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Abstract 

Living in biofilms is probably the most common condition for bacteria and fungi and biofilm-related 
infections account for the majority of bacterial infectious diseases worldwide.  
Among others biofilm-related infections, those associated with implanted biomaterials have an 
enormous and still largely underestimated impact in orthopaedics and trauma, cardio-surgery and 
several other surgical disciplines. 
Given the limited efficacy of existing antibiotics in the prevention and treatment of bacterial 
biofilms, new strategies are needed to protect implants and host tissues, overcoming the striking 
ability of the microorganisms to adhere on different surfaces and to immediately protect 
themselves by forming the biofilm matrix. 
Adhesion is a necessary first step in microbial colonization and pathogenesis and provides a 
potential target for new preventive and treatment approach. 
Among various polymers, tested as antibacterial coatings, hyaluronic acid and some of its 
composites do offer a well-established long-term safety profile and a proven ability to reduce 
bacterial adhesion and biofilm formation.  
Aim of the present review is to summarize the available evidence concerning the 
antiadhesion/antibiofilm activity of hyaluronic acid and some of its derivatives to reduce/prevent 
bacterial adhesion and biofilm formation in various experimental and clinical settings. 
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Introduction 
According to the U.S. National Institutes of 

Health, up to 80% of human bacterial infections 
involve biofilm-associated microorganisms [1]. 

Among these, implant-related infections do still 
have a tremendous impact in orthopaedics and 
trauma [2], with high social and economic costs [3, 4], 
posing challenging diagnostic and therapeutic 
dilemmas [5].  

In fact, peri-prosthetic joint infection (PJI) 
remains one of the most feared complications in 
orthopaedic surgery and among the first reasons for 

implant failure [6].  
Moreover, given the increasing number of hip 

and knee arthroplasties performed, the prevalence of 
this complication is rising, with increasing costs for 
national health systems and increasing biological 
costs for the patients, such as loss or reduced joint 
function and deterioration in their physical and 
psychological health [7].  

According to the widely accepted model of the 
‘race for the surface’ for PJI development, host and 
bacterial cells compete for surface colonization, with a 
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low probability of bacterial attachment if host cells 
adhere to implant first, and vice versa. In the event of 
bacterial adhesion to an implant, immediate biofilm 
formation starts, making the bacteria resistant to host 
defense mechanisms [8]. 

In addition, the matrix protects the biofilm cells 
from various microbicidal agents and stresses, 
including dehydration, toxins, ultraviolet light, 
chemical disinfectants, temperature and osmotic 
shock, and lead them to increased resistance against 
antimicrobials [9, 10]. 

To address the limited efficacy of existing 
antibiotics in the treatment of established bacterial 
biofilms, novel approaches are required to prevent 
bacterial adhesion and biofilm formation [11].  

Adhesion is a necessary first step in microbial 
colonization and pathogenesis and provides a good 
theoretical target for new preventive and treatment 
strategies [12]. 

Bacterial adhesion to surfaces can be divided 
into a first, reversible phase and a second, irreversible 
phase. The first bacterial adhesion occurs between 
bacterial adhesins and surface receptor sites [13].  

Once an implant is inserted into the body, it is 
covered by a conditional protein layer composed of 
host proteins, such as albumin and complement, that 
act as a reservoir of several receptors for bacterial 
adhesive ligands, mediating adhesion of free-floating 
bacteria to the surface of the biomaterials [14, 15]; 
these first adhesions are, however mechanically and 
biologically unstable.  

Few minutes after this first, reversible phase, 
bacterial clusters attached to the surface starts to 
express biofilm related genes, produce glycocalyx and 
form mature biofilm, thus transforming the adhesion 
from reversible to irreversible [16].  

Full-formed biofilm can be found few hours after 
the first bacterial adhesion [17].  

Antimicrobial surface coatings can be based on 
an anti-adhesive principle that prevents bacteria to 
adhere and form biofilms [18].  

In fact, some polymer coatings, like the 
hydrophilic polymethacrylic acid, polyethylene oxide 
or protein-resistant polyethylene glycol can be 
applied to the surface of titanium implants and result 
in significant inhibition of bacterial adhesion [19 – 22].  

