

Car1 (4.50, 1.70, 1.50) [1227, 950] [−3308.45, 19,939.27, 0] 0.31%
Truck1 (8.90, 2.50, 2.40) [1054, 479] [−7100.23, 31,741.25, 0] 1.60%
Car2 (4.40, 1.60, 1.40) [1310, 287] [−6155.65, 42,427.68, 0] 0.57%
Car3 (4.20, 1.60, 1.40) [1395, 145] [−6654.15, 55,028.20, 0] 1.23%

2

Car1 (5.40, 1.90, 1.85) [1390, 624] [−3232.59, 27,506.14, 0] 0.72%
Car2 (4.50, 1.70, 1.50) [996, 449] [−7956.65, 32,833.57, 0] 0.93%
Car3 (5.15, 1.80, 1.70) [1548, 243] [−3473.58, 46,422.95, 0] 1.11%
Car4 (4.30, 1.60, 1.50) [1120, 202] [−9853.38, 48,349.16, 0] 1.31%

3
Truck1 (8.90, 2.30, 2.70) [1074, 545] [−6371.75, 29,346.67, 0] 1.67%
Car1 (4.30, 1.70, 1.40) [1485, 195] [−4721.74, 50,309.12, 0] 1.72%

From the experimental results, it can be seen that the average error of vehicle spatial distribution
within the scope of hundred meters is less than 5%, which means the accuracy can reach the
centimeter level. In the meanwhile, the proposed algorithm is also adaptable to the situation of part
vehicle occlusion.

3.2. Actual Road Cross-Camera Scene

To further verify the application ability of the proposed algorithm, we choose the actual road with
large traffic flow which is located on the Middle Section of South Second Ring Road in Xi’an, ShaanXi
Province, China to make a small dataset of cross-camera scenes. The dataset consists of three groups
of HD videos (a total of six videos), and each of which is about 0.5 h long. The resolution of all the
videos is 1280 × 720. Figure 13 shows the image of the actual road scenes with no overlapping area
which are taken by 2 cameras with a distance of 210 m. In the actual road scene, the road width is
7.5 m, the length of a single white marking line on the road plane is 6m, and the length between the
starting points of the white marking lines is 11.80 m and 11.39 m in two scenes respectively. First,
the scenes taken by two cameras are calibrated separately. Calibration results are shown in Table 6.
Based on calibration, the panoramic image with physical information is generated by the road space
fusion algorithm described in Section 2.2.2, which is shown in Figure 14. A degree scale in the image
represents an actual distance of the starting points of four white marking lines and 3.75 m in the image
width and height direction.
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 − − − × 
 − 

5

7

5712.37 914.59 46.85 3.690 10
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0.048 0.996 0.732 576.60

 − ×
 − − × 
 − − 

Figure 13. Actual road scene. (a) Camera 1; (b) Camera 2.
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Table 6. Camera calibration results of actual road scene.

Parameter
Camera

Camera 1 Camera 2

f 1853.22 5749.81
φ/rad 0.21361 0.07326
θ/rad 0.09411 −0.04820
h/mm 7950.72 7877.36

VP (461, −42) (921, −62)

H


1903.79 448.53 −135.67 1.079× 106

−3.86 −40.86 −1887.41 1.501× 107

0.092 0.97 −0.21 1685.47




5712.37 914.59 −46.85 3.690× 105

2.98 −61.76 −5760.74 4.538× 107

−0.048 0.996 −0.732 576.60


In our experiment, we choose three examples of vehicles, which are shown in Figure 15. For each

example (similar to the dataset scene), 3D vehicle detection results in two cameras are shown in
the first two lines respectively, and 3D vehicle trajectory extraction results are shown in the third
line. Each vehicle corresponds to one color without repetition. Table 7 shows the results of vehicle
spatial distribution in actual road scene. Similar to the single-camera scenes, we mark the position
and direction of the vehicle in the panoramic image with a green line segment and a white arrow,
respectively. From the experimental results, it can be seen that continuous 3D trajectories of vehicles in
cross-camera scenes can be effectively extracted.
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Table 7. Vehicle spatial distribution in actual road scene.

