
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Journal Pre-proof

Automatic diagnosis of COVID-19 with MCA-inspired TQWT-based classification of
chest X-ray images

Kumari Jyoti, Sai Sushma, Pawan Kumar, Saurabh Yadav, Ram Bilas Pachori,
Shaibal Mukherjee

PII: S0010-4825(22)01039-3

DOI: https://doi.org/10.1016/j.compbiomed.2022.106331

Reference: CBM 106331

To appear in: Computers in Biology and Medicine

Received Date: 21 June 2022

Revised Date: 1 November 2022

Accepted Date: 14 November 2022

Please cite this article as: K. Jyoti, S. Sushma, P. Kumar, S. Yadav, R.B. Pachori, S. Mukherjee,
Automatic diagnosis of COVID-19 with MCA-inspired TQWT-based classification of chest X-ray images,
Computers in Biology and Medicine (2022), doi: https://doi.org/10.1016/j.compbiomed.2022.106331.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd.

https://doi.org/10.1016/j.compbiomed.2022.106331
https://doi.org/10.1016/j.compbiomed.2022.106331


Please find details for affiliation for all authors:  

 

Kumari Jyoti, Sai Sushma, and Pawan Kumar:  Hybrid Nanodevice Research Group (HNRG), Department 

of Electrical Engineering, Indian Institute of Technology Indore, Simrol, Madhya Pradesh 453552, India 

Saurabh Yadav: Hybrid Nanodevice Research Group (HNRG), Centre for Advanced Electronics 

(CAE), Indian Institute of Technology Indore, Simrol, Madhya Pradesh 453552, India 

Kumari Jyoti, and Ram Bilas Pachori: Signal Analysis Research Lab (SARL), Department of Electrical 

Engineering, Indian Institute of Technology Indore, Simrol, Madhya Pradesh 453552, India 

Shaibal Mukherjee:  Hybrid Nanodevice Research Group (HNRG), Department of Electrical Engineering, 

Centre for Advanced Electronics (CAE), Centre for Rural Development and Technology (CRDT), Indian 

Institute of Technology Indore, Simrol, Madhya Pradesh 453552, India and School of Engineering, RMIT 

University, Melbourne, Victoria-3001, Australia 

 

Also, kindly updated acknowledgment section with given details 

 

Acknowledgment: This work is partially supported by the CRDT project (No. IITI/CRDT/2022-23/04), 

and CSIR (No. 22(0841)/20/EMR-II). 

 

 

Thanks and regards, 

Kumari Jyoti 

 

Jo
urn

al 
Pre-

pro
of



 

 

 

 

1 

 Abstract- In this era of Coronavirus disease 2019 (COVID-19), 

an accurate method of diagnosis with less diagnosis time and 

cost can effectively help in controlling the disease spread with 

the new variants taking birth from time to time. In order to 

achieve this, a two-dimensional (2D) tunable Q-wavelet 

transform (TQWT) based on a memristive crossbar array 

(MCA) is introduced in this work for the decomposition of 

chest X-ray images of two different datasets. TQWT has 

resulted in promising values of peak signal-to-noise ratio 

(PSNR) and structural similarity index measure (SSIM) at the 

optimum values of its parameters namely quality factor (Q) of 

4, and oversampling rate (r) of 3 and at a decomposition level 

(J) of 2. The MCA-based model is used to process decomposed 

images for further classification with efficient storage. These 

images have been further used for the classification of COVID-

19 and non-COVID-19 images using ResNet50 and AlexNet 

convolutional neural network (CNN) models. The average 

accuracy values achieved for the processed chest X-ray images 

classification in the small and large datasets are 98.82% and 

94.64%, respectively which are higher than the reported 

conventional methods based on different models of deep 

learning techniques. The average accuracy of detection of 

COVID-19 via the proposed method of image classification has 

also been achieved with less complexity, energy, power, and 

area consumption along with lower cost estimation as 

compared to CMOS-based technology. 

Index Terms- COVID-19, Chest X-ray images, Image 

decomposition and classification, Memristive crossbar array 

(MCA) based model, TQWT method. 

  

I. INTRODUCTION 

OVID-19, caused by the novel SARS-CoV-2 virus can 

be understood as a type of pneumonia [1]. Patients 

diagnosed with COVID-19 suffer from dry cough, sore 

throat, and fever which may lead to organ failure [2]. The 

most prevalent method to diagnose COVID-19, the real-time 

reverse transcription-polymerase chain reaction (RT-PCR) 

test takes around 10 to 15 hours to produce the result, 

making the diagnosis process very slow [1]. Another way to 

diagnose COVID-19 is the rapid diagnostic test (RDT) 

which takes 30 minutes to give the result. Even though the 

RDT method is faster, it is less reliable [3]. There is a need 

to explore other methods for COVID-19 diagnosis, 

especially in a populous country like India and many 

countries in the Asian subcontinent. Various studies have 
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shown that COVID-19 affects the lungs of the patient. 

Hence chest X-ray images of suspected patients are the most 

feasible method to detect COVID-19 at an early stage [4]. 

