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B-cell lymphomas arise at distinct stages of cellular development and maturation, potentially influencing antigen (Ag) presentation
and T-cell recognition. Burkitt lymphoma (BL) is a highly malignant B-cell tumor associated with Epstein-Barr Virus (EBV)
infection. Although BL can be effectively treated in adults and children, leading to high survival rates, its ability to mask itself from
the immune system makes BL an intriguing disease to study. In this paper, we will provide an overview of BL and its association
with EBV and the c-myc oncogene. The contributions of EBV and c-myc to B-cell transformation, proliferation, or attenuation
of cellular network and immune recognition or evasion will be summarized. We will also discuss the various pathways by which
BL escapes immune detection by inhibiting both HLA class I- and II-mediated Ag presentation to T cells. Finally, we will provide
an overview of recent developments suggesting the existence of BL-associated inhibitory molecules that may block HLA class
II-mediated Ag presentation to CD4+ T cells, facilitating immune escape of BL.

1. Introduction

Burkitt Lymphoma (BL) is a high-grade B-cell malignancy
occurring most frequently in children in areas with holoen-
demic and hyperendemic malaria, and with lesser frequency
in all other parts of the world [1, 2]. This aggressive neoplasm
is classified as a Non-Hodgkin’s Lymphoma (NHL) and
has the fastest doubling time among human tumors [3].
BL is subdivided into three different categories based on
epidemiological observations: endemic BL (eBL), sporadic
BL (sBL), and HIV-associated BL. About 95% of eBL
cases are associated with Epstein-Barr Virus (EBV) and
are commonly found in Equatorial Africa and Papua New
Guinea where malarial diseases are highly prevalent. In
contrast, only 5–15% of sBL and 40% of HIV-associated BL
are EBV positive [4–6].

EBV is a member of the herpes family of double-
stranded DNA viruses with an icosahedral-shaped capsid [7].
Worldwide more than 90% of all people become infected
with EBV at some point during their lifetime [4, 8]. Though
most infected individuals remain healthy, EBV is capable of
leading to pathologic conditions, being linked to a variety

of human diseases and malignancies. EBV also has the
potential to transform normal human B lymphocytes into
continuously growing immortalized cells such as BL and B-
lymphoblastoid cells. It is present in approximately 50% of
Hodgkin’s Lymphoma (HL), a disease which accounts for
1% of all malignancies in the United States, and is found
with varying frequency in NHL [9–11]. EBV is implicated
in infectious mononucleosis, T-cell lymphoma, adult T-cell
leukemia, Natural Killer cell (NK) leukemia, posttransplant
lymphoproliferative disorder, nasopharyngeal carcinoma,
and various other lymphoid and epithelial malignancies [12–
16]. In most individuals, infection of B lymphocytes by
EBV is followed by a cytotoxic CD8+ T cell (CTL) response
that controls the spread of the virus. This response can be
generated by latent viral proteins including EBNAs (EBV
Nuclear Ags) and LMPs (Latent Membrane Proteins), but
is dominantly targeted towards EBNA3; the LMPs also elicit
a cytotoxic CD4+ T cell response to EBV-transformed B-
cell lines [17]. T cells also recognize several lytic cycle
proteins, such as BZLF1, BMLF1, BMRF1, and BHRF1 [18].
In spite of this vigorous CD8+ T cell response, a population
of infected B cells escapes immune-mediated elimination.
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Immunodeficiencies resulting from certain genetic disorders,
organ transplantation, or infectious diseases (e.g., AIDS,
malaria) can lead to reactivation and outgrowth of these
EBV-infected B cells [10]. EBV infection can also lead to
the generation of a number of proteins (e.g., EBNA1, c-
myc) which are involved in decreasing immune recognition
of malignant B cells. In the following sections, we will look
further at the role of EBV as a possible causal agent of BL as
well as its involvement in contributing to immune evasion.

The common characteristic of virtually all BL is translo-
cation of the MYC proto-oncogene to an immunoglobulin
(Ig) locus [19]. MYC encodes the c-myc transcription factor
which was first discovered nearly thirty years ago as a
cellular homologue of an avian retroviral oncogene [20].
Since that time, MYC has been recognized as one of the
most commonly activated oncogenes in human cancers. It is
estimated to play a role in 20% of all cancers, with potential
involvement in 100,000 cancer deaths in the US each year
[21–23]. c-myc is a transcription factor belonging to the
class of basic helix/loop/helix/leucine zipper proteins and
high-throughput screening has indicated that 15% of all
known genes lie within its target gene network [23, 24].
Functions of genes in this network include the regulation
of cell-cycle progression, proliferation, differentiation, and
apoptosis [23, 25]. Under normal conditions, c-myc is
activated in response to mitogenic factors and repressed
upon exposure to antiproliferative signals. The involvement
of c-myc in leading to development of BL, as well as its role
in decreasing immunogenicity, will be addressed later in this
paper.

