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Introduction
Oxford nanopore sequencing presents an opportunity for advancements in genom-
ics, transcriptomics, and epitranscriptomics because of its ability to directly sequence 
a DNA or RNA strand without requiring amplification, producing long reads that can 
help identify splice isofroms unambiguously, determine poly(A) length, and can poten-
tially capture information on base modifications [1, 2]. Sequencing of both DNA and 
RNA using this technology occurs by passing nucleotide strands through a synthetic 
protein pore that straddles a membrane, and recording the resulting current across the 
membrane. The technology has been developing at a rapid pace since its release in 2014 
based on its capabilities for generating long DNA reads and the more recent application 
to direct RNA sequencing [2]. However, while the technology offers many advantages 
over other long and short read technologies, it is unfortunately hampered by high error 
rates [1].

Decoding the current generated by a nucleotide strand as it passes through the pore is 
a challenging task. This is due to several factors [1]. First, the signal associated with each 
nucleotide passing through the pore is affected by its surrounding nucleotides (typically, 
two on each side). Second, the speed of a strand translocating through the pore varies. 
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Therefore, the resulting signal produced by a polymer is a one dimensional sequence of 
real numbers where each nucleotide is represented by a variable number of sequence 
values. We will denote this as the samples per base associated with a nucleotide. And 
finally, the electrical signal measured in picoamps, is very noisy. All these factors makes 
basecalling highly error prone [1, 3].

Improving basecalling accuracy has been the focus of several recent research papers. 
The earliest approaches were based on recurrent neural networks such as Chiron [4], 
DeepNano [5] and Oxford Nanopore Technologies’ (ONT) Albacore, which was 
replaced with Guppy. However, the current trend has been towards fully convolutional 
architectures such as in ONT’s development basecaller Bonito [6] which is based on 
Nvidia’s speech recognition network Quartznet [7]. Further attempts have been made 
utilizing attention mechanisms as in SACall [8]. While Bonito has improved DNA base-
calling accuracy slightly, there is still much room for improvement before ONT’s tech-
nology can match the accuracy of Illumina sequencing. These improvements are likely to 
come in both basecalling and the technology itself. Despite all this recent research, most 
of it focused on DNA data, with little attention to basecalling of RNA data. RNA is sam-
pled by the pore at 70 bases per second (bps), compared to 450 bps for DNA, leading to 
different signal characteristics, and requiring basecalling methods specifically trained for 
this data. In this paper we introduce RODAN: RNA nanOpore Decoding with convolu-
tionAl Networks, a fully convolutional architecture that achieves state-of-the-art perfor-
mance on transcriptome data from multiple species including animals and plants.

Methods
Architecture and training

We propose a fully convolutional basecalling neural network which takes an intuitive 
approach to decoding the signal generated by ONT direct RNA sequencing. Convolu-
tional networks have emerged as an important technique for working with noisy one 
dimensional signals [9], and are therefore a good approach for decoding the signal gen-
erated by ONT data. A convolutional network scans the input signal with a set of filters 
or kernels that make up its convolutional layer (see Fig. 1). Each of these kernels com-
putes a function over a small segment of the signal; the results of the local computation 
are then fed to the next layer of computation, and can be stacked to create multi-layer 
“deep” models.

There is much recent research on the design of deep convolutional networks, and the 
architecture for RODAN is inspired by Google’s EfficientNet [10]. EfficientNet improved 
the state of the art in image classification while simultaneously reducing the number of 
model parameters by an order of magnitude. The RODAN architecture is composed of 
22 convolutional blocks, contains roughly 10 million parameters, and utilizes a similar 
convolutional block structure (see Fig. 1). RODAN gradually incorporates surrounding 
information for each position in the signal by increasing the kernel size with each suc-
cessive convolutional block. By increasing the kernel size, we expand the window size to 
incorporate surrounding signal information which accommodates for the variable sam-
ples per base and gathers the necessary information from neighboring nucleotides for 
accurate decoding. We note that the training and validation set were sampled from data 
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where roughly 83% of all chunks of 4096 values ranged between 20 and 70 samples per 
base.