Example Position World Coordinate in
Camera 1/mm

World Coordinate in
Camera 2/mm

Unified World
Coordinate/mm

1

1-4117
Car1 [182.59, 34,884.74, 0] not appear in camera 2 [4388.75, 241,500.13, 0]
Car2 [1214.55, 59,403.27, 0] not appear in camera 2 [5420.77, 266,018.66, 0]

1-4122
Car1 [276.22, 31,783.392, 0] not appear in camera 2 [4482.38, 238,398.79, 0]
Car2 [1343.44, 55,747.96, 0] not appear in camera 2 [5549.60, 262,363.36, 0]

1-4138
Car1 [433.30, 21,957.72, 0] not appear in camera 2 [4639.462, 228,573.11, 0]
Car2 [1372.33, 46,263.32, 0] not appear in camera 2 [5578.49, 252,878.72, 0]

2-4624
Car1 not appear in camera 1 [−2315.95, 134,591.43, 0] [4583.15, 134,591.43, 0]
Car2 not appear in camera 1 [−1860.88, 166,941.60, 0] [5038.22, 166,941.60, 0]

2-4660
Car1 not appear in camera 1 [−2921.01, 109,135.85, 0] [3978.10, 109,135.85, 0]
Car2 not appear in camera 1 [−1832.96, 146,397.29, 0] [5066.15, 146,397.29, 0]

2-4712
Car1 not appear in camera 1 [−4233.11, 70,563.03, 0] [2666.00, 70,563.03, 0]
Car2 not appear in camera 1 [−1901.24, 116,527.55, 0] [4997.87, 116,527.55, 0]

2

1-2801
Car1 [899.46, 26,003.79, 0] not appear in camera 2 [5105.62, 232,619.19, 0]
Car2 [1025.87, 49,825.21, 0] not appear in camera 2 [5232.03, 256,440.60, 0]
Car3 [1820.65, 78,805.77, 0] not appear in camera 2 [6026.81, 285,421.17, 0]

1-2807
Car1 [993.10, 23,872.62, 0] not appear in camera 2 [5199.26, 230,488.01, 0]
Car2 [965.72, 47,215.47, 0] not appear in camera 2 [5171.89, 253,830.87, 0]
Car3 [1893.67, 76,750.40, 0] not appear in camera 2 [6099.84, 283,365.80, 0]

1-2811
Car1 [980.66, 22,200.39, 0] not appear in camera 2 [5186.82, 228,815.78, 0]
Car2 [973.85, 45,420.60, 0] not appear in camera 2 [5180.01, 252,035.99, 0]
Car3 [1903.34, 75,569.57, 0] not appear in camera 2 [6109.50, 282,184.96, 0]

2-3437
Car1 not appear in camera 1 [−1564.61, 91,261.22, 0] [5334.49, 91,261.22, 0]
Car2 not appear in camera 1 [−1469.92, 132,265.81, 0] [5429.19, 132,265.81, 0]
Car3 not appear in camera 1 [−1300.03, 165,745.23, 0] [5599.08, 165,745.23, 0]

2-3455
Car1 not appear in camera 1 [−1687.04, 82,533.43, 0] [5212.07, 82,533.43, 0]
Car2 not appear in camera 1 [−1337.24, 126,348.42, 0] [5561.87, 126,348.42, 0]
Car3 not appear in camera 1 [−1239.88, 158,211.49, 0] [5659.23, 158,211.49, 0]

2-3490
Car1 not appear in camera 1 [−1787.93, 65,696.12, 0] [5111.17, 65,696.12, 0]
Car2 not appear in camera 1 [−1548.42, 111,637.28, 0] [5350.69, 11,1637.28, 0]
Car3 not appear in camera 1 [−1253.69, 138,779.72, 0] [5645.42, 138,779.72, 0]

3

1-2588
Car1 [−371.55, 31,699.965, 0] not appear in camera 2 [3834.615, 238,315.36, 0]
Bus1 [−1789.39, 69,195.99, 0] not appear in camera 2 [2416.77, 275,811.39, 0]

1-2591
Car1 [−399.30, 30,724.42, 0] not appear in camera 2 [3806.86, 237,339.82, 0]
Bus1 [−1716.91, 67,609.70, 0] not appear in camera 2 [2489.25, 274,225.10, 0]

1-2593
Car1 [−556.38, 29,752.87, 0] not appear in camera 2 [3649.787, 236,368.26, 0]
Bus1 [−1738.99, 66,999.57, 0] not appear in camera 2 [2467.17, 273,614.97, 0]
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Table 7. Cont.