2. Burkitt Lymphoma

2.1. Overview. Studies suggest that eBL and sBL differ in
geographical distribution and degree of association with
EBV. eBL occurs primarily in equatorial Africa and Papua
New Guinea, and has a 95% association with EBV. sBL,
which accounts for 1%-2% of adult lymphomas and 30%–
50% of pediatric lymphomas in the United States (US) and
Western Europe, occurs in all other parts of the world, but
has only a 15% association with EBV [4, 5, 26]. Subtypes
of BL also differ in clinical manifestation. Typically, eBL
presents as tumors affecting the jaw and facial bones while
sBL more commonly arises in the gut and upper respiratory
tract, forming tumors in the Waldeyer ring [27, 28]. HIV-
associated BL characteristically involves the lymph nodes and
bone marrow [19]. While eBL primarily affects children 4–
7 y, sBL is seen in both children and young adults, having
a median age of 30 y [3]. For all three types of BL, males
are more commonly affected than females [3]. For the years
1973–2005, there were 3,058 cases of BL diagnosed in the US.
Five-year mortality showed a positive correlation to age with
pediatric cases having a∼25% mortality, adult cases 50% and
geriatric cases 70% [29].

A feature observed in nearly 100% of BL is a reciprocal
chromosomal translocation involving the proto-oncogene
MYC on chromosome 8 and one of the Ig gene heavy
or light chain loci on chromosomes 14, 2, or 22 [19].

The translocation to an Ig locus leads to deregulation and
constitutive expression of c-myc, with an overall effect of
uncontrolled proliferation as well as a reduced threshold
for induction of apoptosis [24]. Characteristics of BL cells
seem to point to a germinal center (GC) origin. BL cells
phenotypically resemble centroblasts, expressing high levels
of BCL-6 [30] and show signs of somatic hypermutation
(SHM), a common characteristic of GC B cells [31, 32].
A final piece of evidence that indicates a GC origin stems
from the MYC translocations: the chromosome breakpoints
involved in these translocations suggest a mistake of class-
switch recombination (CSR) or SHM, two processes that
occur in GC B cells [33, 34]. MYC translocation is considered
a hallmark for BL and its role in disease progression and
immune evasion will be discussed in greater detail later in
this paper.

EBV-positive BL cells express low levels of activation
markers, adhesion molecules, and costimulatory molecules
and they grow as single-cell suspensions, rather than in
clumps typical of B-lymphoblastoid cells [35]. Unlike B-
lymphoblastoid cell lines (B-LCL), BL cells exhibit a defi-
ciency in stimulation of CD8+ T cells via HLA class
I molecules [36]. We have shown that BL cells express
detectable levels of HLA class II, but fail to effectively
stimulate CD4+ T cells [37]. HLA class II proteins on BL cells
were capable of binding antigenic peptides but the class II-
peptide complexes were not functional (unpublished data).
However, under acidic conditions (pH = 5.5), BL cells were
capable of forming functional class II-peptide complexes
that could stimulate T cells at neutral pH. Acidic eluates
obtained from BL cells diminished functional HLA class II
Ag presentation by B-LCL and CD4+ T cell responses under
physiological condition [37], suggesting that BL-associated
inhibitory molecules (BLAIM) may perturb CD4+ T cell
recognition of BL cells. It remains unclear how BLAIM could
interact with class II and the T-cell receptor (TcR), disrupting
HLA class II-restricted immune recognition of BL.

