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Objective. Oral lichen planus (OLP) is the most common potentially malignant disorder of the oral cavity. -is study aimed to
investigate the mechanism of action of Cordyceps sinensis in the treatment of OLP and provides a theoretical support for
improving current treatment regimens for OLP. Methods. -e active components and therapeutic targets of Cordyceps sinensis
were predicted and screened using the TCMSP, SymMap, PubMed, HIT 2.0, and PharmMapper databases, while the relevant OLP
targets were predicted and screened using the DisGeNET and GeneCards databases. Protein-protein interactions (PPI) were
examined using the String database, and Cytoscape was used to combine and illustrate the findings. GO and KEGG pathway
enrichment analyses were carried out using RStudio, and AutoDock Vina and Pymol were used for molecular docking and
visualization, respectively. Results. A total of 404 potential target genes were discovered after evaluating 21 active compounds from
Cordyceps sinensis. Potential therapeutic targets included 67 targets that matched and overlapped with OLP, including TNF, IL-6,
CD4, EGFR, and IL1B. Key targets were predominantly engaged in the PI3K-Akt signaling pathway and the MAPK signaling
pathway, according to the GO and KEGG analyses. -ese targets have a connection to biological processes including apoptosis
signaling pathway regulation, Tcell activation, and oxidative stress response. -e molecular docking results showed that TNF, IL-
6, CD4, EGFR, and IL1B could bind to their corresponding active components. Conclusions. Cordyceps sinensis contains multiple
components and acts on multiple targets and multiple pathways. Particularly, Cordyceps sinensis targets TNF, IL-6, CD4, EGFR,
and IL1B, regulates PI3K-Akt and MAPK signaling pathways, as well as takes part in biological processes including apoptosis,
T cell activation, and oxidative stress. Cordyceps sinensis could be a crucial choice in the therapy of OLP.

1. Introduction

Oral lichen planus (OLP) is a chronic or recurrent in-
flammatory autoimmune disease of the oral mucosa, with an
incidence of 1% worldwide and substantial regional varia-
tion [1]. -e WHO has identified OLP as an oral potentially

malignant condition (OPMD) due to evidence that it has
malignant potential. Its most dangerous consequence is the
development of oral squamous cell carcinoma (OSCC) [2].
Currently, there is no cure for this disease. Adrenocorti-
costeroids and immunosuppressants are commonly used to
reduce inflammation and promote healing. Although certain
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efficacy has been achieved, the disease is prone to recurrence,
and long-term hormone therapy has significant side effects,
such as secondary candidiasis, mucosal atrophy, and dryness
[3, 4]. -us, it is crucial to choose medications that may
properly cure the condition without causing major adverse
reactions.

In recent years, Chinese herbal medicine has achieved
results in the treatment of OLP, such as Liuwei Dihuang [5],
Tripterygium glycosides [5], curcumin [6], and aloe vera [7].
-eir mechanisms of action may be multifaceted, such as
correcting the imbalance of T-lymphocyte subsets, inhibiting
inflammatory responses, antioxidative stress, and increasing
cytokine release from macrophages. However, there is still an
urgent need for innovative drugs for the treatment of OLP.

With a multifactorial etiology and malignant trans-
formation tendency, OLP has been substantially studied;
however, its pathophysiology and etiology remain elusive
[8]. It is believed that immune dysregulation plays a crucial
role in the development of OLP and the primary lympho-
cytes implicated are believed to be CD8+ cytotoxic and
CD4+ -1 polarized T cells, which are driven by the
identification of nonself antigens, activating T cell subsets
that are directed towards oral keratinocytes and causing
apoptosis of keratinocytes [9]. -e abnormalities of cyto-
kines, like IL-1, TGF-β, IFN-c, TNF-α, and others, produced
during the development of OLP can lead to immunodefi-
ciency, allergy, and autoimmunity [10]. An imbalance in
redox homeostasis in OLP was shown by a recent meta-
analysis that revealed an increase in oxidative stress markers
and a significant decline in antioxidant markers in OLP
patients compared to healthy controls [11]. -e diversity of
etiology and pathogenesis makes its treatment lack a clear or
uniform model. -erefore, the characteristics of Chinese
medicine, with multicomponent and multitarget, may offer
a fresh perspective for the treatment of OLP.

