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Abstract
The majority of the medical fraternity is continuously involved in finding new therapeutic schemes, including antimalarial 
medications (AMDs), which can be useful in combating the 2019-nCoV: coronavirus disease (COVID-19). For many decades, 
AMDs have been widely used in the treatment of malaria and various other anti-inflammatory diseases, particularly to treat 
autoimmune disorders of the connective tissue. The review comprises in vitro and in vivo studies, original studies, clinical 
trials, and consensus reports for the analysis, which were available in medical databases (e.g., PubMed). This manuscript 
summarizes the current knowledge about chloroquine (CQ)/hydroxychloroquine (HCQ) and shows the difference between 
their use, activity, recommendation, doses, and adverse effects on two groups of patients: those with rheumatic and viral 
diseases (including COVID-19). In the case of connective tissue disorders, AMDs are prescribed for a prolonged duration in 
small doses, and their effect is observed after few weeks, whereas in the case of viral infections, they are prescribed in larger 
doses for a short duration to achieve a quick saturation effect. In rheumatic diseases, AMDs are well tolerated, and their side 
effects are rare. However, in some viral diseases, the effect of AMDs is questionable or not so noticeable as suggested dur-
ing the initial prognosis. They are mainly used as an additive therapy to antiviral drugs, but recent studies have shown that 
AMDs can diminish the efficacy of some antiviral drugs and may cause respiratory, kidney, liver, and cardiac complications.
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Introduction

Antimalarial drugs (AMDs) have been used in the treatment 
of malaria and other inflammatory diseases for over 70 years. 
Chloroquine (CQ) was first synthesized AMD in Germany 
by Bayer in 1934. It was used as a synthetic replacement for 
natural quinine in the treatment of malaria [1]. However, 
due to drug resistance, CQ is less often implemented in the 
treatment of malaria.

Over the last decades, the anti-inflammatory and immu-
nomodulatory properties of AMDs became the main rea-
son for their use in rheumatic diseases [2]. They are rec-
ommended in the treatment of rheumatoid arthritis (RA), 
systemic lupus erythematosus (SLE), sarcoidosis, dermato-
myositis, Sjögren’s syndrome, chronic juvenile arthritis, 

psoriatic arthritis, and various other autoimmune diseases, 
because of their good efficacy and acceptable safety pro-
files [3]. AMDs are advantageous because of their excel-
lent safety profile (especially hydroxychloroquine (HCQ)). 
These medications reduce skin lesions exacerbated by 
ultraviolet light, arthralgia, and myalgia, improve fatigue, 
decrease disease activity, and diminish cardiovascular risk 
[4–8]. They have immunomodulatory, antiviral, antitumor, 
and antithrombotic effects and play a beneficial role in the 
regulation of metabolism [3].

Recently, AMDs have been used to treat many other 
viral diseases. The earlier studies of AMDs as antiviral 
agents were not very encouraging (e.g., in Chikungunya 
virus) [9], and the early reports indicated that AMDs had 
no effect on viral diseases in humans [10, 11]. More recent 
data show some efficacy of AMDs in HIV and novel severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-1). 
However, initially, the treatment of 2019-nCoV: coronavi-
rus disease (COVID-19) with AMDs was met with skepti-
cism, and they were not recommended in quickly spread-
ing viral infections [12]. Nevertheless, chloroquine (CQ) 
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and HCQ were approved for the treatment of COVID-19 
based on their in vitro antiviral activity [13]. The decision 
of using AMDs in the treatment of COVID-19 was also 
supported by the anti-inflammatory activity and inhibi-
tion of the production of proinflammatory cytokines, such 
as tumor necrosis factor (TNF)-α and interleukin (IL)-6. 
This effect is named a “cytokine storm” and is reduced by 
AMDs [14, 15]. Subsequent studies and clinical experi-
ence have underlined the efficacy and the beneficial effects 
of AMDs in patients with COVID-19, which is primarily 
based on observational studies in small groups [16, 17]. 
Later analysis has shown the adverse effect of AMDs in 
COVID-19 treatment, which caused an increased risk of 
cardiovascular complications, and even death in severely 
infected patients [18, 19].

Given the fact that AMDs are extensively used in rheu-
matic and viral diseases, in this review, we discuss the 
mechanism, indications, recommended or suggested doses, 
efficiency, and adverse effects of AMDs. We also present 
a critical point of view and the latest evidence of the ben-
eficial or harmful effects of AMDs in various clinical dis-
orders, underling their impact on SARS-CoV-2 infection.

AMDs—properties and mechanism of action 
in rheumatic diseases

AMDs are lipophilic drugs and have weak alkaline proper-
ties. They inhibit lysosomal degradation/autophagy either 
by altering lysosomal acidification or by inhibiting the lev-
els of lysosomal-associated membrane proteins (LAMPs) 
[20]. AMDs encompass three drugs: CQ, HCQ, and quina-
crine; however, CQ and HCQ are most often used in rheu-
matic and viral diseases [21]. HCQ differs from CQ in 
that it contains a hydroxyl group at the end of the side 
chain. Both CQ and HCQ show similar pharmacokinetic 
behavior and are quickly absorbed by the intestine and 
excreted by the kidneys. Moreover, their recommended 
doses in rheumatic diseases are well tolerated and have 
less toxicity [15].

AMDs are particularly useful in skin conditions exacer-
bated by light (hypersensitivity associated with ultraviolet 
light). However, the pleiotropic action of AMDs shows a 
broad spectrum of activity on coagulation and the levels of 
serum lipid, and glucose resulting in a decreased risk of car-
diovascular diseases (CVDs) [5, 17]. Compared with other 
chronically used immunosuppressants (e.g., methotrexate 
(MTX), leflunomide (LF), or cyclophosphamide), the use of 
CQ and HCQ is associated with a reduced risk of infection 
[22]. Therefore, AMDs are commonly proposed for patients 
with rheumatic diseases who have mainly viral and bacterial 
infections and who have comorbidities (Table 1).