Hydrophobic and superhydrophobic surface 
treatment technologies have also shown a great 
repellent antibacterial effect in preclinical studies [23 – 
25].  

However, clinical application of completely 
novel coating technologies and compounds, not 
otherwise previously tested in humans, appears 
particularly challenging [26]. 

Bacterial colonization can also be blocked by an 
inhibitor interfering with ligand–receptor interaction 
for bacterial attachment. One of these inhibitors could 
be Hyaluronic Acid (HA), a glycosaminoglycan made 
up of glucuronic acid and N-acetylglucosamine 
disaccharide units. It is a uniform, linear and 
unbranched molecule, with highly variable length 
and molecular weight (up to 106 Da). It is abundant in 
skin (up to 56%) and in connective tissues, with a 
turnover ranging from several hours to a few days 
depending on tissues.  

Hyaluronic acid constitutes one of the main 
components of extracellular matrices. Because of its 
biological properties, HA has several clinical 
applications (aesthetic surgery, dermatology, 
dentistry, orthopedics and opthalmology) [27]. 

Extensive studies on the chemical and 
physicochemical properties of HA and its 
physiological role in humans, together with its 
versatile properties, such as its biocompatibility, 
non-immunogenicity, biodegradability, and 
viscoelasticity, have proved that it is an ideal 
biomaterial for medical and pharmaceutical 
applications [28, 29]. 

Among its various properties, several studies 
have recently shown the ability of HA to protect 
against various infectious agents [30], depending on 
HA concentration and molecular weight [31, 32], 
while more recently HA interference on bacterial 
adhesion and biofilm formation has been extensively 
investigated [33].  

Given its high biocompatibility and well known 
safety profile and the anti-adhesive capabilities, HA 
and its composites represent an attractive, 
non-antibiotic, option to mitigate the impact of 
biofilm-related infections in various clinical settings 
including implant-related infections.  

Aim of this review is to provide an update of the 
current evidence concerning HA ability to 
reduce/prevent bacterial adhesion and biofilm 
formation.  

Anti-adhesive and anti-biofilm properties 
of hyaluronic acid and its composites 

Nearly two decades ago, Pavesio et al. [34] were 
probably the first to describe the ability of HA to resist 
bacterial adhesion, with particular reference to 
Staphylococcus epidermidis, and its non-fouling 
properties [35], proposing coated polymeric medical 
devices (e.g., intraocular lenses, stents and catheters) 
to reduce implant-related infections. 

In particular, a hydrophilic HA overlayer, linked 
to the surface of polymethylmethacrylate intraocular 
lenses (IOLs), was shown to be able to prevent 
fibroblasts adhesion and to greatly reduce 



 J. Bone Joint Infect. 2017, Vol. 2 

 
http://www.jbji.net 

65 

Staphyloccous epidermidis adhesion to the implant 
surface [36]. 

The impact of slime dispersants and 
anti-adhesives on in vitro biofilm formation on IOLs 
was further investigated by Kadry and co-workers 
[37], using a Staphyloccous epidermidis wild strain, 
isolated from a patient with endophtalmitis; the 
authors reported the ability of hyaluronan to reduce 
bacterial adhesion to IOLs to ≥30%, compared with 
untreated control cells. The authors suggested the use 
of adjuvant therapy such as dispersants or 
anti-adhesives, in addition to the antibiotics in 
irrigating solutions for bacterial ocular infections. 

More recently, the in vitro antiadhesive and 
antibiofilm activity of hyaluronic acid towards 
bacterial species commonly isolated from respiratory 
infections was investigated by Drago et al. [33]. 

In this study, the interference exerted on 
bacterial adhesion was evaluated by using Hep-2 
cells, while the antibiofilm activity was assessed by 
means of spectrophotometry after incubation of 
biofilm with hyaluronic acid and staining with crystal 
violet.  