Cordyceps sinensis, a traditional Chinese medicine, is
mainly distributed in alpine zones with a wide variety of
species. -e majority of them are entomopathogenic fungus
that infects insect larvae and pupae [12]. Research has found
that Cordyceps sinensis includes a wide variety of chemical
elements, including nucleosides, sugars, sterols, proteins,
and sphingolipids [13]. Research has shown that Cordyceps
sinensis and its bioactive molecules have a variety of
pharmacological effects, including anti-inflammatory, an-
tioxidant, antitumor, antihyperglycemic, antiapoptotic,
immunomodulatory, nephroprotective, and hep-
atoprotective properties [14]. Based on several pattern
recognition receptors (PRR), cordycepin polysaccharide has
an in vitro immunostimulatory activity by activating
mitogen-activated protein kinase (MAPK) and nuclear
factor-κB (NF-κB) signaling pathways, inducing the
production of nitric oxide (NO), reactive oxygen species
(ROS), and more [15]. By increasing splenocyte
proliferation, natural killer (NK) cell activity, levels of
cytokine, as well as reducing glutamate-induced oxidative
stress and oxidative stress-related apoptosis, cordycepin
successfully fights against the immunosuppressive effects of
cyclophosphamide [16, 17]. Without altering human fi-
broblasts, cordycepin inhibits epithelial-mesenchymal

transition (EMT) and induces apoptosis to prevent OSCC
[18]. More and more data points to the possibility that
Cordyceps sinensis and its preparations might cure OLP via
antioxidant, immunomodulatory, and anti-inflammatory
mechanisms. In China, Cordyceps sinensis preparations
(e.g., Bai Ling capsule and Jin Shui Bao capsule) are clinically
effective as adjuvant therapeutic agents for OLP, but the
specific mechanisms are not yet clear.

Network pharmacology is an approach to predict disease-
specific targets from biomedical data available in systems
biology and polypharmacology [19].With the development of
biomedical data, new methods based on “active ingredient-
target-disease” and interaction networks have been developed
to understand the complex pharmacological mechanisms of
Chinese medicine, and have blossomed in recent years
[20, 21]. Network pharmacology’s fundamental principles
and the holistic view of Chinese medicine are intertwined,
leading to a change from the traditional “one target, one drug”
paradigm to the more recent “multicomponent, multitarget”
model, which is the most effective model for addressing
multitarget medications [22, 23]. In recent years, several
studies have successfully elucidated the drug-component-
target-proteins and their mechanisms of action on diseases
through network pharmacology approach [24–26]. However,
there is no relevant report on the connection between Cor-
dyceps sinensis and OLP.

In order to examine the possible targets of the active
components of Cordyceps sinensis for the treatment of OLP,
we conducted this study using a network pharmacology and
molecular docking approach. -is study will provide
a framework for further research into the pharmacological
processes by which Cordyceps sinensis works to cure OLP.
-e procedure of this study is displayed in Figure 1.

2. Materials and Methods

2.1. Identification of Active Components. -e compounds of
Cordyceps sinensis were searched in the TCMSP [27]
(https://tcmspw.com/tcmsp.php) and SymMap [28] (https://
www.symmap.org/) databases with Cordyceps sinensis as the
keyword, and oral bioavailability (OB) ≥ 30% and drug-like
quality (DL) ≥ 0.18 (a screening threshold of TCMSP da-
tabase) [27]. In addition, the PubMed database search
(https://pubmed.ncbi.nlm.nih.gov) was added to include
active ingredients that did not meet the above criteria but
had significant pharmacodynamic effects or high levels.
Finally, the active compounds of Cordyceps sinensis were
identified and the active ingredient structures were acquired
using the MOL2 format files on the TCMSP platform.