Clinical imaging data are one of the most crucial diagnostic 

bases in all COVID-19 diagnostic data. Unfortunately, 

drawing the target area of medical images manually is a 

time-consuming and laborious task. It increases the burden 

on the clinicians given the complexity. Therefore, computer 

technology can be used to diagnose the disease using 

medical imaging techniques [5]. Deep learning techniques, 

which are a subset of machine learning techniques, have 

been explored to diagnose COVID-19 automatically using 

chest X-ray images [6]. Convolutional neural networks 

(CNNs), specially designed for images, are a class of deep 

neural networks in deep learning [7]. Residual neural 

network (ResNet) is a deep CNN, which is used for feature 

extraction and classification [8]. ResNet50 has been applied 

in various image recognition and classification applications 

such as metastatic cancer recognition [9], hyperspectral 

image classification [10], and chromosome classification 

[11]. On the other hand, AlexNet is an 8-layer model with 5 

convolutional layers and 3 fully connected layers [12], 

which has various applications in image processing like 

identification of maize leaf disease [13], COVID-19 virus 

detection, and power equipment classification [14], scene 

image classification [15]. ResNet50 and AlexNet are two 

CNN models explored in this work for the classification of 

chest X-ray images that are preprocessed by a wavelet 

decomposition technique called tunable Q-wavelet 

transform (TQWT) [16]. The images are decomposed by 

setting TQWT parameters, namely quality factor (Q), 

oversampling rate (r), and the number of decomposition 

levels (J), to their optimized values. TQWT is described in 

detail in the later sections. The usage of TQWT to 

decompose the input chest X-ray images for classification 

application using an MCA-based model is novel and has not 

been reported elsewhere to the best of the author's 

knowledge. Performance of proposed model computed for 

two-class classification of chest X-ray image databases such 

as COVID-19 and normal class.  

   The current ongoing deep learning technologies are based 

on complementary metal oxide semiconductor (CMOS) 

circuits which have more operations in computation [17], 

area consumption, energy consumption [18], processing 

time, and power consumption [19]. These technological 

limitations can be overcome using the memristive crossbar 

array (MCA) as these significantly reduce the power 

consumption as compared to the CMOS-based conventional 

systems [20]. MCA is gaining popularity in various domains 

of image processing, such as pattern recognition and edge 

detection [21]. 
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Fig. 1: Schematic shows the image decomposition and classification of the small and large datasets using the MCA-based model. 

   MCA is more efficient in terms of energy as well as 

processing time as compared to the traditional Von Neumann 

circuits in some applications such as pattern processing [22]. 

The energy consumption of a memristor-based resistive 

random-access memory is less which attracts a lot of 

attention to in-memory computation for various applications 

[17]. Various studies on memristor-based accelerator 

architectures [22] and memristor-based architectures for 

neuromorphic applications [23] have been previously 

published [24]. In conventional CMOS-based neural 

networks [25], the neurons are represented by capacitors that 

are bulky and occupy a large area [26], thus making the 

integration of a large number of neurons in a chip extremely 

challenging [27]. On the other hand, by representing the 

neural parameters with the resistance state of memristor cells 

[25], an MCA can work as a dot-production engine and can 

eliminate the data transfer overhead of numerous neural 

weights [28]. In this work our objectives are to resolve the 

following outlined problems that have not been addressed in 

the prior state-of-artwork: 

• Qualitative and quantitative investigations on the 

selection of optimum TQWT parameters for image 

decomposition. 

• Extended mathematical investigation for MCA 

model-based two-dimensional (2D) TQWT to 

decompose the chest X-ray images for further 

image classification. 

• Computational diagnosis of COVID-19 by using 

chest X-ray images through pre-trained CNN 

models. 

    

II. PROPOSED METHODOLOGY FOR 

DIAGNOSIS OF COVID-19 

 

A.    Related Work 

   In this proposed work, chest X-ray images are used to 

diagnose COVID-19 using the MCA model based on the 

TQWT image decomposition technique and pre-trained CNN 

models [12]. Chest X-ray images from two different datasets 

have been considered: a small dataset [29] having a total of 

2193 chest X-ray images (COVID-19 chest X-ray images - 

852 and normal chest X-ray images - 1341) and a large 

dataset [30] having a total of 5275 chest X-ray images 

(COVID-19 chest X-ray images - 2409 and normal chest X-

ray images - 2866) have been used. In addition to the RT-

PCR test [31], chest X-ray images can also be utilized as an 

assistive tool to diagnose COVID-19 with the help of image 

processing techniques with a machine learning algorithm. 

Many models have been proposed from all around the world 

for the diagnosis of COVID-19 using chest X-ray images. 

The best performance has been achieved by the ResNet50  

 

Fig. 2: MCA for image storage and retrieval. The memristor, which is 

placed at each cross point in the crossbar architecture is magnified by its 

circuit symbol. 

model so far [4]. An accuracy of 98.82% has been achieved 

using the proposed methodology. A new model named 

COVID-Net has been proposed by Wang and Wong [32] 

which utilizes chest X-ray images for COVID-19 diagnosis. 

This model has achieved an accuracy of 83.5%. Li et al [33] 

have proposed COVNet to detect COVID-19 using chest X-

ray images. This model uses ResNet50 as the backbone 

network [3]. The sensitivity and specificity obtained from 

the COVNet model are 90% and 96%, respectively [33]. 