Architecture details

The RODAN architecture is composed of 22 convolutional blocks and contains around 
10M parameters. The first block is a regular convolution with a kernel size of 3 which 
acts as a “smoothing” layer to denoise the signal. The smoothing convolution is fol-
lowed by a squeeze and excitation block. The remaining blocks, as depicted in Fig.  1, 
are composed of separable convolutions, where depthwise convolution is followed by a 
squeeze and excitation block, then a pointwise convolution [11]. All squeeze and excita-
tion blocks forego using a reduction ratio and instead reduce to a fixed size of 32. When 
the number of channels increases between layers, the convolutional block also includes a 
pointwise expansion to increase the number of channels before the depthwise convolu-
tion. Each convolution operation is followed by a batchnorm and is passed through the 
Mish activation function [12]. The Mish activation function also replaces ReLU in the 
squeeze and excitation block. In addition, residual connections have been replaced with 
ReZero [13] which parameterizes the residual addition.

In our architecture, we increase the number of channels and the kernel sizes used in 
each layer, up to 768 channels and a kernel size of 100 in the final layer. Its output is 
then fed to a fully connected layer, followed by a classification layer with a log softmax 
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Fig. 1  The RODAN architecture. The normalized signal is passed through a succession of convolutional 
blocks which gradually incorporate surrounding information. Each block is composed of several processing 
steps (convolution, activation, batch normalization etc.), which are standard building blocks in the 
construction of deep neural networks. The final output is passed through a fully connected layer to produce 
the decoded sequence of nucleotides
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activation function. The connectionist temporal classification (CTC) loss [14] was used 
as the objective function for training the network. We use the Ranger optimizer version 
0.1.1 [15], which combines RAdam [16] with lookahead [17], with an initial learning rate 
of 0.002 and the default weight decay of 0.01. Learning rate decay is utilized at a rate of 
0.5 with a scheduler patience of 1 and a threshold of 0.1. Only 1000 batches were used 
for validation. The neural network architecture is detailed in Additional file 1 Table S1.

Model training

Training of RODAN was performed on an HP Z440 workstation with 6x3.6Ghz dual 
core processors, 16 GB of RAM, and an Nvidia Titan V GPU with 12 GB of memory. 
Training was performed using PyTorch version 1.5.1 with the maximum possible batch 
size of 30 and stopped after 20 epochs. Label smoothing was also utilized by reweighting 
the blanks in the CTC sequence with a higher probability of 0.1. The nucleotide vocabu-
lary is then reweighted uniformly at 0.025. Basecalling is performed with a beam search 
size of 5.

Training of Taiyaki was performed utilizing version 5.0.0 on the same hardware setup. 
We used the suggested RNA training parameters which are a base layer size of 256, a 
stride of 10, and number of epochs equal to 10.

Data

Training data. The RNA training data was selected from samples from an in house 
Arabidopsis thaliana wild type which utilized flow cell version R9.4.1, Epinano synthetic 
constructs (R9.4.1) which contain all possible 5-mers ([18], Homo Sapiens (R9.4) from 
the NA12878 project (BHAM_Run1) [19], Caenorhabditis elegans (R9.4) from [20], and 
Escherichia coli (R9.4) from [21].

To generate the Arabidopsis data, total RNA from 17 days-old Arabidopsis thaliana 
Col-0 seedlings grown on 1

2
 MS at 20◦C (16/8 hrs light/dark cycle) was isolated using 

TRIzol reagent and suspended in 160µl of DEPC-treated water. DNAse treatment was 
performed by adding 20µl of 10x DNase buffer and 20µl RNAse-free DNAseI and 
incubated for 30 minutes at 37◦C . RNA was then purified using phenol/chloroform. 
Poly(A)+ mRNA was isolated from about 150µ g of total RNA using the Oligotex Direct 
mRNA kit (Qiagen). One µg of poly(A)+ RNAs was converted into a library with the 
Direct RNA Library kit SQK-RNA002 (Oxford nanopore). The library was sequenced on 
a SpotON R9.4.1 FLO-MIN106 flowcell, using a GridION x5 sequencer.