The experimental findings clearly demonstrated 
how hyaluronic acid is able to interfere with bacterial 
adhesion to a cellular substrate in a 
concentration-dependent manner. Moreover, 
Staphylococcus aureus biofilm was found to be more 
sensitive to the action of HA, compared to that 
produced by Haemophilus influenzae and Moraxella 
catarrhalis.  

Concerning more specifically the antimicrobial 
activity, HA has also been shown to exert varied 
bacteriostatic, but not bactericidal, dose-dependent 
effects on different microorganisms in the planktonic 
phase [31, 38].  

In this regard, Radaeva et al. reported the 
inhibiting activity of HA with respect to some 
Pseudomonas species [39], while Ardizzoni and 
co-workers [30] investigated the effects of HA on 15 
ATCC bacterial strains, representative of clinically 
relevant bacterial and fungal species. Their results 
showed that different microbial species and, 
sometimes, different strains belonging to the same 
species, are differently affected by HA. In particular, 
staphylococci, enterococci, Streptococcus mutans, two 
Escherichia coli strains, Pseudomonas aeruginosa, Candida 
glabrata and C. parapsilosis displayed a HA 
dose-dependent growth inhibition, while no HA 
effects were detected in E. coli ATCC 13768 and C. 
Albicans and S. sanguinis was favoured by the highest 
HA dose.  

Comparing the potential bacteriostatic effect of 
some of the most commonly used biomatrix materials 
(collagen type I, hyaluronic acid, hydroxyapatite, 

polylactic acid and polyglycolic acid) on the growth 
over the first 12h of exposure of some of the most 
common orthopaedic bacterial pathogens 
(Staphylococcus aureus, Staphylococcus epidermidis, 
β-hemolytic Streptococcus, Pseudomonas aeruginosa), 
Carlson and co-workers [38] found that HA had the 
most significant bacteriostatic properties on the 
studied organisms. None of the materials exhibited a 
purely bactericidal effect on the bacterial strains 
studied. 

Pirnazar et al. [31] investigated the potential 
bacteriostatic effect of hyaluronic acid in different 
concentrations and molecular weight on oral and 
non-oral microorganisms (Staphylococcus aureus, 
Propionibacterium acnes, Actinobacillus 
actinomycetemcomitans, Pavotella oris and 
Porphyromonas gingivalis) with potential application in 
dentistry surgery; The results showed that different 
hyaluronan solutions exerted varied bacteriostatic 
effects on all the bacterial strains. The authors 
concluded that the clinical application of hyaluronan 
in form of membranes, gels, or sponges during 
surgical therapy may reduce bacterial contamination 
of the surgical wound, thereby lessening the risk of 
postsurgical infection and promoting more 
predictable regeneration. 

Concerning possible orthopaedic applications, in 
2004 Harris and Richards [40] showed the 
visualization and quantification of S. aureus adhering 
to a variety of different treated/coated titanium 
surfaces. In their study, coating titanium with sodium 
hyaluronate significantly decreased the density of S. 
aureus adhering to the surfaces and its potential use in 
osteosynthesis, orthopaedics or dental applications 
was suggested out. 

In a very recent review on polysaccharide-based 
coatings, that have been proposed over the last ten 
years to impede biofilm formation on material 
surfaces exposed to bacterial contamination, 
hyaluronic acid was discussed as one of the most 
studied, with demonstrated non-fouling properties on 
glass surfaces [41]; displaying hydrophilic 
characteristics (contact angle of 22°), this coating was 
in fact reported to reduce adhesion of S. epidermidis 
and E. coli by several orders of magnitude compared 
to the unmodified glass slide. Similarly, adhesion of S. 
aureus on Ti foils functionalized with hyaluronic 
acid-catechol was lower than on pristine substrates.  

Based on HA antiadhesive properties, a novel 
HA-based hydrogel has been recently proposed, in 
order to protect implanted biomaterials in 
orthopaedics, trauma and dental surgery from 
bacterial colonization [42]; this fast-resorbable 
hydrogel coating, composed of covalently linked 
hyaluronan and poly-D,L-lactide (“Defensive 
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Antibacterial Coating”, DAC®, Novagenit Srl, 
Mezzolombardo, Italy), has been found to have a 
synergistic antibiofilm activity with various 
antibacterials and able to be effectively manually 
spread onto the surface of various biomaterials 
commonly used in orthopaedics, trauma and dental 
surgery [43] (Fig. 1).  