AMDs in SLE

SLE is a systemic autoimmune disease, which is charac-
terized by the inflammation of microvasculature leading 
to the involvement of multiple organs (causing lesions of 
the skin and mucus membrane, arthritis, neurologic disor-
der, kidney disease, and hematologic changes) [52]. The 
production of various auto-antibodies is a significantly 
important process in the pathogenesis of SLE, from which 
anti-dsDNA antibody and anti-Sm antibody are essential 
biomarkers [53]. The primary treatment and management 
of SLE include glucocorticoids (GCS) and HCQ, as well 
as nonsteroidal anti-inflammatory drugs, immunosuppres-
sive agents, and biologic therapy [54].

Previous studies have confirmed the efficacy of AMDs 
in SLE. AMDs demonstrate anti-inflammatory activ-
ity (inhibit the synthesis of proinflammatory cytokines) 
and antioxidant properties (Fig. 1). Recent data show a 
prominent role of CQ in the treatment of SLE. Along with 
glucocorticosteroids, CQ is recommended as the first-line 
treatment for SLE [55]. It alters the pH of lysosomes, 
where toll-like receptors (TLR)-7 and TLR9 are located. 
Thereby, it reduces the binding affinity of ds-DNA immune 
complexes to TLR9 and downregulates the production of 
interferon in SLE [24].

AMDs show good efficacy mainly in skin diseases, 
which are associated with joint and muscle inflammation 
[4]. However, CQ and HCQ are also used in more severe 
forms of SLE. AMDs decrease the activity of SLE by 
more than 50%, which helps to lower the doses of GCS 
[4]. Moreover, they protect against irreversible damage of 
organs, such as kidney and nervous system, polyserositis 
and cytopenia, thrombosis development, and loss in bone 
mass [4, 25, 56]. In patients with SLE associated with 
antiphospholipid syndrome (APS), which causes severe 
prothrombotic complications, AMDs decrease the risk 
of venous thromboembolism (by inhibiting the platelet 
aggregation and activating the antiphospholipid antibod-
ies) [26]. Thus, they improve patient survival by reducing 
disease activity and preventing irreversible multiorgan 
injury [56].

Preclinical studies have shown that HCQ delays the 
onset of SLE by about 1 year. Patients treated with HCQ 
had a lower rate of autoantibody accumulation and a 
decreased number of autoantibody specificities after 
diagnosis. AMDs postpone the development of flare in 
the course of SLE [4, 27]. Moreover, a landmark trial 
showed that discontinuation of HCQ led to a nearly three-
fold higher risk of lupus exacerbation [57]. It was reported 
that a low level of serum HCQ in patients with SLE is 
associated with high disease activity and is considered a 
strong predictor of flare [58]. Thus, the use of AMDs is 
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characterized by an increase in the long-term survival of 
patients with SLE [4]. From our clinical practice, AMDs 
should be continued, both in remission and in a flare.

The beneficial effect of AMDs is based on their reduc-
tion of cardiovascular risk factors, such as hyperlipidemia 
and diabetes mellitus. These medications have a positive 
influence on insulin resistance among patients with SLE [5]. 
In pregnancy, AMDs, mainly HCQ, decrease lupus activity 
and do not have a harmful effect on the fetus [4]. Moreover, 
they lower the risk of complications during pregnancy [29].

AMDs in RA

RA is characterized by symmetrical inflammatory polyar-
thritis, often complicated by extra-articular manifestations 
and an increased rate of morbidity and mortality from CVDs 
[2, 59]. It affects ~ 0.5 to 1% of the overall population, and 
it damages cartilage and bone tissue leading to disability 
and reduced quality of life of the patient [2, 59, 60]. Early 
treatment of RA is associated with improved outcomes 

[61]. Immunosuppressive agents, such as MTX and LF, are 
frequently used in RA; nevertheless, AMDs, sulfasalazine, 
cyclosporine, and biologic agents are also implemented dur-
ing the treatment of RA, usually as additive therapy.

AMDs are useful in the treatment of connective tissue 
disorders that are characterized by palindromic rheuma-
tism [62, 63]. CQ and HCQ also inhibit lysosomal antigen 
degradation and prevent the activation of autoreactive T 
cells and subsequent inflammatory responses [30]. HCQ 
in RA decreases the number of tenders, swollen, and 
painful joints [33]. But it did not inhibit the radiographic 
progression [64]. Therefore, they are not used as first-
line medications in RA because they do not reduce struc-
tural damage sufficiently, especially in comparison with 
other disease-modifying antirheumatic drugs (DMARDs) 
[65]. Compared to MTX or LF, AMDs show less activity, 
and they require a long time to show beneficial clinical 
improvement. Nevertheless, AMDs can combine with 
rheumatoid factors. Therefore, they are frequently used 
as a part of combination therapy [66], or in patients who 

Fig. 1  Beneficial effects of 
AMDs in SLE (DLE, discoid 
lupus erythematosus; APLA, 
antiphospholipid antibodies)
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have very mild disease, or in patients who show contrain-
dications to other medications, such as MTX and LF [33].

AMDs in primary Sjögren’s syndrome (pSS)

AMDs are also used in the treatment of pSS, which is 
an autoimmune exocrinopathic disorder characterized by 
lymphocytic infiltration of exocrine glands (mainly sali-
vary and lachrymal glands) [67]. Such lymphoid infiltra-
tions lead to dryness of the eyes and the mouth, as well 
as other surfaces connected to exocrine glands [68]. In 
addition to glandular involvement, systemic pathology 
has also been reported, such as respiratory or neurological 
disorders [67, 68]. It is noteworthy that pSS is associated 
with an increased risk of cancer, mainly non-Hodgkin 
lymphoma [69]. The mainstay of the treatment for the 
sicca symptoms is local therapy (saliva substitutes and 
artificial tears) and that for the milder systemic symp-
toms is HCQ [7]. The treatment of systemic symptoms 
(extra-glandular manifestations) includes GCS, AMDs, 
immunosuppressive drugs, and biologic agents [70].

Various studies have shown that HCQ is useful in the 
treatment of pSS, and it alleviates the signs and symp-
toms of dry eyes [35, 36]. AMDs show the best effect in 
the initial stage of the disease without any severe dam-
age to the organ (“burned out” phase), and they improve 
the course of the illness (decrease fatigue, joint pain, 
erythrocyte sedimentation rate (ESR), rheumatoid factor 
(RF) level, gamma globulin level and diminish glandular 
involvement) [37]. Moreover, they inhibit salivary and 
serum B-cell activator factor (BAFF) [35, 36]. This helps 
to reduce disease activity and increase salivary flow [35].