   The schematic of the proposed methodology is shown in 

Fig. 1. Firstly, chest X-ray images are decomposed by using 

TQWT technique; the optimum values for TQWT 

parameters are determined so that the chest X-ray images can 

be pre-processed with the parameters of the decomposition 

set to their optimized values. The sub-bands obtained after 

each level of decomposition of the image contain both low 

and higher frequency components. For the higher levels of 

decomposition, further decomposition is performed 

iteratively on the approximation component only. As one 

goes for higher levels of decomposition the classification 

performance is observed to degrade since these components 

contain noise present in the image. 

   The chest X-ray images of large and small datasets are 

decomposed using TQWT technique at an optimized value 

of Q, r, and J [16]. The decomposed image coefficients are 

then stored in an MCA, as shown in Fig. 2 [34], where each 

cross point in the MCA is holding a coefficient value. The 

input image coefficient values are converted into voltages 

and fed to the MCA system-based model along the rows. 

The current along the columns is collected and image 

retrieval is performed using these current values, as can be 

observed in Fig. 2. level decomposition is given in Fig. 3. In 

the proposed work image decomposition is done using 

TQWT where the number of sub-bands coefficients is  
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Fig. 3: Block diagram for TQWT for J level of TQWT decomposition. 

 

 

  
Fig. 4: The simulation flow of work defines the algorithm for the proposed 

methodology. 

represented by ‘ω’ and further, it is considered as input in 

the memristive device-based model represented by ‘v’. The 

retrieved chest X-ray images are used for automatic image 

classification of COVID-19 via pre-trained CNN models 

using MATLAB version R2021a. Here, ResNet50 and 

AlexNet CNN models are used to classify chest X-ray 

images based on COVID-19 cases. A pre-trained adaptation 

of ResNet50 and AlexNet CNN models is separately 

processed in our utilized model, and all the chest X-ray 

images from the datasets are resized based on the input size 

requirement of the CNN models. The proposed method has 

produced remarkable accuracy and has successfully 

identified COVID-19 positive chest X-ray images as 

COVID-19 and COVID-19 negative chest X-ray images as 

Healthy/Normal as shown in Fig.1.  

   In Fig. 4, the simulation flow of work represents the 

algorithm used in the proposed methodology, where the 

program starts with an input image for optimization of Q, r, 

and J in TQWT processing. For optimized conditions, both 

datasets are being processed which have sub-band image 

coefficients that pass through the memristive model for 

further processing using the CNN model. In the proposed 

methodology, 30% of the dataset is used for training and 

70% of the dataset is used for testing the classification 

model. In the current technology, less number of images are 

needed for training of the model during the transfer learning 

approach, as shown by Hu et al by using 30% of the input 

data [35]. The transfer learning technique comes as a rescue 

provided the input images are resized according to the pre-

trained network that is being used [35]. To achieve better 

performance and reduce the computational complexity with a 

reduced number of operations, 30% training data is used in 

the submitted manuscript instead of 70% training data. Two 

different pre-trained networks, namely ResNet50, and 

AlexNet, as shown in Fig. 4, have been applied for the 

classification. ResNet50 comprises five stages, namely 

convolution layer, batch normalization layer, rectified linear 

unit (ReLU) activation layer, and maximum pooling layer. 

The next stage comprises of convolution block and an 

identity convolution block where each block has three 

convolutional layers in each. The output layer comprises the 

average pooling layer, fully connected layer, and softmax 

layer. Similarly, AlexNet consists of five convolutional and 

three fully connected layers as shown in Fig. 4. The outcome 

of both the networks gives two classes of identification that 

is COVID-19 positive and normal or healthy chest X-ray 

images. 

 

B.    Tunable Q-Wavelet Transform Image Decomposition 

Techniques 

   There are various wavelets available that could be used for 

image processing, however, many of the wavelet transforms 

have limitations due to their constant quality factor [16]. 

After determining the basis function and decomposition level 

number, the quality factor (Q) is fixed [36]. 

Jo
urn

al 
Pre-

pro
of



 

 

 

 

4 

     

 

  

 

Fig. 5: Filter-bank for TQWT decomposition at (a) J = 2, (b) J = 3, (c) J = 4, and (d) J = 5. 

   The Q of a wavelet transform has to be in accordance with 

the oscillatory behavior of the image to which it is being 

applied [16]. In most wavelet transforms such as discrete 

wavelet transform (DWT), it is not possible to tune the Q, 

which affects the quality of reconstructed output images, of 

the wavelet [36]. To overcome the drawback of constant Q in 

traditional wavelet transforms, Selesnick et al [16] has 

proposed TQWT technique, which is a nonlinear signal 

decomposition technique that facilitates a suitable Q of the 

wavelet basis function based on the signal to be decomposed 

[36]. TQWT technique is efficient in processing one-

dimensional signals like speech, cardiac sound [36], and 

electroencephalogram (EEG) signals [37]. Similarly, TQWT 

could also be suitable for 2D signals like images with texture 

variations. Q, redundancy (r), and the number of 

decomposition levels (J) are TQWT parameters [36]. It can 

be observed that for J level decomposition, J+1 number of 

sub-bands are obtained which are represented by v. 

   The transfer functions of the low-pass and high-pass filter 

banks are represented by H0(ω) and H1(ω), respectively. The 

low-pass coefficient obtained after one stage of 

decomposition is used as the input for the succeeding stage. 