 

 
Figure 1. DAC® hydrogel application on a titanium acetabular cup prosthesis (A). 
The hydrogel comes in powder form in a prefilled syringe and is designed to be 
reconstituted at the time of surgery with water for injection. Scanning Electron 
Microscope (SEM) analysis of sandblasted titanium samples surface (magnification 
10,000x) without the hydrogel coating (B) or after DAC® coating (C) and mechanical 
scraping of the hydrogel to test its ability to resist press-fit insertion. Note the 
complete and uniform coverage of the titanium surface. 

The ability to completely cover even 
sand-blasted titanium surface and resist scraping has 
in fact been confirmed by scanning electron 
microscopy (SEM) analysis (cf. Fig. 1). This is an 
important requirement in order to reduce the exposed 
surface of a biomaterial, thus creating a uniform 
coating of the surface and leaving no pores or cracks 
that could eventually be colonized by planktonic 
bacteria.  

In unpublished experiments (Novagenit Srl, data 
on file), in order to evaluate DAC® ability to prevent 
bacterial adhesion, 200 mg of hydrogel were 
homogenously spread on the surface of sterile 
titanium discs. Hydrogel-coated substrates and 
uncoated substrates (controls) were then placed into 
sterile 6-wells polystyrene plates and overlaid with a 
standardized inoculum (108 CFU/mL) of bacterial 
cells for 15, 30, 60 and 120 minutes. Afterwards, 
non-adherent bacteria were removed by rinsing with 
sterile saline. The remaining adhered cells were 
detached by adding a solution of 0.1% w/v 
dithiothreitol (DTT) (Sigma-Aldrich, Milan, Italy) to 
each well and stirring for 15 minutes at room 
temperature. Then, 100 µL of each sample were plated 
onto Tryptic Soy agar (TSA; Merck, Darmstadt, 
Germany) and incubated at 37°C for 24 hours for CFU 
counts. Ten discs were used for each condition and 
each time interval. 

The results showed that the adhesion density of 
S. aureus on titanium discs pre-treated with DAC®, 
was significantly lower than adhesion on untreated 
controls at each time point (Fig. 2). In particular, 
reductions of adhered bacteria equal to 86.8%, 80.4%, 
74.6% and 66.7% vs untreated discs were observed 
after 15, 30, 60 and 120 minutes of incubation, 
respectively, while an increase of adhesion density 
during time was observed for both control and 
pre-treated discs (Fig. 3).  

Further analyses were conducted to show the 
ability to dislodge previously adhered bacteria; to this 
aim, titanium discs were placed into sterile 6-wells 
polystyrene plates and overlaid with a standardized 
inoculum (108 CFU/mL) of bacterial cells in order to 
allow the adhesion of bacterial cells. Afterwards, 200 
mg of hydrogel were spread on the surface of 
contaminated titanium discs in order to remove 
previously adhered bacteria. Contact times were 15, 
30, 60 and 120 minutes. Untreated substrates were 
used as controls. Non-adherent bacteria were 
removed by rinsing with sterile saline, while the 
remaining adhered cells were detached by adding 
0.1% DTT as previously described. Then, 100 µL of 
each sample were plated onto TSA and incubated at 
37°C for 24 hours for CFU counts. Ten discs were used 
for each condition and each time interval.  
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The results showed that DAC® hydrogel 
treatment of discs reduced the amount of adhered 
bacteria in respect to control discs after 15, 30, 60 and 
120 minutes of 84.0%, 72.8%, 72.3% and 64.3%, 

respectively (Fig.4). Once again, an increase of 
adhesion density during time was observed for both 
control and treated discs (Fig. 5). 