2.2. Target Collection and Prediction of Cordyceps sinensis.
HIT2.0 (Herbal Ingredients’ Targets Platform) (https://www.
badd-cao.net:2345/) is an evidence-based comprehensive
search and management platform for herbal ingredients and
target information [29], where active ingredients are entered
to obtain known targets. In addition, PharmMapper is used to
identify potential candidate targets for a given small molecule
drug by using a pharmacophore mapping approach [30] by
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submitting the MOL2 format file of the active ingredient to
the PharmMapper platform(https://www.lilab-ecust.cn/
pharmmapper/) for target prediction. Human Protein Tar-
gets Only is selected on the “Select Targets Set,” and the rest of
the parameters are kept as default settings. Results obtained
from the PharmMapper platform for each active ingredient
are used for subsequent analysis based on the targets selected
with Z′-score> 1. Finally, all of the target proteins identified
during the screening are annotated into gene names using the

UniProt database (https://www.uniprot.org/), excluding any
nonhuman targets.

2.3. Selection of OLP Targets. -e OLP-related targets were
retrieved from the DisGeNET (https://www.disgenet.org/)
and GeneCards databases (https://www.genecards.org) us-
ing “oral lichen planus” as the keyword. To increase the
reliability of the findings, the targets obtained from the

Cordyceps sinensis Oral lichen planus

TCMSP+SymMap+PubMed
database

DisGeNET and GeneCards
databases

HIT2.0+PharmMapper
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Figure 1: Diagram of the research workflow.
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GeneCards and DisGeNETdatabases were filtered for results
that had a relevance score ≥ 5 and GDA ≥ 0.01, respectively.

2.4. �e Possible OLP �erapy Targets of Cordyceps sinensis
and Network Construction. To create a Venn diagram and
determine the common targets of Cordyceps sinensis and
OLP treatment, the targets of the active substances of
Cordyceps sinensis and OLP were entered into the R software
using the Venn diagram. -en, the targets of the ingredients
and diseases were loaded into Cytoscape 3.9.0 (https://www.
cytoscape.org/), and a “component-target” network was
created using the Merge function.

2.5. PPI Network Construction. -e STRING database
(https://www.string-db.org/) was used to create the protein-
protein interaction network (PPI). -e potential targets of
Cordyceps sinensis for OLP treatment in the “multiple proteins”
section were entered and the species was set as “Homo sapiens.”
-e “high confidence (0.700)” was selected as the confidence
level to obtain the PPI network related to the effectiveness of
Cordyceps sinensis.-e networkwas then loaded into Cytoscape
for visualization, and the topological parameters of the nodes in
the network were calculated using the app CytoHubba.

2.6. Functional Enrichment Analysis. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were performed using the
ClusterProfiler package of R programming language, and
a screening criterion of p adjust < 0.05 and q value < 0.2 was
used. -en, the significant enrichment results were plotted
by the “ggplot2” package. Heatmap was created using the
online data analysis and visualization tool (https://www.
bioinformatics.com.cn/).

2.7. Molecular Docking. -e five core proteins with the
greatest node degree values in the PPI network were docked
to their active components. -e RCSB PDB database (https://
www.rcsb.org/) was used to obtain the protein crystal
structures, while the TCMSP database was used to download
the compound MOL2 structures. -ey were processed using
AutoDock Tools (https://mgltools.scripps.edu/
documentation/links/autodock), including separation of the
protein structure from the original ligand, removal of water
molecules and charge added to the structure, and converted to
“PDBQT” format. -e 3D docking photos were created using
Pymol 2.4.0 (https://pymol.org/2/) software. According to
research studies, when the binding energy of a small molecule
medication to a protein is less than −4.25 kcal/mol, it is
considered to have binding activity between the two. Addi-
tionally, two molecules have excellent binding activity when
the binding energy is less than −5.0 kcal/mol [31].

3. Results

3.1. ActiveCompounds of Cordyceps sinensis. -e numbers of
drug ingredients retrieved from the TCMSP and SymMap
databases were 38 and 153, respectively, with a total of 153

after deduplication. Twenty-one active substances were tested
using the standards and five more items that did not pass the
screening standards were included based on the literature
[13, 32–34], making a total of 26 active ingredients (Table 1).