However, some studies do not confirm the efficacy of 
HCQ in pSS. A randomized controlled trial showed that 
after 24 weeks of treatment with HCQ, there was no sig-
nificant improvement in the symptoms of pSS compared 
with placebo [38]. There was no apparent clinical benefit 
in the case of dry eyes and systemic inflammation in pSS 
when HCQ was administered at a dosage of 300 mg daily 
for 12 weeks [39]. Nevertheless, AMDs have an anti-
inflammatory, immunosuppressive, and immunomodu-
latory role, and they are recommended as first-line treat-
ment for inflammatory musculoskeletal pain associated 
with pSS (recommendation according to Sjögren’s Syn-
drome Foundation Clinical Practice Guidelines) [34]. 
In clinical practice, they are mainly used to treat mild 
disease without the involvement of organs (e.g., lung 
fibrosis or severe neuropathy). If an organ is involved, 
then immunosuppressive medications are required (e.g., 
cyclophosphamide in pulmonary fibrosis) [34].

AMDs in polymyositis (PM) and dermatomyositis 
(DM)

Idiopathic inflammatory myopathies (IIM) encompass a 
heterogeneous group of connective tissue disorders that 
are characterized by chronic inflammation of striated 
muscle. The symmetrical weakness of proximal muscle 
groups, decreased muscle endurance, and chronic inflam-
mation in muscle tissue are the predominant symptoms of 
IIM [71]. The most common subsets of IIM include adult 
PM, adult and juvenile DM, immune-mediated necrotizing 
myopathy, and sporadic inclusion body myositis (IBM) 
[72]. PM is characterized by symmetrical proximal and 
progressive weakness in the muscles of limbs, whereas in 
DM, muscular disorders co-exist with skin abnormalities, 
e.g., heliotrope rash and Gottron’s papules [73]. Typical 
complaints include problems in walking, climbing stairs, 
or lifting an object above their head. Muscle weakness is 
associated with elevated blood levels of muscle enzymes, 
particularly creatine phosphokinase (CK). Both PM and 
DM are often related to nonmuscular manifestations such 
as interstitial lung disease (ILD), arthropathy, cardiomyo-
pathy, and malignancies [74]. The diagnosis requires test-
ing of auto-antibodies, histological evaluation of a skeletal 
muscle biopsy, and further tests, including muscle mag-
netic resonance imaging (MRI) and electromyography 
(EMG) [75]. The treatment of PM/DM includes GCS and 
immunosuppressants. AMDs are also used in the treatment 
of inflammatory myopathies, particularly the cutaneous 
symptoms of DM [49, 76].

Various case reports or clinical case series have shown 
beneficial effects of AMDs. According to these reports, 
AMDs can be administered alone or in combination with 
GCS [49–51]. HCQ is usually used in combination with 
GCS and is good to treat skin conditions of patients with 
DM. It can completely resolve the lesions on the skin and 
may enable GCS tapering [50]. The efficacy of AMDs has 
been demonstrated in adults [50] and childhood DM [51]. 
Some studies highlight the positive effect of AMDs in the 
treatment of cutaneous lesions in dermatomyositis [50]. 
However, they may also cause mild-to-moderately severe 
vacuolar myopathy and may be responsible for severe and 
death-leading cases with ventilatory failure [77]. Moreo-
ver, an increased risk of Herpes zoster infection has been 
described in patients with PM/DM [78]. In addition to 
these casuistic descriptions, AMDs have shown excellent 
safety profiles, but their use in inflammatory myopathies 
should be carefully monitored in clinical practice, which 
can be achieved by analyzing patient symptoms and meas-
urement of muscle enzymes [3, 15, 79].
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AMDs used in sarcoidosis

Sarcoidosis is a multisystem granulomatous disease char-
acterized by the presence of noncaseating granulomas [80]. 
The course of this disease can be self-remitting within 12 to 
36 months (in more than 60% of the patients) or can become 
chronic, requiring prolonged treatment (in approximately 
10% to 30% of the patients) [81]. In the case of patients in 
whom sarcoidosis does not cause any significant symptoms 
or organ dysfunction, the treatment is not compulsory. Sys-
temic therapy is required in life-threatening conditions with 
organ involvement such as advanced pulmonary fibrosis or 
pulmonary hypertension, central nervous system disorders, 
heart, or renal sarcoidosis [82]. If organ damage is observed, 
the first-line treatment for sarcoidosis is GCS, which reveals 
therapeutic effects. In rare cases, the disease fails to respond 
to GCS monotherapy or combined GCS and second-line 
immunosuppressants. Combined therapy is mainly used to 
achieve disease control or GCS sparing, mostly in cases, 
when multiple side effects are present [43, 82].

When treatment is indicated, oral corticosteroids are 
usually recommended because they show good efficacy in a 
short period. AMDs are recommended mainly in cutaneous 
sarcoidosis, and they cause the regression of granulomatous 
changes on the skin (the minimum doses of CQ and HCQ 
have the same effect as the maximum doses) [42]. AMDs 
are suspected to impair the release of cytokines and weaken 
the process of antigen presentation by monocytes, mac-
rophages, and dendritic cells to CD4-positive helper T cells 
[40]. Moreover, CQ has demonstrated a positive effect in the 
treatment of symptomatic persistent pulmonary sarcoidosis, 
but the data are quite limited [43]. In sarcoidosis, AMDs 
are used in patients who fail to respond to GCS treatment 
or show contraindication to GCS. Since sarcoidosis is often 
a chronic condition, long-term treatment with GCS may 
cause significant toxicity. Therefore, GCS-sparing agents 
are often indicated in patients requiring prolonged therapy 
[82]. Therefore, AMDs are mainly recommended in cutane-
ous forms of sarcoidosis, usually along with rapidly working 
GCS, whose doses could be slowly decreased.