 

 
Figure 2. Adhesion densities of S. aureus (mean CFU/cm2 ± standard deviation) to discs pre-treated with DAC® (“Defensive Antibacterial Coating”, Novagenit Srl, 
Mezzolombardo, Italy) and controls at 15, 30, 60 and 120 min; *** P < 0.001 (two-way ANOVA followed by Bonferroni post hoc test).  

 
Figure 3. Adhesion densities of S. aureus (mean CFU/cm2 ± standard deviation) over time in pre-treated with DAC® and control discs at 15, 30, 60, 120 min; * 0.01 < P <0.05, 
** 0.001 < P < 0.01, *** P < 0.001 (two-way ANOVA followed by Bonferroni post hoc test). 

 
Figure 4. Adhesion densities on discs with of S. aureus (mean CFU/cm2 ± standard deviation) applied before DAC treatment and controls at 15, 30, 60, 120 min; * 0.01 < P <0.05, 
*** P < 0.001 (two-way ANOVA followed by Bonferroni post hoc test). 
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Figure 5. Adhesion densities over time on discs with of S. aureus (mean CFU/cm2 ± standard deviation) applied before DAC treatment and controls at 15, 30, 60, 120 min; * 0.01 
< P <0.05, ** 0.001 < P < 0.01, *** P < 0.001 (two-way ANOVA followed by Bonferroni post hoc test). 

 
Concerning more specifically the antibiofilm 

activity, DAC® hydrogel showed similar or superior 
in vitro activity, compared to various antibacterials 
and a synergistic activity when used in combination 
(Fig. 6) [43]. In the experimental setting S. epidermidis 
and S. aureus were grown on chrome-cobalt devices in 
6-wells polystyrene plates containing TSB for 24 hours 
at 37°C. Then, growth medium was removed together 
with non-adherent bacteria and new broth added. The 
plates were incubated at 37°C in ambient air, until a 
visible biofilm was obtained. Gentamycin and 
vancomycin were tested at a final concentration of 20 
mg/mL. Similarly, when mixed with the hydrogel, 60 
mg of gel powder were reconstituted with 1 mL of 
water for injections containing gentamicin or 
vancomycin at 20 mg/mL concentration.  

Amount of biofilm at each time was determined 
before hydrogel and antibiotic agents addition and 
after 0.5, 1, 2, 4, 6, 24 and 48 hours of incubation by a 
spectrophotometric assay. In particular, at each time, 
broth was removed and biofilm stained with Crystal 
Violet. The excess stain was then rinsed off with 
distilled water and air-dried. After elution of the stain 
from implants with absolute ethanol, the amount of 
biofilm was quantified by reading optical density 
(O.D.) at a wavelength of 595 nm against blank 
(consisting of ethanol). Amount of biofilm at each 
time was compared with that formed on the same 
type of implant before treatment. Each assay was 
performed in duplicate and repeated for three times.  

At each time point, both for gentamycin and 
vancomycin showed only a partial inhibition of 
biofilm formation (ca. 30 - 40% for gentamicin; ca. 40 - 
50% for vancomycin), with minor difference between 
the two studied microorganisms. 

On the other side, the hydrogel alone resulted in 
a significant reduction of biofilm of ca. 50% in 
comparison to the untreated controls, while a 

combination of the hydrogel with either antibacterial 
resulted in a larger reduction of biofilm formation 
(approximately 75 to 80% in comparison with 
untreated controls). 

Both these experimental studies show the ability 
of the DAC® hydrogel to significantly reduce bacterial 
adhesion and biofilm formation of common bacterial 
pathogens, thus potentially providing an effective 
protection of the implant; however, these data also 
point out how, in the clinical setting, in the absence of 
an adequate immune response from the host and/or 
of sufficient local levels of antibiotics, a passive 
antiadhesive coating [18] like HA can be overcome by 
the remaining bacteria in a time-dependent manner. 
For this reason, any passive antiadhesive coating of 
implants [44] should probably better be seen as a tool 
to reduce and delay bacterial adhesion and biofilm 
formation to a variable degree, also depending on the 
local environment, the contaminating bacterial species 
and initial bacterial load; this may still provide an 
additional advantage to the host’s cells to first 
colonize the implanted biomaterial and win the 
competition with the microorganisms that may 
eventually be present, thus contributing to reduce the 
occurrence of implant-related infections. 