3.2. �e Construction of the “Component-Target” Network.
-e 26 active components in Cordyceps sinensis were
searched in the PharmMapper and HIT 2.0 databases,
yielding 293 and 130 targets, respectively, and 404 after
deduplication (Supplementary Table 8). -e Cordyceps
sinensis“ingredient-target” network was then created using
Cytoscape 3.9.0 (Figure 2). As seen in Figure 2, there were
274 anticipated targets, which made up 67.8% of the total
targets, and 112 targets based on literature evidence, which
made up 27.7% of the total targets. Between the projected
targets and the objectives supported by the literature, there
were 18 common targets. Meanwhile, network analysis
revealed that arachidonic acid, berberine, neokadsuranic
acid C, deoxyaconitine, and vilmorrianine C were the main
active ingredients for treating OLP, and these components
regulated 116, 116, 107, 105, and 103 targets, respectively.

3.3. PPI Network of OLP Targets. A total of 293 targets were
identified after de-duplication from the search of OLP-
related genes in the GeneCard and DisGeNET databases
(Supplementary Table 8). A PPI network (Figure 3) was
established to show the association between targets con-
nected to OLP, and 52 targets were found to be greater than
the average of degree centrality (DC), closeness centrality
(CC), and betweenness centrality (BC) at the same time
(Supplementary Table 8). Among these targets, TNF, IL-6,
CD4, EGFR, IL1B, IL10, AKT1, VEGFA, TP53, and IL2 had
the highest degree values, indicating that these targets are
important in the development of OLP and are expected to be
targeted for clinical treatment of OLP.

3.4. PPINetworkofTreatmentTargets. -e intersection of the
target genes of Cordyceps sinensis and OLP was obtained by
using the Venn diagram R software package, and the 67
common targets (Supplementary Table 8) were identified to
be the prospective targets of Cordyceps sinensis in the
treatment of OLP (Figure 4). -e protein interaction network
of potential therapeutic targets is shown in Figure 5, where
468 interactions exist for 67 targets in the graph. We filtered
32, 34, and 21 important nodes in the network by three
parameters, including degree centrality (DC), closeness
centrality (CC), and betweenness centrality (BC), respectively.
In addition, the DC, CC, and BC of 19 nodes, including
AKT1, TNF, and TP53, exceeded the average values of the
topological parameters of the whole network, demonstrating
that these 19 targets might be the main targets of Cordyceps
sinensis in the treatment of OLP (Table 2).

3.5. Functional Analysis

3.5.1. GO Enrichment Analysis Results. We obtained a total
of 2234 GO entries for possible treatment targets of
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Table 1: -e active ingredients of Cordyceps sinensis.

No. Molecule name OB (%) DL No Molecule name OB (%) DL
C1 Arachidonic acid 45.57 0.20 C14 Isotalatizidine 50.82 0.73
C2 Linoleyl acetate 42.10 0.20 C15 Neokadsuranic acid C 35.40 0.85
C3 Beta-sitosterol 36.91 0.75 C16 Karakoline 51.73 0.73
C4 Peroxyergosterol 44.39 0.82 C17 Vilmorrianine C 33.96 0.22
C5 Cerevisterol 39.52 0.77 C18 Styrone 38.35 0.22
C6 Cholesteryl palmitate 31.05 0.45 C19 Deltoin 46.69 0.37
C7 CLR 37.87 0.68 C20 Karanjin 69.56 0.34
C8 Hypaconitine 31.39 0.26 C21 Crassicauline A 34.13 0.21
C9 Berberine 36.86 0.78 C22 MTL 17.73 0.03
C10 Deoxyaconitine 30.96 0.24 C23 Adenosine 15.98 0.18
C11 Ignavine 84.08 0.25 C24 Ergosterol 14.29 0.72
C12 3-Acetylaconitine 37.05 0.20 C25 Inosine 11.17 0.18
C13 Deoxyandrographolide 56.30 0.31 C26 Cordycepin 38.44 0.16
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6 Journal of Oncology