At each stage, the low-pass and the high-pass filter are 

followed by scaling. The parameters ‘Q’, and ‘r’ are related 

to the low-pass scaling factor (LPS α) and high-pass scaling 

factor (HPS β), as shown in Equations (1) and (2). 

 

𝑄 =
2−𝛽

𝛽
                                                       (1) 

 

     𝑟 =
𝛽

1−𝛼
                                            (2) 

   

   The optimum values of Q, r, and J are determined so that 

all the chest X-ray images can be preprocessed through 

TQWT. The calculation of the optimum TQWT parameters 

has been described in section III. The decomposed chest X-

ray images are stored in a memristive system developed 

from an analytical model as described in the following 

subsection. 

C.  MCA-based Analytical Model 

   An MCA can be comprehended by a 3-dimensional (3D) 

structure like a human brain [38]. The MCA offers 

remarkable downscaling at a nanoscale level which leads to 

high-density storage, ultrahigh switching speed, and longer 

operation cyclability which help to design an efficient 

system for image processing applications [38]. The ability to 

change synaptic weight is a crucial mechanism used in the 

process of learning by the human brain [34]. To emulate the 

brain pattern for image and speech recognition, one can 

introduce a neuromorphic MCA. As memristor-based 

systems are nonvolatile, low-power consuming, and 

nanoscale dimensioned they are highly apt for in-memory 

computing and also for implementing the computing systems 

[28] like CNNs. 

   The proposed analytical model [34] to develop a 

neuromorphic MCA-based model is validated via 

experimental results of Y2O3-based memristive systems. The 

nonlinear model describes the synaptic learning of Y2O3-

based devices along with the detailed analytical model. The 

analytical model used for the study in this paper is 

represented by Equations (3), (4), and (5). The nature of the 

MCA to be controlled by flux is expressed through the first 

term on the right-hand side of the I-V relationship shown in 

Equation (3).  

 

𝐼(𝑡) = {
𝑏1𝑤𝑎1(𝑒𝛼1𝑣𝑖(𝑡) − 1) + 𝜒(𝑒𝛾𝑣𝑖(𝑡) − 1), 𝑣𝑖(𝑡) ≥ 0

𝑏2𝑤𝑎2(𝑒𝛼2𝑣𝑖(𝑡) − 1) + 𝜒(𝑒𝛾𝑣𝑖(𝑡) − 1), 𝑣𝑖(𝑡) < 0
                         

                                                                                             (3) 

 

   The amount of impact of the state variable for positive and 

negative applied programming voltages on the device current 

is indicated by the parameters a1 and a2, respectively. The 

parameters, b1, and b2 sketch the slope of conductance in I-V 

characteristics. The hysteresis loop area controlling 

parameters are represented by α1 and α2, whereas the state 

variable is represented by w.     

  

              𝑓(𝑤) = log {

(1 + 𝑤)𝑝, 0 ≤ 𝑤 ≤ 0.1

(1.1)𝑝, 0.1 < 𝑤 ≤ 0.9

(2 − 𝑤)𝑝, 0.9 < 𝑤 ≤ 1
                 (4) 

 

  
𝑑𝑤

𝑑𝑡
= 𝐴 × 𝑣𝑖

𝑚(𝑡) × 𝑓(𝑤)                                  (5) 

 

   The net electronic barrier of the MCA is depicted by the 

parameters χ and γ. f(w) is the piecewise window function, as 

shown in Equation (4), making sure that the state variable is 

confined between 0 and 1. Equation (5) shows the derivative 

of the state variable in the time domain, where ‘A’, and ‘m’ 

determine the impact of the input voltage on the state 

variable. The analytical model proposed here can be applied 

to either unipolar or bipolar systems. The value of p restricts 

the window function between 0 and 1.  

   The developed MCA-based model shows various synaptic 

functionality such as learning and forgetting behavior, and 

synaptic plasticity [39]. Furthermore, the design of the 

analytical model [34] is inspired by the experimentally 

fabricated crossbar architecture which has successfully 

captured various synaptic and resistive memory 

characteristics. 
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  III. RESULTS AND DISCUSSION 

 

A. Tunable Q-Wavelet Transform Image Decomposition 

Techniques 

   In this work, the sub-bands that are formed using TQWT-

based image decomposition are used for deep feature 

extraction. Three major experiments are carried out in the 

current study, the first one is done to identify the best level 

of image decomposition and to obtain the optimized values 

of Q, r, and J. Second experiment is performed to process 

the input images through MCA-based model with TQWT 

 
   TABLE I 

OPTIMIZING QUALITY MEASUREMENTS FOR TQWT DECOMPOSED IMAGES  

Q r J Chest X-ray images 1 Chest X-ray images 2 CT scan MRI 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

3  

 

 

 

 

 

 

 

 

3 

 