Clinical applications of hyaluronic acid to 
prevent bacterial adhesion 

Several clinical local applications of HA to 
reduce the impact of biofilm-related infections have 
been reported, in different clinical settings, with 
favourable results and no adverse events. 

Torretta et al. [45] recently described topical 
administration of hyaluronic acid in children with 
recurrent or chronic middle ear inflammations and 
chronic adenoiditis.  

In this prospective, single-blind, randomised 
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controlled study, otoscopy, tympanometry and 
pure-tone audiometry in children which received the 
daily topical administration of normal 0.9% sodium 
chloride saline solution (control group) or 9 mg of 
sodium hyaluronate in 3 mL of a 0.9% sodium saline 
solution was performed. The final analysis was based 
on 116 children (49.1% boys; mean age, 62.9 ± 17.9 
months): 58 in the control group and 58 in the study 
group. At the end of follow-up, the prevalence of 
patients with impaired otoscopy was significantly 
lower in the study group (P value = 0.024) compared 
to baseline but not in the control group. In comparison 
with baseline, the prevalence of patients with 
impaired tympanometry at the end of the follow-up 
period was significantly lower in the study group (P 
value = 0.047) but not in the control group. The 
reduction in the prevalence of patients with 
conductive hearing loss (CHL) (P value = 0.008) and 
those with moderate CHL (P value = 0.048) was 
significant in the study group, but not in the control 
group. The mean auditory threshold had also 
significantly improved by the end of treatment in the 
study group (P value = 0.004) but not in the control 
group.  

Several studies have also reported the beneficial 
effect of topical HA in chronic urinary tract infections 
(UTI). In contrast to traditional antibiotic therapy, 
which aims at eradicating pathogens, treatment with 
HA targets bacterial adherence to the bladder mucosa 
with the presumption that a damaged 
glycosaminoglycan mucous layer facilitates bacterial 
adherence and therefore recurrent UTI [46]. 

Among others [47, 48], Lipovac and colleagues 
evaluated the efficacy of nine HA bladder instillations 
over 6 months in 20 women with a history of recurrent 
UTI. Their status was assessed prospectively but 
compared with a retrospective review of patients’ 
charts. The number of infections per year per patient 
was significantly reduced (from 4.99±0.92 to 
0.56±0.82, p>0.001) and the mean time to recurrence 
(from 76.7±24.6 to 178.3±25.5 days, p>0.001) was 
prolonged significantly. Nevertheless 65% of treated 
patients were free of recurrences until the end of 
study (47.6 weeks) [49]. 

Damiano et al. were able to provide a higher 
level of evidence by reporting a prospective, 
randomized, double-blind, placebo-controlled study, 
in which a significant reduction of 77% (p<0.0002) in 
the UTI rate per patient per year versus placebo was 
observed at the end of the study. Moreover, mean 
time to UTI recurrence was significantly prolonged 
(185.2±78.7 versus 52.7±33.4 days, p<0.001) after 
treatment compared with placebo. Overall urinary 
symptoms and quality of life measured by 

questionnaires significantly improved compared with 
placebo [50]. No adverse events were reported. 

Very recently a multicentre European study 
confirmed the efficacy of intravesical administration 
of combined hyaluronic acid and chondroitin 
sulphate (CS) for the treatment of female recurrent 
urinary tract infections [51]. A total of 276 adult 
women received intravesical administration of 
HA+CS or standard of care (antimicrobial/ 
immunoactive prophylaxis/ probiotics/cranberry). 
At follow-up, 181 patients treated with HA+CS and 95 
patients treated with standard of care from 7 centres 
were available. The crude and adjusted ORs (95% CI) 
for bacteriologically confirmed recurrence within 12 
months were 0.77 (0.46 to 1.28) and 0.51 (0.27 to 0.96), 
respectively. 