Cordyceps sinensis, including 2100 entries for biological
processes (BP), 34 entries for cellular components (CC),
and 100 entries for molecular function (MF). -e top 10
GO entries (Supplementary Table 8) enrichment results
are shown in Figure 6. Regarding BP, the potential
therapeutic targets are chiefly focused on extrinsic apo-
ptotic signaling pathway, muscle cell proliferation, reg-
ulation of apoptotic signaling pathway, etc. For CC, the
main targets are mainly involved in membrane raft,
membrane microdomain, membrane region, and others,
whereas entries for MF are primarily focalized on cytokine

receptor binding, receptor-ligand activity, cytokine ac-
tivity, and others.

3.5.2. KEGG Enrichment Analysis Results. A total of 142
KEGG pathways with significant enrichment of Cordyceps
sinensis potential therapeutic targets were obtained under the
conditions of p adjust < 0.05 & q value < 0.2. -e bubble
diagrams were created by ranking the top 20 signaling
pathways (Supplementary Table 8) according to how many
enriched targets they each had in ascending order (Figure 7),
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Table 2: Topological parameters of key target sites.

Target Degree Closeness Betweenness Target Degree Closeness Betweenness
AKT1 38 51 473 CASP3 26 45 102
TNF 36 51 418 HRAS 24 44 105
TP53 34 50 335 IGF1 24 44 99
JUN 33 49 398 INS 23 44 152
IL-6 32 49 149 RELA 22 43 103
VEGFA 30 48 138 ESR1 21 42 110
EGFR 30 48 196 TGFB1 20 42 275
IL1B 28 47 108 IL4 18 41 190
EGF 26 45 95 PTGS2 15 40 123
ALB 26 45 233
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among which the PI3K-Akt signaling pathway, MAPK sig-
naling pathway, and Human T-cell leukemia virus 1 infection
ranked the top three.

3.6. Molecular Docking. -e five key targets in the PPI
network, AKT1, TNF, TP53, JUN, and IL-6, were selected to
obtain PDB ID and target structures, and the five targets
were docked with their corresponding active ingredients
(Table 3). -e average binding energy for molecular docking
is −5.76 kcal/mol, which is lower than −5 kcal/mol indicating
that the target proteins and compounds have strong binding.
-e docking pattern analysis is shown in Figure 8. As shown
in the figure, all active components of Cordyceps sinensis
penetrate deeply into the active site and form polar or
nonpolar bonds with key amino acid residues inside the
active area to stabilize the binding of ligands and receptors.
As shown in Figure 8 a, six hydrogen bonds were formed
between adenosine and the active site of AKT1 involving
residues ARG-67, ARG-15, THR-87, and GLU-17.

4. Discussion

Hitherto, the pathophysiology of OLP is still not fully un-
derstood. However, studies indicate that immunological and

psychological variables may be involved [9, 35]. In recent
years, despite the good efficacy of OLP treatment, the re-
current rate of OLP is still high and the side effects of long-
term hormonal treatment cause a great disturbance to pa-
tients’ quality of life [36]. Some studies have highlighted the
effectiveness of using TCM to delay the progress of OLP and
strengthen the therapeutic theory of TCM for OLP treatment
[6, 7]. China has been usingCordyceps sinensis asmedicine for
more than 300 years, andmodernmedicine has confirmed the
wide range of pharmacological effects of Cordyceps sinensis
and its preparations, which are mainly used to treat sexual
dysfunction, postillness weakness, chronic kidney disease
(CKD), inflammation, and cancer [37].