2 47.9173 0.9901 45.7127 0.9949 42.4208 0.9904 41.7225 0.9958 

4 50.4271 0.9946 47.3663 0.9968 43.4716 0.9936 42.4547 0.9971 

5 49.1728 0.9924 46.4849 0.9957 41.9729 0.9922 40.7496 0.9952 

6 49.0592 0.9922 46.1085 0.9952 40.9478 0.9913 39.7352 0.9931 

7 48.5168 0.9921 45.7690 0.9946 40.1148 0.9900 39.1375 0.9902 

3 3 46.5160 0.9873 43.9821 0.9923 39.5144 0.9843 38.6477 0.9853 

4 47.2999 0.9887 44.2713 0.9930 40.1446 0.9865 39.3283 0.9924 

5 48.7629 0.9922 45.8647 0.9952 41.5023 0.9912 40.2830 0.9946 

6 48.0599 0.9902 45.2835 0.9941 40.6298 0.9900 39.4280 0.9922 

7 48.3067 0.9917 45.5364 0.9945 40.0446 0.9897 39.0282 0.9900 

3 4 44.2128 0.9850 41.7548 0.9878 36.5341 0.9764 35.6735 0.9569 

4 46.1557 0.9869 43.1073 0.9909 38.3391 0.9817 37.5975 0.9829 

5 46.4327 0.9870 43.5358 0.9915 38.9386 0.9840 38.0069 0.9889 

6 47.6471 0.9900 44.7899 0.9936 40.1210 0.9823 38.9252 0.9913 

7 47.6001 0.9904 44.9237 0.9935 39.6900 0.9883 38.6860 0.9889 

3 5 42.2357 0.9809 39.1245 0.9807 33.8711 0.9704 33.6807 0.9295 

4 44.6694 0.9850 41.8046 0.9875 36.5913 0.9758 35.7242 0.9599 

5 45.3264 0.9846 42.4492 0.9892 37.3568 0.9789 36.5811 0.9786 

6 45.9121 0.9854 42.9670 0.9901 38.1996 0.9823 37.0857 0.9844 

7 47.2194 0.9901 44.3838 0.9929 39.1981 0.9869 38.2265 0.9877 

 

 

 

Fig. 6: Variation in (a) PSNR and (b) SSIM of images for different J levels. 

  
TABLE II 

 INPUT AND OUTPUT IMAGES OBTAINED AFTER DECOMPOSITION USING OPTIMISED TQWT PARAMETERS  

Images Chest X-ray images 1 Chest X-ray images 2 CT scan MRI 

 

 

Input 

 

 
 

 

 

Reconstructed 

Output 

 (Q = 4, r = 3, 

and J= 2) 

 
 

 
 

Quality 

Measures 

PSNR = 50.4271 dB 

SSIM= 0.9946 

PSNR = 47.3663 dB 

SSIM= 0.9968 

PSNR =43.4716 dB 

SSIM=0.9936 

PSNR = 42.4547 dB 

SSIM= 0.9971 

parameters at their optimized values of image 

decomposition for further diagnosis of COVID-19 with 

efficient image storage. In the third experiment, the 

proposed model is studied for image classification of two 

class chest X-ray image databases by considering the best 

CNN model, optimizer, and classifier as reported [3].  
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TABLE III 

OUTPUT IMAGES AFTER CLASSIFICATION USING MCA-BASED MODEL WITH CONFUSION MATRIX BASED PARAMETERS 
Chest X-ray 

Images 

Small Dataset Large Dataset 

 ResNet50 AlexNet ResNet50 AlexNet 

 

 

COVID-19 

Positive 

  

 

 

 

 

Normal / 

Healthy 

 

 

 

 

 

 

Confusion 

Matrix-

based 

parameters 

NTP 588 NTP 591 NTP 1608 NTP 1584 

NFP 8 NFP 5 NFP 78 NFP 102 

NFN 6 NFN 9 NFN 68 NFN 113 

NTN 590 NTN 587 NTN 1618 NTN 1573 

TABLE IV 

IMAGE CLASSIFICATION QUALITY MEASUREMENT PARAMETERS 
Chest X-ray 

Images 
Small Dataset Large Dataset 

 ResNet50 AlexNet ResNet50 AlexNet 

 

 

Confusion 

Matrix 

 

 

 
 

Accuracy 

(%) 

98.82 98.82 95.67 93.62 

Precision 

(%) 

98.65 99.16 95.37 93.95 

Sensitivity 

(%) 

98.98 98.50 95.94 93.34 

Specificity 

(%) 

98.66 99.15 95.40 93.91 

Decomposition has been performed on images mentioned 

earlier at various values of TQWT parameters and is 

observed to obtain their optimum values. This method of 

decomposition is accomplished using a parallel operation of 

low-pass filtering and high-pass filtering, respectively [16]. 

The coefficient taken from sub-bands at their optimized 

parameters is used for further reconstruction of output 

images. The filter banks applied for various levels of 

decompositions applied in this work are shown in Fig. 5. In 

Fig. 5 (a), (b), (c), and (d) show the magnitude vs frequency 

plots of TQWT filters for second, third, fourth, and fifth 

decomposition levels, respectively. For the J-level 

decomposition, we require J+1 filters and each of those 

filters is represented by different colors in Fig. 5 for easy 

differentiation. The peak signal-to-noise ratio (PSNR) and 

structural similarity index measure (SSIM) values of the 

input and the decomposed image are observed at different 

values of Q, r, and J, and these values are tabulated in Table 

I. The variation in the values of PSNR and SSIM can be 

observed pictorially in Fig. 6(a) and (b), respectively. It can 

be observed that as the decomposition level is increased, the 

PSNR and SSIM values decline since the degradation in the 

image quality increases with the increase in the 

decomposition level. The same is observed in the cases 

where Q is larger than 4, as seen in Table I, which could be 

reasoned as the Q of wavelet changes that is used for image 

decomposition the compatibility of the wavelet with the 

corresponding image changes.   
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Fig.7: Training and validation plots for CNN models deploying (a) ResNet50 for a small dataset, (b) AlexNet for a small dataset, (c) ResNet50 for a 

large dataset, and (d) AlexNet for a large dataset. 