Mechanism of antiviral action of AMDs

AMDs demonstrate broad-spectrum antiviral effects 
(Table 2). For example, more than 20 years ago, CQ was 
shown to inhibit HIV-dependent replication [83]. Other 
examples include inhibition of RNA viruses such as hepati-
tis A or C; influenza A, B, and H5N1 viruses A; poliovirus; 
rabies; dengue; or Ebola, as well as DNA viruses (hepatitis 
B and herpes simplex virus) [84]. Moreover, the positive 
effect of AMDs has been reported in the treatment of dif-
ferent types of coronaviruses such as CoV-229E (in vitro 

studies) [85], HCoV-OC43 (studies on animal models) [86, 
87], and SARS-CoV-1 [11, 88].

Initially, the suspected mechanism of action of CQ 
against SARS-CoV-2 was based on its activity on other 
viruses, mainly SARS-CoV-1, dengue-2 virus, and influenza 
A H5N1 virus [11, 15, 49, 94]. In viral infections, AMDs 
can impair the replication of some viruses by reducing the 
efficiency of endosome-mediated virus entry [15, 94]. These 
drugs also decrease the activity of low-pH–dependent pro-
teases in trans-Golgi vesicles [15]. It was shown that CQ 
inhibits the initial step of the viral cycle by interfering with 
the binding of viral particles to the cell surface receptor. 
It inhibits quinone reductase 2, which participates in the 
biosynthesis of sialic acids [104], which are part of the trans-
membrane proteins and are involved in the recognition of 
ligands. Many coronaviruses (e.g., HCoV-O43) use sialic 
acid residues as receptors [86]. Thus, these data gave the 
background to suspect that AMDs might be active in SARS-
CoV-2 infection.

AMDs in SARS‑CoV‑2 infection

Disease caused by the new beta-coronavirus SARS-CoV-2 
was first reported in the Chinese city of Wuhan, but the rap-
idly spreading infection with life-threatening complications 
caused the WHO to declare a global pandemic. This virus 
is similar in structure to the SARS-CoV-1, and it contains 
80% of the same nucleotides. The disease caused by SARS-
CoV-2 is called COVID-19 (coronavirus disease 2019) 
[105]. Since the epidemic started, the entire medical world 
began to look for new and effective drugs, which will help 
to control the spread of the disease. Because CQ and HCQ 
have been reported to have broad-spectrum antiviral activ-
ity, they have been considered for use in the treatment of 
COVID-19 [106].

The exact antiviral mechanisms of AMDs are not known, 
but many mechanisms of action have been suggested 
(Fig. 2). The effect of these drugs in inhibiting SARS-CoV-2 
is based on the fact that CQ influences both entry and intra-
cellular stages of the SARS-CoV-2 replication in Vero E6 
cells [107]. Many coronaviruses bind to sialic acid and this 
process is required for viral replication. It has been proved 
that CQ decreases the biosynthesis of sialic acid. Therefore, 
it is suspected that SARS-CoV-2 similarly binds to sialic 
acid, and this binding can be inhibited by CQ [108].

Another mechanism, which is involved in the activity of 
CQ is its interaction with the surface receptor of the angio-
tensin-2 converting enzyme (ACE2). S protein of the virus 
attaches to host receptor ACE2. Similar to SARS-CoV-1, 
SARS-CoV-2 virus also uses the same ACE2 receptor. 
These receptors are present on the surface of the lung, 
heart, kidneys, and intestines [96, 109]. Recent data shows 
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Table 2  The activity of antimalarial drugs (AMDs) in various viral diseases

Abbreviations: ACE2, angiotensin-converting enzymes 2; MAPK, mitogen-activated protein kinase; IFN, interferon; TNF, tumor necrosis factor; 
IL, interleukin; HIV, human immunodeficiency syndrome; HSV, herpes simplex virus; MERS, the Middle East respiratory syndrome coronavi-
rus; SARS-CoV-1, severe acute respiratory syndrome coronavirus 1; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
** Adequately power human study (a randomized, double-blind, placebo-controlled study)
* Inadequately power (lack of placebo and/or lack of randomization)
○ Animal study
⟡ In vitro study

Type of virus Drug characteristics

The (hydroxy) chloroquine activity in viral infection
  HIV  CQ/HCQ increases endosomal pH

 CQ impairs posttranslational protein modification of viral protein and decreases glycosylation of the 
gp120 envelope glycoprotein; in consequence, the synthesized viral cells are not infectious [89] ⟡

 HCQ (800 mg/d for 8 weeks) administration in asymptomatic patients reduces viremia in plasma, pre-
serves  CD4+ T cell counts and proliferative responses, and lower serum IL-6 concentrations [90] **

  HSV  CQ inhibits the budding process in the HSV model and the newly synthesized viral HSV-1 particles 
do not have infectious properties [91] ⟡

  Dengue-2 virus  CQ changes endosomal pH and impairs the viral maturation by affecting the standard proteolytic 
processing of the flavivirus protein to M protein [92] ⟡

 Inhibits IFN-α, IFN-β, IFN-γ, TNF-α, IL-6, and IL-12 gene expression in U937 cells infected with 
dengue-2 virus [93]⟡

 Cause an increase in pH cytosol and enables endocytosis; as a result virus replication is deturbed [11] 
**

  Influenza H5N1  CQ is a potential broad-spectrum antiviral drug used for influenza H5N1 in an animal model [94].
The activity of CQ in various coronavirus infection

  Coronavirus HCoV-229 (alfa-coronavirus)  Under in vitro conditions, CQ hinders the activation of the p38 MAPK (MAPK activity is necessary 
for virus replications) and thus, inhibits the replication of HCoV-229E in epithelial lung cell cultures 
[85] ⟡

  Coronavirus HCoV-OC43 (beta-coronavirus 2a)  HCQ inhibits quinone reductase 2, which is involved in the biosynthesis of sialic acid, which builds 
viral receptors [86] ⟡

 ↓ Lethal infections of newborn mice with the HCoV-O43 when administered through the mother’s 
milk [87] ○

  MERS-CoV  CQ inhibits M proteins accumulation in the Golgi complex beyond the site of virion budding [95] ⟡

  SARS-CoV-1  Interferes with ACE2 receptor glycosylation and prevents binding of the virus to target cells [96] ⟡
 Prevents the attachment of viral proteins to endosomal membranes by increasing pH of endosomes 

and thus, does not allow the viral genome to be released into the cytosol (replication cannot be initi-
ated) [88] ⟡