For the first time, network pharmacology has been used
to uncover the mechanism of action of Cordyceps sinensis on
OLP and to give pertinent data for additional preclinical or
clinical investigations. -rough database search and
screening, 21 active ingredients and 67 shared targets of
Cordyceps sinensis were identified. -rough PPI analysis, the
main targets of Cordyceps sinensis for OLP treatment, in-
cluding AKT1 (Degree� 38), TNF (Degree� 36), TP53
(Degree� 34), JUN (Degree� 33), and IL-6 (Degree� 32)
were identified. -ese targets were suggested to have a sig-
nificant impact on the improvement of OLP using Cordyceps
sinensis treatment.
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AKT1 is one of the three serine/threonine protein ki-
nases (AKT1, AKT2, and AKT3) that are known as AKT
kinases. -ese kinases control a variety of functions, such as
angiogenesis, cell survival, growth, proliferation, and
metabolism [38, 39]. Zhang et al. discovered that both local
T cells and OLP lesions had considerably higher levels of p-
Akt and p-mTOR expression, suggesting that activated Akt/
mTOR autophagy may be involved in the local T-cell-
mediated immune regulatory mechanisms of OLP [40].
According to several studies, Akt/mTOR activation occurs
in OLP and may increase the risk of developing cancer
[41, 42]. Adenosine has been shown to promote apoptosis in
head and neck squamous cell carcinoma through the PI3K/
Akt/mTOR signaling pathway [43]. Numerous in-
vestigations have demonstrated that the blood, saliva, or
MSCs of OLP patients express more TNF and IL-6 than

healthy controls [44–46], which might be an important
factor in the immunopathogenesis of OLP and show an
immune deregulatory condition [10]. Additionally, the
probability of OLP susceptibility was substantially correlated
with the inheritance of TNF and IL-6 gene polymorphisms
[47–49]. TP53 is a tumor suppressor that is crucial for
controlling the cell cycle and apoptosis. If TP53 is damaged,
cancerous cell proliferation may result from aberrant cell
proliferation. According to studies, the presence of TP53
overexpression in OLP indicates the presence of a setting
that is favorable to malignant transformation and aids in
determining the malignant potential of OLP [50, 51]. JUN is
a member of the AP-1 transcription factor complex and has
a significant impact on the growth of OLP [52]. Studies have
shown that in lichen planus (LP), the activation level of c-Jun
is between that of SCC and normal skin, suggesting that the

PI3K-Akt signaling pathway
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Endocrine resistance
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Figure 7: KEGG pathway enrichment of 67 putative medicinal targets. -e size of the circle shows the number of genes, and the color from
purple to red represents the decreasing p value. -e horizontal axis represents the ratio of enriched genes to the total number of genes; the
vertical axis represents the top 20 pathways chosen using the p< 0.05 criterion.

Table 3: Docking parameters and results.

No. Target PDB ID Compound Minimum binding energy
(kcal/mol)

a AKT1 1h10 Adenosine −6.10
b AKT1 1h10 Arachidonic acid −4.30
c TNF 5uui Berberine −6.00
d TP53 1yc5 Berberine −6.20
e JUN 6y3v Beta-sitosterol −6.10
f JUN 6y3v Cordycepin −5.30
g JUN 6y3v Berberine −5.30
h IL-6 4ni7 Berberine −6.80
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activation of c-Jun is related to the malignant trans-
formation, and the modulation and/or deregulation of ap-
optosis in the basal nucleus is thought to be mediated by c-
Jun [53].

-e etiology and pathogenesis of OLP are complex, and
its development involves multiple biological processes and
pathways. We used the R language to carry out GO and
KEGG analysis to understand the mechanism of Cordyceps
sinensis for OLP treatment. -e biological processes in-
volved in the shared targets mainly include regulation of
apoptotic signaling pathway, T cell activation, epithelial cell
proliferation, response to oxidative stress, regulation of
lymphocyte activation, and others. It was hypothesized that
the ability of Cordyceps sinensis for the treatment of OLP

may be associated with the control of the body’s immune
system as well as cell growth and apoptosis, which coincides
with the possible etiology and pathogenesis of OLP. Nu-
merous investigations have demonstrated a connection
between the pathophysiology of OLP and aberrant T cell
activation, oral keratin-forming cell death, and the body’s
redox state [9, 11]. Additionally, KEGG pathway analysis
showed that the two most prevalent signaling pathways were
the PI3K-Akt signaling pathway (hsa04151) and the MAPK
signaling pathway (hsa04010). Studies have shown that OLP-
derived exosomes can regulate the OLP process through the
PI3K/Akt signaling pathway [54] and that an aberrant PI3K/
Akt signaling pathway might affect the interaction of T cells
with keratinocytes and the cytokine network imbalance,