All reads were first basecalled with Guppy version 3.4.5 followed by a Tombo version 
1.5.1 [22] resquiggle to assess the alignment qualities using the signal matching score 
and qscore provided by Tombo. The signal matching score (SMS) assesses the quality 
of the raw current signal against the expected signal, where higher scores indicate lower 
quality. As Tombo uses a default of 2 for RNA, all reads were filtered with ≤ 2 for the 
SMS. All reads were filtered with ≥ 11 for qscore, except for the E. coli sample which 
used ≥ 8 for the qscore due to the low quality of the reads. The remaining reads for each 
sample were then processed using Oxford nanopore’s research training model Taiyaki 
according to their instructions [23]. Taiyaki stores the resulting data in an HDF5 file 
which includes the raw signal data for each read, along with its genomic sequence and 
alignment positions.
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The resulting HDF5 file is comprised of 116,072 reads, 24,370 from Arabidopsis 
aligned to the Araport11 [24] transcriptome, 29,728 from Epinano synthetic con-
structs aligned to their released reference [18], 30,048 from H. Sapiens (BHAM_
Run1) aligned to v33 of the gencode [25] transcriptome, 24,192 from C. elegans 
aligned to the CE11 [20] transcriptome, and 7734 from E. coli aligned to the tran-
scriptome generated from the genome and annotations in the NCBI assembly data-
base [26]. Both the Arabidopsis and E. Coli transcriptomes were generated from 
their respective genomes and gff annotations using the gffread command from cuf-
flinks [27] with the -O option to add non-transcript records.

From this dataset, reads were randomly selected for either training or validation 
purposes. Each read had a random starting point chosen between 0 and 1024 signal 
values, and was then segmented into chunks of 4096 values where only chunks with 
a maximum of 15 samples per base were selected. After a million chunks are selected 
for training, the remaining reads are then used to select 100, 000 chunks for valida-
tion. The raw input signals are normalized by median absolute deviation.

Test data. The test set for measuring the accuracy of our basecaller is comprised 
of five different samples. These samples originated from studies distinct from those 
used to generate our training data except for the human data which is taken from 
a different lab from the nanopore WGS Consortium’s NA12878 project [19]. For 
each sample, a selection of reads was basecalled with Guppy v4.4.0. Any read which 
aligned to the mitochondrial genome was discarded. Of the basecalled reads which 
aligned to each transcriptome, 100,000 were randomly selected for inclusion in the 
dataset.

The RNA test data is composed from datasets originating from multiple species. 
Data for Homo sapiens (R9.4) was selected from the NA12878 project (BHAM_
Run1) [19] and aligned to v36 of the gencode human transcriptome [25]. Arabidopsis 
thaliana (R9.4) data is the Col-0 wildtype from [28] aligned to the Araport11 [24] 
transcriptome. Mus musculus (R9.4.1) is from [29] and aligned to the vM25 gencode 
transcriptome. S. cerevisiae S288C (R9.4.1) from [30] is aligned to the transcriptome 
from the NIH genome database [31]. The Populus trichocarpa (R9.4.1) from [32] 
is aligned to the transcriptome generated from the genome and annotations in the 
NIH assembly database [33]. The Poplar transcriptome, in addition to the Arabidop-
sis, were generated in the same manner as the transcriptomes for the training data.

Evaluation

Basecallers were evaluated using sequence identity is defined as:

where M is the number of matching bases, S is the number of mismatches, I is the num-
ber of insertions, and D is the number of deletions. Two sample t-tests were performed 
using the scipy stats function ttest_ind comparing the results between RODAN and 
Guppy, and RODAN and Taiyaki.