  SARS-CoV-2  AMDs as weak bases accumulate in the acidic environment of endolysosomes and other acidic cell 
organelles and alkalize endosomes [97] ⟡

 Interfere with the terminal glycosylation of ACE2 and affect virus binding [97]⟡

Clinical studies:
 Improve pneumonia symptoms, laboratory tests, and decrease the progression to severe or critical 

conditions [98]
 lower mortality risk (n = 2541, HCQ 2 × 400 mg first day, then 2 × 200 mg on days 2–5 with/or with-

out azithromycin) [99] *
 lower risk of hospital discharge of patients given treatment up to 28 days (HCQ 2 × 800 mg in 6 h, 

then 2 × 400 mg at 12 h a first day, then 2 × 400 mg/day on days 2–10, or until discharge); no sig-
nificant difference in mortality risk between HCQ treated patients and control group, but higher risk 
of symptoms exacerbation in patients treated HCQ, who required invasive mechanical ventilation 
[100]*

 no significant differences between groups in conversion to negative SARS-CoV-2 RT-PCR and the 
degree of symptom recession after 4 weeks (n = 150, HCQ 1200 mg/day for 3 days (loading dose), 
then 800 mg/day for 2 weeks if mild/moderate, or 3 weeks if severe) significantly more adverse 
effects in the HCQ arm (mainly no severe: diarrhea, blurred vision, no cardiac arrhythmic events) 
[101]*

 increase mortality from any cause in the HCQ group than the non-HCQ group (n = 368, unspecified 
dose of HCQ azithromycin males over 65 years old, predominantly African American veterans 
exhibiting high rates of hospitalization), but no significant difference in ventilation risk in either 
treatment group compared to the control [102]*

 HCQ (800 mg first day, then 400 mg on days 2–7) has no significant influence on the prevention of 
SARS-CoV-2 transmission and caused a higher incidence of no-serious adverse events in the treat-
ment group (n = 2314) [103]*
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that SARS-CoV-2 binds to ACE2 expressed on pneumo-
cytes [109]. CQ reduces the ACE2 receptor terminal gly-
cosylation on the surface of cells and interferes with the 
binding of SARS-CoV-2 to the ACE2 receptor [97, 110].

The penetration of coronavirus also occurs through the 
endosomal pathway [111]. AMDs increase the endosomal 
pH of the cell, which affects the binding of the virus to the 
cell and interferes with the glycosylation of the cell sur-
face receptors [15, 94]. An increase in the endosomal pH 
by CQ inhibits the formation of cathepsins, which require 
an acidic environment for the optimal cleavage of SARS-
CoV-2 spike protein [112]. Thus, CQ, by modulating the 
acidification of endosomes, prevents virus/cell fusion 
with host cells and subsequent viral replication [97, 107]. 
In in vitro studies, CQ inhibits the replication of SARS-
CoV-2 at a low-micromolar concentration  (EC50 = 1.13 μM 
in Vero E6 cells) [107].

An additional mechanism of action of CQ, which is 
suspected in COVID-19, includes the inhibition of MAPK 
kinases, inhibition of proteolysis of the M protein and altera-
tion of virion assembly, and budding. CQ might indirectly 
decrease the production of proinflammatory mediators and/
or by activating anti-SARS-CoV-2  CD8+ T cells and the 
inhibition of production of cytokines such as IL-1, IL-6, 
and TNF-α [113]. The inhibition of the production of proin-
flammatory mediators may reduce the effects of a “cytokine 
storm.” Excess cytokine synthesis results from the Th-2-de-
pendent response during the course of coronavirus infection, 
which leads to the development of various symptoms [14, 
15]. Thus, decreasing the excess production of proinflamma-
tory markers can deteriorate the severity of the viral infec-
tion. Moreover, during the initial phase of SARS-CoV-2 
infection, AMDs increase the secretion of Th-2 helper lym-
phocyte cytokines (IL-4 and IL-10) [114]. In addition, CQ 

Fig. 2  The possible model of 
chloroquine activity in novel 
severe acute respiratory syn-
drome coronavirus 2 (SARS-
CoV-2) infection (APCs, 
antigen-presenting cells; TLR, 
toll-like receptors; cGAS, cyclic 
GMP-AMP synthase; MAPK, 
mitogen-activated protein 
kinase)
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prevents exacerbated activation of Th-1 lymphocytes, which 
are responsible for the development of acute respiratory dis-
tress syndrome (ARDS) [15].

In addition to inhibiting the entry of viruses, CQ inhibits 
the secretion of IL-2, which is involved in the differentiation 
of T-2 cells into the Th-2 subset [115]. As a result, the prolif-
eration of Th-2 lymphocytes is reduced. Thus, it is hypoth-
esized that CQ and HCQ impair the immune response to 
SARS-CoV-2 infection and prevent the progressive course of 
the disease [114]. In summary, AMDs in coronavirus infec-
tion interfere with ACE2 to block the invasion of the virus, 
increase endosomal pH required for the fusion of the virus, 
and show mild immune suppression.

AMDs in clinical practice

On 13 March 2020, the Office of Registration of Medici-
nal Products, Medical Devices, and Biocidal Products in 
Warsaw (Poland) issued a new therapeutic indication for 
medicines containing CQ, consisting of the addition of 
“supportive treatment in beta-coronavirus infections such 
as SARS-CoV-1, MERS-CoV, and SARS-CoV-2.” This drug 
was used to treat patients from the Wuhan region and several 
other cities in China. Initially, CQ and HCQ were approved 
for the treatment of COVID-19 based on their in vitro anti-
viral activity [13] and antiviral properties against other viral 
infections, e.g., HIV [83] and SARS-CoV-1 [97, 116]. Given 
these facts, the first clinical trials tried to check an inhibitory 
effect of AMDs on viremia [15, 16]. In rheumatic diseases, 
AMDs reveal their full anti-inflammatory and immune regu-
latory activity within a few weeks (about 1–3 months), but 
their antiviral effect is quite rapid [17].