It can be observed that the parameter values Q = 4, r = 3, 

and J = 2 produce the best results in terms of PSNR and 

SSIM. It might be because of the compatibility of the 

wavelet with a Q of 4 and r of 3 with the corresponding 

image and the fact that lower decomposition level results in 

better-reconstructed image quality. Implementation of 

TQWT can also be understood easily by representing it in 

terms of low pass and high pass filters, Fig. 5 shows the 

filter bank to implement TQWT. In this study best level of 

decomposition is opted out of level-2, -3, -4, and -5 based 

decomposition as shown in Table I. The best-tuned 

parameter values are observed to be the J = 2, Q = 4, and r = 

3. 

B. Image Classification using CNN with MCA-based Model 
 

   The classification performance of COVID-19 from the 

chest X-ray images database is studied. It has been shown in 

earlier studies that ResNet50 gives a better performance out 

of maxima, minima, average, and fusion operations [3]. 

There are two output classes in the classification: COVID-

19 and normal. The input images are designated as chest X-

ray image 1, chest X-ray image 2, computed tomography 

(CT) scan, and magnetic resonance imaging (MRI), where, 

chest X-ray image 1 is a COVID-19 image taken from the 

large dataset while chest X-ray image 2 is a normal image 

taken from the small dataset. The CT scan and MRI images 

are taken from Refs. [40] and [41], respectively. These 

images are considered to observe if the optimum parameters 

of TQWT decomposition are different for different images. 

In Table II the input and output images which are 

decomposed using the optimized parameters of Q, r, and J 

are tabulated along with the corresponding quality measures. 

The range of the quality measures is different for different 

images due to the differences in the size and resolution of 

the images. These specific values of TQWT parameters have 

been utilized to decompose all the chest X-ray images from 

the datasets in the next stage of image classification. In this 

phase, each filter bank has a frequency coefficient 

represented by ‘ω’ in Fig. 3, and the optimized level of 

decomposed chest X-ray images sub-band (v) coefficients 

are fed as input voltages (v) to the MCA-based model as 

described earlier. The images retrieved from the MCA are 

then used to train the earlier mentioned CNN models. The 

parameters used for performance evaluation in this 

application are accuracy, sensitivity, specificity, and 

precision [3], which are defined by equations (6), (7), (8), 

and (9), respectively.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑇𝑃 + 𝑁𝑇𝑁

𝑁𝑇𝑃 + 𝑁𝐹𝑃 + 𝑁𝑇𝑁 + 𝑁𝐹𝑁
          (6)  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑇𝑃

𝑁𝐹𝑃 + 𝑁𝑇𝑃
                                       (7) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑁𝑇𝑃

𝑁𝐹𝑁 + 𝑁𝑇𝑃
                                  (8) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑁𝑇𝑁

𝑁𝐹𝑃 + 𝑁𝑇𝑁
                                    (9) 

 

   In the above equations, NTP, NTN, NFP, and NFN 

represent the number of true positives, the number of true 

negatives, the number of false positives, and the number of 

false negatives, respectively. Fig. 7 shows the variation in 

accuracy with the number of iterations while training, to 

build the two CNN models. The training accuracies for both 

datasets have been plotted for small and large chest X-ray 

image datasets. The training accuracy, though low in the 

beginning has reached nearly 90% in very few iterations as 

the CNN model learns the features better with each iteration 

and improves its ability to classify the chest X-ray images. 

After a few more iterations the accuracy is always observed 

to be above 80%.  
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Fig. 8: ROC plot for small and large datasets for AlexNet and ResNet50 

models. 

While training the CNN model new data are added for 

validating the model. The accuracy versus iterations plot 

during the validation of the models is also shown in Fig. 7. 

Fig. 7(a) and (b) represent training and validation accuracy 

while building the CNN using the small dataset for 

ResNet50 and AlexNet models, respectively. Fig. 7(c) and 

(d) show training and validation accuracy while building the 

CNN using the large dataset for ResNet50 and AlexNet 

models, respectively. The training and validation accuracy is 

better for a small dataset than the large dataset since the 

small dataset has fewer chest X-ray images to validate and 

test as compared to those for the large dataset. In the 

classification of COVID-19 chest X-ray images for small 

and large datasets, we have achieved a higher value of 

assessment parameters as compared to the reported results 

[40] by using TQWT-based decomposed chest X-ray images 

through the MCA-based model. The confusion matrices 

obtained after classifying the chest X-ray images from the 

two datasets using ResNet50 and AlexNet as COVID-19 or 

normal chest X-ray images. The size of the deep feature 

vector of the last fully connected layer depends on the type 

of pre-trained network. A support vector machine is used in 

the proposed work, as this classifier gives better 

performance than other reported classifiers for the 

application of image classification [3].  