2.2. HIV and Malaria as Coinfections. Study suggests that the
geographical distribution of eBL corresponds greatly to that
of malarial diseases and that the prevention of malaria may
lead to a decreased incidence of eBL [38]. For eBL, there is
a strong association with endemic Plasmodium falciparum
malaria. A study conducted in Malawi (which is endemic
for both malaria and BL) revealed that children expressing
high levels of antibodies for both pathogens had 13 times
the risk of developing eBL when compared to children
with low antibody levels [38]. Additionally, children with
malarial diseases living in areas endemic for both EBV and
malaria were shown to have significantly higher levels of
EBV antibodies than either their healthy counterparts or
children living in areas of sBL [39–41]. In spite of their strong
association, the relative functions of the malarial parasite and
EBV in the development of BL remains elusive. It is generally
believed that hyperstimulation of B cells and suppression of
T-cell activity by malaria allow for reactivation of EBV in
infected B cells, which consequently increase in numbers.
Suppression of T-cell activity is suggested by the fact that
children 5–9 years old living in areas holoendemic for
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malaria displayed inferior IFN-γ responses when compared
to children living in malaria variable regions. This age range
coincides with the peak age incidence for eBL [42]. Chene et
al. [43] have reported that increasing levels of malarial Ags
become trapped in secondary lymphoid organs, leading to
hyperactivation of the germinal centers and increased SHM.
As MYC translocations take place in the germinal centers
during SHM, it is plausible to imagine an increase in the
number of translocations which could ultimately lead to the
development of BL.

HIV represents another infection that may aggravate the
pathogenesis of BL. Up to 20% of HIV-associated NHL in
the Western World are BL, and HIV-positive patients are
believed to have a 200–1000-fold greater risk of developing
BL than HIV-negative patients [26]. It is widely accepted
that immunodeficiency resulting from HIV infection is
responsible for reactivation of EBV in latently infected B
cells and this ultimately progresses to BL [38]. Recent studies
have shown that the priming of circulating EBV-specific
CD8+ T cells is dependent on CD4+ T cells [10, 44]. In
HIV-infected individuals the CD4+ T-cell count is greatly
reduced, leading to diminished CD8+ T-cell activity which
permits reactivation of EBV-infected B cells [10]. While
HIV-associated BL can be treated with various short-term,
aggressive chemotherapeutic regimens in conjunction with
highly active antiretroviral therapy (HAART), toxicity and
immunosupression pose a threat to the patients. The use of
rituximab in immunocompromised patients is also a debated
issue, suggesting the need for the development of less toxic
and more specific immunotherapies.

2.3. Treatment of BL. The evolution of chemotherapeutic
treatments for BL, as well those currently in use, has been
reviewed by Aldoss et al. [45] and should be considered in
order to appreciate the need for improved therapies. While
it is beyond the scope of this review to thoroughly describe
these treatments, a few salient points can be addressed. Early
treatments for BL sought to use chemotherapy regimens that
were being used for other NHL. However, when used for
BL, they showed far inferior responses and cure rates, and
these results were attributed to BL’s rapid doubling time. To
overcome this, intensive chemotherapy with short intervals
between treatments was explored as an option. These regi-
mens showed improved responses, but increased treatment-
associated toxicities. Additionally, adults (particularly the
elderly) had inferior response rates and were less tolerant
to the toxicities than children. Various chemotherapeutic
treatment options currently exist for treatment of BL, but
virtually all have the same shortcomings such as inferior
responses and decreased tolerance to treatment-associated
toxicities in adults. An additional confounding factor is
coinfection with HIV, in which aggressive chemotherapy
further aggravates their already immunodeficient state and
leads to severe toxicities [3, 46–51].

Immunotherapeutic treatment of BL is found in the
form of the anti-CD20 monoclonal antibody, rituximab,
which induces cell death in B cells by cell-dependent
cytotoxicity, antibody-dependent cell-mediated cytotoxicity,
or complement activation. Rituximab used in conjunction

with chemotherapy has led to increased response rates in BL
patients [52]. However, toxicities from the chemotherapy are
still an issue in many patients, and additional immunosup-
pression resulting from the use of rituximab is also a concern
for HIV-infected BL patients. In a study by Oriol et al. [53],
a clinical trial evaluated the use of chemoimmunotherapy
(intensive chemotherapy with 8 doses of rituximab) in HIV-
infected and HIV-negative adult BL patients. The complete
remission rates for the 2 groups were very similar, but
the HIV-infected patients experienced a higher incidence
of severe mucositis and infections. More recently, the
anti-CD22 monoclonal antibody, epratuzumab, has entered
clinical trials and shows a synergistic effect when used
concomitantly with rituximab [54]. Thus, chemotherapy and
chemoimmunotherapy have proved themselves as invaluable
tools in the treatment of BL. However, due to the inferior
tolerance and responses observed in adults and HIV patients,
there remains a need for more targeted and less toxic
therapies for BL. Our study indicates that BLAIM impairs
the HLA class II Ag presentation pathway. If this molecule
can be identified and characterized, it may allow for the
development of monoclonal antibodies which could have
much more targeted effects than existing antibodies. This
could also be combined with rituximab or epratuzumab to
eliminate the need for toxic chemotherapies in some patients.
In addition to the therapies discussed above for BL, adoptive
transfer of EBV-specific T cells has shown some promise in
treating hematopoietic stem cell transplant and solid organ
transplant patients [55]. Any such therapy used for treatment
of BL would have to address the low immunogenicity of
EBNA1 as well as the decreased HLA class II response
imparted by BLAIM that is implied by our research.