(a) (b)

(c) (d)

(e) (f )

(g) (h)

Figure 8: Molecular docking of the five core targets with their active ingredients. (a)-e binding mode of AKT1 complexed with adenosine.
(b)-e binding mode of AKT1 complexed with arachidonic acid. (c) -e binding mode of TNF complexed with berberine. (d)-e binding
mode of TP53 complexed with berberine. (e) -e binding mode of JUN complexed with beta-sitosterol. (f ) -e binding mode of JUN
complexed with cordycepin. (g) -e binding mode of JUN complexed with berberine. (h) -e binding mode of IL-6 complexed with
berberine.
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contributing to the immunomodulatory mechanism of OLP
[55]. Additionally, the carcinogenic potential of OLP is
tightly connected to the PI3K/Akt signaling pathway [56].
Mitogen-activated protein kinase (MAPK) is one of the
signaling pathways affected in cancers that regulates cell
proliferation, differentiation, survival, and apoptosis [57].
OLP and OSCC tissue specimens had considerably greater
levels of MAPK/ERK1/2 gene expression than healthy
control specimens. In untreated precancerous lesions, higher
levels of extracellular stimuli such as mitogens, in-
flammatory cytokines, and growth factors may raise the
expression of the MAPK/ERK1/2 genes, increasing the
likelihood of malignant transformation [58].

Molecular docking results showed that, except for ara-
chidonic acid, the minimum binding energy between
adenosine, beta-sitosterol, berberine, cordycepin, and their
corresponding key targets AKT1, TNF, TP53, JUN, and IL-6
was less than −5 kcal/mol, indicating that there was a high
affinity between the small molecule drugs and the target
proteins. -erefore, these components could be the key
pharmacological substances for Cordyceps sinensis to be
effective. Previous research has demonstrated that the
pathophysiology of OLP is related to a -1/-2 imbalance
and berberine can suppress the imbalance between -1 and
-2 cells [59, 60]. Additionally, following berberine therapy,
the production of numerous anti-inflammatory cytokines,
such as IL-10, was increased whereas other inflammatory
cytokines, such as IL-1 and IL-6, were downregulated [61].
Furthermore, it was established that OS plays a role in the
etiology of OLP, and patients with OLP had increased levels
of salivary ROS, lipid peroxidation, nitric oxide, and nitrite
[11]. To lessen the generation of reactive oxygen species,
berberine demonstrated hydroxyl radical cleansing activity
and ferrous ion chelating activity in vitro [62]. An isolated
form of adenosine called cordycepin has been utilized as
a medicinal supplement and medicine substitute. Cordy-
cepin exerts its therapeutic effects mainly through activation
of AMPK, inhibition of PI3K/mTOR/AKT, and suppression
of inflammatory responses, which has excellent potential for
OLP therapy [63]. β-sitosterol, also known as “the secret to
life” is a phytosterol that is widely present in natural plants
[64]. β-sitosterol has anti-inflammatory and antioxidant
properties that can lower TNF and IL-1 levels and boost the
activity of antioxidant enzymes such as catalase (CAT) and
glutathione (GSH) [64].-ese results supported the function
and mode of action of active components of Cordyceps in
the management of OLP.

In conclusion, adenosine, beta-sitosterol, berberine, and
cordycepin are the key active substances of Cordyceps
sinensis for the treatment of OLP. -ese components im-
prove OLP by interfering with a number of targets (such as
AKT1, TNF, TP53, JUN, and IL-6), biological processes
(including apoptosis signaling pathway regulation, T cell
activation, oxidative stress response), and signaling path-
ways (such as the PI3K-Akt signaling pathway and MAPK
signaling pathway). More in vivo and in vitro testing are
needed to confirm and investigate the efficacy of these active
components, targets, and associated pathways identified by
network pharmacology. Despite some limitations, this study

provides good ideas and directions for future experimental
validation and clinical treatment of OLP.
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