   The true class is represented along the rows and the 

predicted class is represented along the columns. The first 

and fourth elements in the matrix give the NTP, NTN and 

the other elements, i.e., the second and third elements give 

the NFP, and NFN, respectively, as shown in Table III. The 

confusion matrix obtained after classifying the CXIs from 

the two datasets using ResNet50 and AlexNet as COVID or 

normal CXIs. The different parameters of evaluation have 

been calculated from the confusion matrix values that are 

accuracy, sensitivity, specificity, and precision can be 

observed in Table IV. The receiver operating characteristic 

(ROC) curve, indicating the performance of the 

classification models which shows the diagnostic capability 

of the proposed classifier, and the relation between clinical 

sensitivity and specificity for every possible cut-off, is 

plotted for both datasets in Fig. 8. To obtain the ROC curve, 

only the true positive rate (TPR) and false positive rate 

(FPR) are needed as a function of some classifier parameter. 

Classifiers that give curves closer to the top-left corner 

indicate better performance. It shows how many correct 

positive results occur among all positive samples available 

during the test. FPR, which is calculated by using the 

formula ‘FPR = 1-specificity’, is taken on the x-axis. The 

ROC curve is another appreciable way to visualize the 

performance of a classifier apart from the quality 

measurement parameters [42]. From Fig. 8, one can 

conveniently analyze that the small dataset has better ROC 

which indicates the capability of the classifier to distinguish 

clearly between two classes. It can be simply understood as 

a probability curve that informs how good the model is at 

differentiating the chest X-ray images with COVID-19 and 

without COVID-19. A good classification model is expected 

to have covered a large area under its ROC. This way, while 

comparing multiple models one can select a model by 

observing the corresponding ROC. 

   In Table V the performance of the proposed method with 

the methods available in the literature for diagnosis of 

COVID-19 from chest X-ray images databases is compared. 

It has been observed that accuracy, precision, specificity, 

and sensitivity values of 98.82%, 98.65%, 98.66%, and 

98.98%, respectively have been achieved for the 

classification of images in the small dataset using our 

proposed ResNet50. For AlexNet models, the corresponding 

values are 98.82%, 99.16%, 99.15%, and 98.50% for the 

classification of images in the small dataset as shown in 

Table V. For the small and large datasets, lower values of 

assessment parameters have been reported using other 

reported CNN models, as shown in Table V [43-47]. For the 

classification of images in the large dataset by using our 

utilized model, the values of accuracy, precision, specificity, 

and sensitivity are 95.67%, 95.37%, 95.40%, and 95.94%, 

respectively by ResNet50, and 93.62%, 93.95%, 93.91%, 

and 93.34%, respectively, by AlexNet, these are given in 

Table V [ 43, 44, 48-54]. 

TABLE V 

PERFORMANCE COMPARISON OF THE PROPOSED METHOD 

WITH OTHERS FOR IDENTIFICATION OF COVID-19 USING CHEST 

X-RAY IMAGE DATABASE 

Small Dataset 

Ref. Models Accura

cy (%) 

Precisi

on (%) 

Specifi

city %) 

Sensitivit

y (%) 

[46] AlexNet 99.00 98.00 99.00 99.00 

[43] Covid-Net 93.30 98.90 - 91.00 

[47] Modified 

MobileNet 

95.00 99.00 - 96.00 

Our 

Work 

ResNet50 98.82 98.65 98.66 98.98 

AlexNet 98.82 99.16 99.15 98.50 

Large Dataset 

Ref Models Accura

cy (%) 

Precisi

on (%) 

Specifi

city %) 

Sensitivit

y (%) 

[44] COVID-Net 90.10 84.00 - 98.20 

DenseNet-201 91.75 94.24 78.00 - 

[48] ResNet50+SVM 95.38 - 93.47 97.29 

[49] ResNet-101 71.90 - 71.80 77.30 

[50] XCOVNet  98.44 99.29 - 99.48 

[51] Xception 91.00 92.00 - 87.00 

[52] ResNet-50 98.00 94.81 98.44 87.29 

[53] DenseNet-121 88.00 - 90.00 87.00 

[43] Modified ResNet 99.30 - - 99.10 

[54] XCOVNet  88.90 83.40 96.40 85.90 

Our 

Work 

ResNet50 95.67 95.37 95.40 95.94 

AlexNet 93.62 93.95 93.91 93.34 

 

   It has been observed that the level of accuracy of the 

proposed methodology is 5.92% and 4.02% higher as 

achieved by others such as Covid-Net [43] and Modified 

MobileNet [47], respectively, for the classification of 

images in the small dataset by using both the CNN models. 

For large datasets, the proposed model using ResNet50 has 

achieved 33.06%, 8.71%, 7.61%, 6.18%, 5.13%, and 4.27% 

higher accuracy as compared to those obtained by using  
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 TABLE VI 

COMPARISON OF THE CONVENTIONAL DIGITAL CMOS-BASED 

COMPUTING WITH THE MCA-BASED IN-MEMORY 

COMPUTATION 

Compression for (128×128) image [19] 

Parameters CMOS Memristor Prominent 

Improvement 

Number of 

Operations 

1282×4×5 1282×2 10 times 

Area 

(m2) 

327000 7864.2 5 orders of 

magnitude 

Processing 

Speed (s) 

 

19.2 

 

15 

 

1.28 times 

Energy 

Consumption 

(nJ) 

 

70.9080 

 

6.4398 

 

11 times 

 Full adder circuit by using 3-bit [20] 

Parameters CMOS Memristor Prominent 

Improvement 

Number of 

Transistor 

34 24 10 lesser 

transistors 

Processing 

Time (ps) 