The preliminary observation revealed that CQ inhibits the 
progression of clinical and radiological signs of pneumonia, 
facilitates the elimination of the virus up to the stage of 
indeterminate viremia, shortens the duration of the disease, 
reduces hospitalization time, and has no severe side effects 
[16]. HCQ used in COVID-19 for 3 days enhanced virus 
clearance, and azithromycin reinforced the antiviral efficacy 
[17].

CQ versus HCQ

Because CQ and HCQ (a derivative of chloroquine) have 
similar chemical structures and mechanisms of action, 
they are equally used in the treatment of viral infec-
tion. Both AMDs are active against SARS-CoV-2 under 
in vitro studies; however, HCQ seems to differ from CQ 
in a few aspects [13, 107]. In vitro [13] and in vivo study 
has confirmed [98] the effect of HCQ in COVID-19 infec-
tion. But HCQ was more potent than CQ in inhibiting 

SARS-CoV-2 infection. The therapeutic effect of HCQ 
was confirmed by a randomized controlled clinical trial 
(ChiCTR2000029559). This study revealed that patients 
on HCQ therapy had significantly shortened clinical recov-
ery time, quick resolution of symptoms (such as fever and 
cough), and more than 80% of patients had improved 
pneumonia compared to the control group without HCQ 
therapy [98]. HCQ demonstrated substantially fewer side 
effects [117] and seems to show a more potent antiviral 
activity than that of CQ [13, 107]. Therefore, HCQ was 
recommended in SARS-CoV-2 treatment in an expert con-
sensus statement from Shanghai [118]. Moreover, it does 
not cause multiple drug–drug interactions than that of CQ 
[13].

Based on an in vitro study [107], HCQ was rapidly 
introduced into clinical use, and preliminary reports sug-
gested an improved viral clearance and clinical outcomes 
in patients with COVID-19 receiving a 10-day course of 
HCQ [16]. A small French pilot study, randomizing 36 
patients with COVID-19, suggested accelerated viral clear-
ance in patients treated with a combination of HCQ and 
azithromycin [17]. Moreover, HCQ equally as CQ influ-
ences macrophage activation and cytokine storm [119]. 
This results in the decreased production of proinflam-
matory mediators such as IL-1, IL-6, and prostaglandins 
[120]. Moreover, HCQ has antithrombotic effects, which 
prevents the formation of micro-thrombus during endothe-
lial damage caused by SARS-CoV-2 infection [121, 122].

The earliest use of AMDs has shown that HCQ shows a 
positive effect in the treatment of COVID-19 when given 
in combination with azithromycin leading to a complete 
and rapid viral clearance (clinical trials) [17]. However, 
some studies did not confirm this hypothesis. Magagnoli 
et al. conducted a retrospective study and analyzed the 
use of HCQ with and without azithromycin and with the 
control group (without HCQ) [102]. They observed that 
the risk of death from any cause was higher in the HCQ 
group (adjusted HR = 2.61; 95% CI: 1.10–6.17; p = 0.03) 
than that of the non-HCQ group (the authors analyzed a 
cohort of 368 males, predominantly African American vet-
erans). Moreover, the risk of necessary ventilation or the 
risk of death after ventilation was also not significantly 
different among the three groups [102]. Similar doses of 
HCQ and azithromycin were used in the prospective case 
series on 11 patients with severe infection with SARS-
CoV-2, in which viral clearance and clinical outcome were 
not improved by this combination. Molina et al. [123] 
conducted a study on 181 patients with severe infection 
with SARS-CoV-2 showed that HCQ did not significantly 
reduce ICU admission, death on the seventh day after hos-
pitalization, or reduce the incidence of ARDS compared 
to those who did not receive HCQ [124].
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The dose of CQ and HCQ in COVID‑19 
treatment

In vitro study confirmed the inhibitory effect of CQ against 
SARS-CoV-2 at concentrations that is much lower than 
cytotoxic level [107]. An excellent safety profile and anti-
viral activity allowed to consider CQ in the treatment of 
COVID-19. In a study conducted on 13 severe to criti-
cally ill patients with COVID-19 admitted in the ICU, the 
authors recommended the use of HCQ 800 mg once on the 
first day to rapidly achieve therapeutic levels, followed by 
200 mg twice daily for 7 days [125]. A similar dosage was 
recommended by Yao et al. for HCQ; they administered 
400 mg bid on the first day and the maintenance dose of 
200 mg bid for 4 days [13]. The guidelines of SIMIT Lom-
bardy section included CQ/HCQ in the treatment of severe 
to critically ill patients with COVID-19 [126].

Are AMDs always effective in viral 
infections?

Some studies suggest limited benefit from CQ/HCQ in the 
treatment of COVID-19 in general. There is evidence con-
tradicting the use of these drugs in viral infections, under-
lying their adverse effect on viremia, which is explained by 
the drug-mediated delay of the adaptive immune response 
to infection. This suspect is evidenced by studies regard-
ing the treatment of the chikungunya virus by AMDs in 
animals [127]. In the case of chikungunya infection, CQ 
administered as a preventive therapy increased the sever-
ity of symptoms and delayed the elimination of the virus 
in monkeys (probably by inhibiting the specific cellular 
response) [9]. Moreover, CQ increased the risk of late 
complications such as joint infection one year after the 
disease onset; however, when compared to placebo, there 
were no significant effects on the acute phase of fever 
[128]. Similarly, in humans, the adverse effects of CQ 
have been recorded during the treatment of acute-phase 
chikungunya fever [128].

CQ was ineffective in the prevention of influenza in 
humans [10] and the treatment of dengue [11]. It was also 
ineffective in eliminating SARS-CoV-1 infection in mice 
[14]. It may increase symptom severity and mortality in viral 
diseases, such as encephalomyocarditis, and it increases viral 
titers in various organs [129]. CQ might predispose patients 
with DM/PM to developing herpes zoster, particularly in 
women and patients with DM, independent of disease status, 
therapy, and demographic features [78].

A recent study analyzed the CQ regiment and showed 
that a high dose (600  mg CQ twice daily for 10  days 

or total dose of 12 g) is not sufficiently safe because it 
increased the QTc value to more than 500 ms (25%), and 
the trend toward higher mortality. Therefore, it should no 
longer be used in patients with a severe infection of SARS-
CoV-2 [130].