Studies were also undertaken to determine the 
effect on clinical variables, sub-gingival bacteria and 
local immune response brought about by application 
of hyaluronan-containing gels in early wound healing 
after scaling and root planing (SRP) in dentistry [52, 
53].  

In the study reported from Eick et al. [54], 34 
individuals with chronic periodontitis were evaluated 
after full-mouth SRP. The exclusion criteria were: 
antibiotics intake in the 6 months before the study, 
periodontal treatment received during the previous 
year, pregnancy, nursing, smoking, chronic diseases 
such as diabetes mellitus or rheumatoid arthritis, and 
allergy to ingredients in the drug. In the test group 
(n=17), a 0.8% hyaluronan-containing gels (HA) was 
introduced into all periodontal pockets during SRP 
and a 0.2% HA gel was applied by the patients onto 
the gingival margin twice daily during the following 2 
weeks while the control group (n=17) was treated 
with SRP only; no placebo was used.  

Probing depth (PD) and clinical attachment level 
(CAL) were recorded at baseline and after 3 and 6 
months, and subgingival plaque and sulcus fluid 
samples were taken for microbiologic and 
biochemical analysis. In both groups, PD and CAL 
were significantly reduced (P<0.001).  

The changes in PD and the reduction of the 
number of pockets with PD≥5 mm were significantly 
higher in the test group after 3 (P=0.014 and 0.021) 
and 6 (P=0.046 and 0.045) months.  

Six months after SRP, the counts of Treponema 
denticola were significantly reduced in both groups 
(both P=0.043), as were those of Campylobacter rectus 
in the test group only (P=0.028). Prevotella intermedia 
and Porphyromonas gingivalis increased in the control 
group. No adverse effects of HA were observed 
during the study. 
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Figure 6. Comparison of the efficacy of DAC hydrogel, gentamicin, vancomycin or a combination thereof, on biofilm formation reduction of Staphylococcus aureus (A. and B.) and 
Staphylococcus epidermidis (C. and D.) over time (hours). Note that the hydrogel alone is able to provide an equal or superior biofilm reduction compared to commonly used 
antibiotics, while a synergistic effect is observed using a combination of the hyaluronic acid based hydrogel and the antibiotic compounds. 
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Conclusion 
Although to date no surface modification has 

been reported to be able to fully prevent bacterial 
adhesion and biofilm formation [55], available data 
show that hyaluronic acid has a proven in vitro 
antiadhesive/antibiofilm effect against some of the 
most common pathogens and it has been used safely, 
alone or in combination with other polymers, with 
satisfactory results in different conditions associated 
with biofilm-related chronic infections. 

Clinical data in various applications, including 
dentistry, urology, wound management, dermatology 
and orthopedics, allow to consider the potential use of 
HA as a protective coating barrier of implants 
particularly safe and feasible on a large scale basis. 

While antibacterial coatings to mitigate the 
occurrence of implant- and biofilm-related infections 
are regarded as one of the most needed technology, 
currently only few and insufficient options are 
available for clinical use in orthopedics and trauma 
surgery [18].  

Considering the pathogenesis of implant-related 
infections, any protection offered by a fully 
biocompatible antiadhesive barrier, like HA and some 
of its derivatives, could be extremely useful to reduce 
the tremendous burden of implant-related infections. 

On the other hand, it should be noted that 
hyaluronic acid as a passive protective barrier has 
some limits. Among others, the 
antiadhesive/antibiofilm effect is limited and may 
vary, depending on the type of the microorganism, 
the bacterial load, the local environment, etc.; 
moreover, HA protection may be neutralized by the 
possible ability of some bacteria to produce 
hyaluronidase, an enzyme that catalyzes the 
degradation of hyaluronic acid [56], while collagen 
and hyaluronan may even become possible ligands 
for microbial attachment in particular situations [57, 
58].  

To overcome at least some of these limits, 
possible loading of hyaluronic-based hydrogels with 
antibiotics is technically feasible and has been 
proposed by different authors [59 – 62], being a 
possible option for future developments and large 
scale clinical applications, provided that regulatory 
requirements can be met. 
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