Example Position World Coordinate in
Camera 1/mm

World Coordinate in
Camera 2/mm

Unified World
Coordinate/mm

3

2-3151
Car1 not appear in camera 1 [−3437.65, 91,918.145, 0] [3461.46, 91,918.14, 0]
Bus1 not appear in camera 1 [−4509.80, 173,877.80, 0] [2389.30, 173,877.80, 0]

2-3172
Car1 not appear in camera 1 [−3164.47, 77,067.36, 0] [3734.63, 77,067.36, 0]
Bus1 not appear in camera 1 [−4884.50, 168,037.29, 0] [2014.60, 168,037.29, 0]

2-3187
Car1 not appear in camera 1 [−3153.01, 67,825.67, 0] [3746.10, 67,825.67, 0]
Bus1 not appear in camera 1 [−4941.79, 163,175.51, 0] [1957.31, 163,175.51, 0]

As shown in Figure 16, the proposed algorithm is compared with the 3D tracking methods based
on feature point and 2D bounding box, which are represented by red, green, and orange respectively.
It can be seen that the method based on feature point is greatly influenced by vehicle texture and
surrounding environment, which cannot reflect true driving direction well, and may not be able to
obtain continuous 3D trajectory under the condition of occlusion. The method based on 2D bounding
box cannot accurately reflect the true driving position due to an unknown distance from bottom edge
to the road plane. The proposed algorithm is superior to the existing methods because it can obtain
accurate 3D vehicle bounding box, and is robust to vehicle occlusion and low visual angle of cameras.
Comparison of the performance of several 3D tracking methods is summarized in Table 8.
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Table 8. Comparison of different 3D trajectory extraction algorithms.

Algorithm Actual Driving
Direction

Actual Driving
Position

Continuous 3D
Trajectory

Cross-Camera
Scene

Panoramic
Image

Single-Camera
tracking
methods

Gu et al. [11]
√ √ √

× ×

Bullinger et al. [12]
√ √ √

× ×

Cao et al. [13] × × × × ×

Cross-Camera
tracking
methods

Castaneda et al. [26] × × ×
√

×

Peng et al. [28]
√ √ √ √

×

Qian et al. [30] × × ×
√

×

Ours
√ √ √ √ √

Since the proposed 3D vehicle detection algorithm is based on geometric constraints, the overall
processing speed is fast. It can be seen from examples in Figure 15, the average processing speed
of our algorithm on the GPU platform is 16 FPS with an average time of 600 ms, which can achieve
real-time performance.

During the experiment, it can also be found that the accuracy of vehicle spatial distribution and 3D
trajectory is related to the pan angle θ of the camera. Therefore, we count the accuracy under different
camera pan angles, which is shown in Figure 17. When the pan angle is close to 0◦, the information
of the vehicle side surface is invisible, which leads to the decrease of 3D vehicle detection accuracy.
In practical applications, the pan angle of the camera can be increased appropriately to retain most of
the visual information of the vehicle.
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4. Conclusions

Through experimental verification, the proposed algorithm of vehicle spatial distribution and 3D
trajectory extraction in cross-camera scenes in this paper has achieved good results in both BrnoCompSpeed
dataset single-camera scenes and actual road cross-camera scenes. The main contributions of this paper
are as follows: (1) A road space fusion algorithm in cross-camera scenes based on camera calibration is
proposed to generate the panoramic image with physical information in road space, which can be used to
convert multiple cross-camera perspectives into continuous 3D physical space. (2) A 3D vehicle detection
algorithm based on geometric constraints is proposed to accurately obtain 3D vehicle projection centroids,
which is used to describe vehicle spatial distribution in the panoramic image and to extract 3D trajectories.
Compared with existing vehicle tracking methods, continuous 3D trajectories can be obtained in the
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panoramic image with physical information by 3D projection centroids, which is helpful to applications in
large scope road scenes.

However, 3D vehicle projection centroids obtained by the proposed algorithm in this paper is
highly dependent on 2D vehicle detection results. When the vehicle is far from the camera, it is
prone to be missed of detection and the accuracy will decrease when the camera pan angle is close
to 0◦. Moreover, the proposed algorithm cannot currently be adapted to various road situations and
congested traffic. In future work, a more efficient method for road space fusion can be developed to
generate the panoramic image and calculate vehicle spatial distribution more precisely and a more
sophisticated vehicle detection network can be designed to fuse various types of geometric constraints
to further improve the accuracy of 3D vehicle detection under different camera pan angles. In addition,
only straight roads and simple traffic conditions are considered in this paper, which is necessary to be
further extended to complex traffic scenes such as road-crossing (containing winding roads) and traffic
congestion for more practical and advanced applications. Efforts are also needed to collect a large
dataset of these complex traffic scenes for algorithm validation. This direction is a key and difficult
point in the future work.
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