Recent studies include larger groups of SARS-CoV-2 
infected patients using AMDs, mainly HCQ. The study of 
Tang et al. analyzed 150 patients with mild COVID-19 who 
were treated with standard regimens with or without HCQ 
(ChiCTR2000029868). This study showed no significant dif-
ferences between groups in conversion to negative SARS-
CoV-2 RT-PCR and the degree of symptom resolution after 
4 weeks. Moreover, the authors observed significantly more 
side effects in the HCQ arm (mainly no severe). Beneficial 
was the earlier normalization of CRP in the patients using 
HCQ with standard care, but the differences were not sig-
nificant [101]. Another study analyzing adult outpatients 
(n = 423) investigated the efficacy of HCQ in the reduction 
of COVID-19 severity (March–May 2020, randomized, 
double-blind, placebo-controlled trial ClinicalTrials.gov: 
NCT04308668). The patients were treated with HCQ (first 
dose 800 mg once, followed by 600 mg in 6 to 8 h, then 
600 mg daily for 4 more days) or placebo. After 2 weeks of 
such treatment, the change in symptom severity did not dif-
fer between the HCQ and placebo groups. Adverse effects 
of HCQ were observed in 43% of patients (92 of 212) versus 
22% receiving placebo (46 of 211, p < 0.001). The authors 
concluded that HCQ did not substantially reduce symptom 
severity in outpatients with early, mild COVID-19 [131].

Recently two studies analyzing the use of antimalar-
ial drugs with azithromycin were published. The study 
of Cavalcanti et al. who analyzed the effect of therapy in 
three-group receiving standard care, standard care plus 
HCQ (2 × 400 mg/day), or standard care plus azithromy-
cin (500 mg/day for 7 days) with HCQ (2 × 400 mg/day) 
in mild-to-moderate COVID-19. This study showed that 
HCQ ± azithromycin did not improve clinical status at 
15 days compared with standard care (ClinicalTrials.gov 
number, NCT04322123). Moreover, prolonging the cor-
rected QT interval and elevation of liver-enzyme levels were 
more frequent in patients receiving HCQ with or without 
azithromycin compared to standard care without these med-
ications [132]. Conversely, the trial published by Arshad 
et al. showed that COVID-19 patients (n = 2541) treated 
with HCQ or azithromycin or a combination of two showed 
beneficial effects such as a reduction in COVID-19 associ-
ated mortality (when controlling for COVID-19 risk factors) 
[99]. Shamshirian et al., in meta-analysis describing HCQ 
use in COVID-19 treatment, revealed no clinical benefits to 
patients receiving HCQ with standard care [133].

On April 2020, the US CDC published information 
stating, “hydroxychloroquine and chloroquine are under 
investigation in clinical trials” [134]. However, in June 

11Clinical Rheumatology (2022) 41:1–18



1 3

2020, FDA annulled the emergency use of CQ and HCQ 
to treat patients with COVID-19, considering the adverse 
effects of these medications [135]. Thus, even if AMDs 
might reduce the symptoms and improve the course of 
SARS-CoV-2 infection, some studies show that they have 
no benefits [124, 136] or are even hazardous to health 
[102].

Adverse effects of AMDs in rheumatic 
diseases

A high safety profile usually characterizes AMDs in 
rheumatic diseases; however, they are used in smaller 
doses (usually CQ 250–500 mg/day; HCQ 200–400 mg/
day) than that of COVID-19 treatment [79]. In 250 mg/
day, chloroquine provides a stable concentration in the 
range of 100–500 ng/ml. The onset of action of HCQ 
is observed after 4–6 weeks, but full efficacy can be 
assessed after 3 to 6 months [137, 138]. Nevertheless, 
of used dose, these medications can cause serious side 
effects, which should be monitored. The significant side 
effect of AMDs, mainly caused by CQ, is retinopathy. In 
prolonged and strict regimens, retinopathy depends on the 
cumulative dose [139]. Consequently, AMDs should be 
used in patients with no ocular problem, and the patients 
should be regularly examined by an ophthalmologist (a 
baseline eye exam and follow-up exam every 6–12 months 
are requisite) [140].

In addition to retinopathy, AMDs can cause other severe 
complications such as cardiac toxicity. Every patient 
should be strictly monitored and the therapy should be 
immediately ceased if there are changes in their electro-
cardiogram, such as prolonged QT interval, which is the 
risk of arrhythmia [123]. Other rare side effects of AMDs 
include nausea, agranulocytosis, and hemolysis in patients 
with the deficiency of glucose-6-phosphate [79]. Among 
the two available antimalarial drugs, HCQ is the one with 
the lowest retinal toxicity [4, 140], but CQ appears to be 
more effective [79].

The use of AMDs in smaller doses in rheumatic dis-
eases is very safe, and severe complications such as anti-
malarial myopathy, cardiomyopathy, or maculopathy are 
rarely observed [141]. These medications are usually 
administered in smaller dosages for an extended period 
(not higher than 500 mg of HCQ per day and not more 
than 400 mg of CQ per day, usually 250 mg CQ or 200 mg 
HCQ is administered as a single evening dose). As a result, 
they show a high safety profile and are very well tolerated. 
Thus, in rheumatic diseases, toxicity related to AMDs is 
infrequent, mild, and usually reversible, with HCQ having 
a safer profile than that of CQ [4].

Adverse effects of AMDs in COVID‑19 
treatment

There are high differences between the dosage of AMDs 
in rheumatic and viral diseases. In SARS-CoV-2 infec-
tion, AMDs are used at a high dose to give the effect of 
drug saturation (600 mg CQ twice daily for 10 days (total 
dose 12 g)) [130]. This dose of CQ requires strict monitor-
ing of the side effects, particularly in critically ill patients 
with renal and hepatic disorders (related to changed meta-
bolic pathways and excretion of drug metabolites). Even 
AMDs are administered in adequate doses, and under close 
monitoring, their therapeutic window is narrow, which 
increases their risk of toxicity. Because AMDs have strong 
tissue tropism for the kidneys and liver, the risk of adverse 
effects will be higher in critically ill patients with renal or 
hepatic dysfunction than in patients with less severity [79].