 

75.3 

 

62.4 

 

14.84% 

Power 

Consumption 

(W) 

 

117.3 

 

53.08 

 

54.74% 

Our work on compression for (512×512) image 

Parameters CMOS MCA Prominent 

Improvement 

Number of 

Operations [19, 

20] 

5123 + 

(5122×511) 

5122 1023 times 

Area 

(m2) [19] 

1585446.912 41943.04 37.8 times 

Energy 

Consumption 

(pJ) [19] 

 

1115.4 

 

1.484 

 

752 times 

Processing 

Time  

(s) [19, 20] 

0.15 0.06 2.5 times 

Power 

Consumption 

(mW) [19] 

 

7436 

 

24.733 

 

300 times 

ResNet-101 [49], DenseNet-121 [53], XCOVNet [54], 

COVID-Net [44], Xception [51], and DenseNet-201 [44], 

respectively. From the comparative analysis of our proposed 

work with reported literature for both the small and large 

datasets, it is evident that most of the performance matrices 

via conventional technology provide less values of accuracy, 

precision, specificity, and sensitivity. Although a CNN 

model [46] from the small dataset, and [43, 50, 52] from the 

large dataset give better accuracy and sensitivity as 

compared to those in the proposed work, however, 

commercially viable technologies for image classification 

consume more operations in computation, area 

consumption, energy consumption and processing time 

which have a direct impact on the cost of the overall system 

since these are based on CMOS systems [19, 20]. These 

technological limitations can be overcome using the MCA 

as these reduce the total energy consumption, the number of 

operations in computation, area consumption, processing 

time, and power consumption compared to the conventional 

system [44] which will be helpful to circumvent Von 

Neumann bottleneck issues. As given in Table VI, Halawani 

et al and Khalid et al have demonstrated image processing 

and digital logic circuits with a reduced number of devices 

and operations in the MCA-based model as compared to the 

conventional CMOS-based counterparts. A comparative 

analysis of compression for (512×512) image is performed 

using our MCA-based TQWT model and conventional 

CMOS-based models in which the values of various 

parameters are taken as in [19]. Table VI displays the 

achievement of better performances compared to the 

conventional CMOS-based models. Hence, our proposed 

approach makes the memristor-based solution very 

attractive for image processing applications. This 

components-based study is useful for circuitry design to the 

application of image classification via MCA model-based 

architecture [45]. 

   At the hardware level, an MCA will be specifically 

utilized to accelerate the construction of artificial neural 

networks. As compared with conventional computer 

processors [55], the data stored in an MCA are processed in 

a parallel manner, which increases the computational speed 

and fault tolerance simultaneously and significantly reduces 

the system power consumption [56]. In this work, the 

performance of the proposed method using an MCA-based 

model is compared with the reported deep learning model 

based on other conventional technology. Hence, it can be 

concluded that by using an MCA without compromising the 

performance in image processing and classification high 

processing speed with savings in energy, power, area, and 

cost can be achieved. 

IV. CONCLUSION 

   This work explores the merits of employing TQWT and 

MCA based techniques for effective detection of the 

COVID-19 virus through chest X-ray images. Further, the 

highest values of peak signal to noise ratio and structural 

similarity index for chest X-ray image is 50.4271 dB and 

0.9946, respectively, for the optimized TQWT parameters, 

namely Q = 4, r = 3, and J = 2. The utilized method can 

overcome the limitations of the complementary metal oxide 

semiconductor-based technology and is feasible with less 

complexity, processing speed, energy, power, and area 

consumption along with lower cost estimation as compared 

to current technology. This study is carried out to find the 

optimum values of parameters for the decomposition of 

chest X-ray images using a tunable Q-wavelet transform. By 

using the obtained optimum parameters, remarkable values 

of peak signal-to-noise ratio and structural similarity index 

measure are achieved. From the decomposed images, which 

are stored in the MCA, features are extracted using two 

different convolutional neural network models: ResNet50, 

and AlexNet. High average accuracy values of 98.82% and 

94.64% are achieved by using the MCA-based model for 

small and large datasets containing 2193 and 5275 chest X-

ray images, respectively. The image processing capability of 

the MCA-based model improves the operational efficiency 

of the neural network and reduces the energy consumption 

of the system as compared to other reported convolutional 

neural network models. In addition, the MCA model-based 

image processing technology can enhance the processing 

speed and accuracy along with the reduction in the number 

of operations, area, and energy consumption. This work can 

be further extended to identify different stages of 

coronavirus disease 2019 and to build an on-chip 

architecture based on a MCA. It can also be modified to 

diagnose other diseases like influenza and tuberculosis, from 

chest X-ray images, CT scans, and other imaging 

techniques. 
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Automatic Diagnosis of COVID-19 with MCA-inspired TQWT-based Classification of 

Chest X-ray Images 
 

Highlights: 

 

In this work, our objectives are to resolve the following outlined problems that have not been addressed in the 

prior state-of-artwork: 

• Qualitative and quantitative investigations on selection of optimum TQWT parameters for image 

decomposition. 

• Extended mathematical investigation for memristive crossbar array (MCA) model based two 

dimensional (2D) TQWT to decompose the CXIs for further image classification. 

• Computational diagnosis of COVID-19 by using CXIs through pretrained CNN models. 
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