(1)accuracy =
M

M + S + I + D
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Results and discussion
We compared RODAN to other available RNA basecallers which include the latest 
release of ONT’s production basecaller Guppy and their research software Taiyaki [34]. 
Taiyaki was trained with our generated training data. Both Guppy and Taiyaki are based 
on recurrent neural networks (RNNs). The inherently sequential processing of data with 
RNNs interferes with modeling long term dependencies and parallelization. Convolu-
tional architectures on the other hand are easily parallelizable.

For our evaluation we used the five benchmark datasets described above to assess the 
accuracy of RODAN across multiple species. Read length distributions across datasets 
were very similar as seen in Fig. 2a. Basecalled reads were aligned with minimap2 2.17-
r941 [35] against the respective transcriptomes [detailed in Methods]. All supplemen-
tary alignments were discarded. Basecalling accuracy is shown in Table 1, reported as 
median sequence identity, similarly to other papers reporting basecalling accuracy [3]. 
We observe that RODAN outperforms Guppy and Taiyaki in all five datasets, with the 
largest difference in human. The only exception is in yeast, where Guppy was able to 
match RODAN’s performance. All the differences except for RODAN vs Guppy in yeast 
were highly statistically significant (p-value less than 2.7510−157 using a t-test applied as 
described in Methods). We note that all three basecallers had difficulty with the mouse 
dataset. This may be the result of not having trained the model on mouse data. To test 
this hypothesis, we added 24,295 reads of mouse data from [30] to the training set and 
retrained RODAN with the same configuration. This increased the median accuracy of 
the mouse from 87.99% to 89.37% . However, it decreased human median accuracy by 
1.2% and increased the number of unaligned reads across the remainder of the test data. 
In poplar, another eukaryote, the model performs well despite not having been trained 
on data from it. We also report on the total amount of unaligned reads for each base-
caller. Taiyaki, which was trained on our generated training dataset, performed slightly 
better in that regard. We note that the dataset was prepared with Guppy, hence the num-
ber of unaligned reads is not applicable.

To obtain more detailed understanding of model performance, we show basecalling 
accuracy as a function of read length in Fig. 2b and Supplementary Fig. 1. In all datasets 
we observe a slight decrease in accuracy with read length. We hypothesize that shorter 

Fig. 2  Read statistics. For each of the five datasets we show histograms of read length in (a), and basecalling 
calling accuracy as a function of read length
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length reads have less of a tendency to form structures that would impede their move-
ment though the pore, leading to more accurate basecalls. In our experiments, Guppy 
ran around 7x faster than RODAN. This is to be expected since Guppy is optimized pro-
duction code that is written in C++. Both were run on an HP Z440 workstation with 
6x3.6Ghz dual core processors, 16 GB of RAM, and an Nvidia Titan V GPU with 12 GB 
of memory.

Conclusions
We presented RODAN, an RNA basecaller for ONT data with state-of-the-art accuracy. 
Our approach accounts for the varied samples per base and high level of noise inherent 
to this data with a convolutional architecture that gradually incorporates surrounding 
information to correctly decode each nucleotide. The software is freely available, and can 
form the basis for further development. In addition, we have also assembled and released 
the first comprehensive dataset that can be used to test the accuracy of RNA basecallers 
in future research [36]. To our chagrin, many published studies do not release raw ONT 
fast5 data which is crucial to method development and re-analysis of data. We hope this 
trend improves in the future.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04686-y.

Additional file 1. Supplementary tables and figures, including details of the RODAN architecture and additional 
performance results.
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Dataset Basecaller Median Accuracy Unaligned

Human [19] Guppy 90.60 N/A

Taiyaki 91.16 900

RODAN 93.23 1307

Mouse [29] Guppy 87.65 N/A

Taiyaki 86.25 3079

RODAN 87.99 2819

Arabidopsis [28] Guppy 91.59 N/A

Taiyaki 91.10 957

RODAN 92.89 1001

Poplar [32] Guppy 90.16 N/A

Taiyaki 89.72 1598

RODAN 91.11 1652

Yeast [30] Guppy 91.35 N/A

Taiyaki 90.01 2721

RODAN 91.41 3035
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