AMDs can cause direct myocardial toxicity leading to 
cardiomyopathy and arrhythmias. They prolong the QT 
interval and increase the risk of arrhythmia [79]. Some 
studies did not confirm a significant effect of HCQ in 
patients with severe COVID-19 compared to patients 
without HCQ, but they show that 8 patients from 84 par-
ticipants in the HCQ group (9.5%) discontinued HCQ 
after 4 days due to prolonged QT interval or first-degree 
atrioventricular block [124]. The same side effect was 
observed in a study of severe to critically ill patients 
with COVID-19 admitted in the ICU, who were admin-
istered with HCQ orally; however, it was withdrawn in 
2 patients out of 13 participants [125]. The use of CQ 
with concurrent macrolides (azithromycin) and quinolone 
was not recommended as there is a risk of the prolonged 
QT interval [142]. Various studies have shown that HCQ 
does not reduce mortality or reduce the duration of the 
disease. This was particularly seen in a severely ill patient 
with advanced pneumonia [143]. In a previous study, 
the positive effect of AMDs has been described (mainly 
hypolipemic and hypoglycemic), but it also shows that 
they can cause hypoglycemia in severely ill patients [144].

Recent studies have shown that 30% of the patients with 
COVID-19 experience cardiac injury, which can further 
increase the risk of cardiomyopathy and arrhythmias. In 
such a situation, AMDs should be carefully used because 
the risk of cardiotoxic events is very high, particularly 
when they are used at a high dose [18, 19]. Because of the 
small difference in the therapeutic and toxic dose and life-
threatening cardiovascular complications in the case of 
an overdose of CQ/HCQ, these drugs should only be used 
under strict medical supervision. In such cases, the choice 
of medication is crucial. HCQ has similar pharmacokinet-
ics and mechanism of action as CQ but shows substantially 
fewer side effects [117, 145].
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In June 2020, the US Food and Drug Administration 
(FDA) withdrew the conditional authorization for the use 
of AMDs in patients with emergency use in COVID-19 
treated in hospitals unless they can participate in clinical 
trials. According to FDA, AMDs are unlikely to be effective 
in the treatment of patients with COVID-19 and that their 
benefits do not outweigh the risks identified in emergency 
use authorization (EUA), because of severe adverse events, 
mainly cardiological [146]. Moreover, the FDA issued a 
warning that AMDs reduce the antiviral activity of remde-
sivir. Because of the lack of clinical data, patients treated 
with the remdesivir for COVID-19 should not receive AMDs 
[147].

In conclusion, in the case of the prolonged QT interval, 
ocular problems, and neurological symptoms, AMDs should 
be withdrawn from the treatment of both rheumatic and viral 
diseases.

Prevention of toxicity of AMDs

Patients treated with AMDs at high doses and for a short 
time should be monitored for daily blood counts, electro-
lytes, and cardiac enzymes, as well as electrocardiogram 
monitoring [142] (Fig. 3). Before the start of the treatment, 
patients should be interviewed about visual changes during 
treatment; however, the American Academy of Ophthal-
mology does not recommend retinal screening before the 
short-term use of CQ [148]. In every case, the contraindica-
tions to HCQ therapy should be considered before ordering 

this medication (deficiency of glucose-6-phosphatase, QTc 
prolongation in the electrocardiogram, history of allergy to 
hydroxychloroquine, and the risk of retinopathy and cardio-
myopathy) [17].

Conclusion

AMDs show therapeutic effects in various diseases, and 
recently, the evidence for their potential benefit continue to 
grow in autoimmune pathologies. The use of AMDs in con-
nective tissue disorders is well established, and they reveal 
many beneficial effects (improve cutaneous and musculo-
skeletal symptoms, decrease the activity of the disease and 
organ damage, and reduce cardiovascular risk). In recent 
decades, many studies have reported the wide-ranging 
benefits of CQ and HCQ. However, the dose of AMDs in 
rheumatic diseases is much lower than that in SARS-CoV-2, 
and the time to achieve drug saturation is longer. The full 
therapeutic effect of these medications can be seen later, but 
the risk of severe complications is low. In addition, antima-
larial myopathy, cardiomyopathy, or maculopathy are rarely 
observed.

AMDs change the pH of the endosomes during viral rep-
lication and they inhibit “cytokine storm” (mainly TNF-α 
and IL-6). Given that, both CQ and HCQ have been con-
sidered attractive candidates for the potential treatment of 
COVID-19. Recent studies have revealed both the beneficial 
and harmful effects of AMDs. The discrepancies in the use 
of CQ and HCQ might be due to various patient populations, 

Fig. 3  Comparison between 
the use of antimalarial drugs 
(AMDs) in rheumatic and viral 
diseases
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which were characterized by a different course of the dis-
ease (mild vs. severe), the various dosage of the drug 
(400–1200 mg), COVID-19 association with other chronic 
diseases (mainly CVDs and respiratory disorders), lack of 
control group, and the use of CQ/HCQ with other drugs. 
Thus, the recommendations for the use of AMDs should be 
confirmed by randomized controlled trials. In a viral infec-
tion, the effect of AMDs is quickly required, and the drug 
saturation can be achieved by high doses. In such circum-
stances, the possibility of side effects is higher than that 
when a slow saturation is achieved in rheumatic diseases. 
The safety profile and dosage regiment of CQ/HCQ should 
be mainly assessed in critically ill patients with detailed 
analysis of other risk factors which may influence the effec-
tiveness of AMDs (e.g., old age, multiple comorbidities, the 
synergistic effect of drugs, or delay therapy of COVID-19).

Therefore, we conclude that AMDs are safe and should 
be considered in the treatment of both rheumatic diseases 
and mild viral diseases. Furthermore, results from the ongo-
ing trials are required to determine the effectiveness and 
safety of AMDs in treating COVID-19. Considering the 
fact that CQ and HCQ have excellent efficiency and low 
toxicity, they should be considered candidate drugs for post-
exposure prophylaxis of SARS-CoV-2. However, controlled 
clinical trials are warranted to assess the extent of benefit 
and adverse effects of these medications in both the treat-
ment and prevention of COVID-19.
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