3. Burkitt Lymphoma and Transformation
of B Cells

3.1. EBV and B-Cell Transformation. EBV is known to be
associated with BL to varying degrees, but the exact role that
it plays in the development of BL has remained elusive. It
is known that EBV is capable of transforming B cells and
this may play a role in the pathogenesis of BL. The entry of
EBV into B cells involves at least five viral glycoproteins. EBV
binding is partially mediated by the viral envelope protein
gp350 which binds to complement receptor 2 (CR2) on B
cells and tethers the virus to the B cell, allowing viral gp42 to
bind to HLA class II proteins [56, 57]. Upon binding of EBV
to the B cell, gp42 triggers membrane fusion which is carried
out by the viral proteins gB, gH, and gL [58, 59].

Following infection, EBV produces an array of Ags
including six EBNAs, early Ags, viral capsid Ag, EBV-induced
membrane Ag and latent membrane proteins (LMPs). The
six EBNA proteins have varying expression patterns which
relate to different pathologic conditions. EBV has three
transcriptionally distinct forms of latency, each with a
different expression pattern for latent EBV-encoded genes
[34]. Latency I, associated with BL, is characterized by
expression of EBNA1 and small noncoding EBV RNAs
(EBERs). Latency II, associated with HL, is characterized by
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expression of EBNA1, LMP1, LMP2, and EBERs. Latency III,
observed in posttransplant lymphoproliferative disorders,
includes expression of all EBNAs, EBERs, and LMPs [34, 60,
61].

As it pertains to transformation of B cells, it seems the
EBV products of primary importance are EBNA1, EBNA2,
EBNA3C, EBNA-LP, LMP1, and LMP2A [62]. EBNA2 is one
of the first viral protein to be expressed following infection
of B cells and its expression is required for transformation
[12, 63]. It works in concert with EBNA-LP to activate cyclin
D2, driving the B cell from G0 into G1, and its inactivation
results in cell-cycle arrest and entry into apoptosis [64, 65].
EBNA2’s role in transformation is essential because it acts as
a transactivator for all six EBNAs as well as the LMPs. EBNA2
also interacts with the cellular DNA-binding elements RBP-
Jκ and PU.1 to mediate the transcription of numerous
cellular genes which contribute to transformation [63, 66].
Comprehensive screening has identified 550 cellular genes
that are either significantly induced or repressed by EBNA2,
including MYC [67, 68].

Among the viral genes under transcriptional control of
EBNA2 are the transmembrane proteins LMP1 and LMP2A.
These proteins mimic normal B-cell molecules and deliver
growth and survival signals commonly seen in B-LCL. LMP1
functions as a homologue of CD40 and signals through the
tumor-necrosis-factor-receptor-associated factors (TRAFs)
that result in activation of the transcription factor NF-
κB, leading to cell survival and growth [69–71]. LMP2A
performs a similar function by mimicking the signaling
of the B-cell receptor (BCR). Both LMP2A and the BCR
signal through immunoreceptor tyrosine-based activation
motifs and trigger the B-cell signaling pathway that leads to
production of inositol trisphosphate (IP3) and diacylglycerol
(DAG), ultimately resulting in cell survival but not cell
growth [34, 70]. In addition, EBNA3C has a role in cell cycle
progression through degradation of the tumor suppressor
protein, pRb [72].

3.2. c-myc and B-Cell Transformation. The translocation of
MYC to an Ig locus is considered a hallmark of BL. The
most frequently observed translocations show a break in
the long arm of chromosome 8, adjacent to or within the
MYC gene. 80% of all BL show a t(8:14) translocation while
the other observed translocations are t(8:22) and t(8:2) [24,
73]. MYC translocation requires activation-induced cytidine
deaminase (AID), leading to the thinking that BL arises
from germinal center B cells, as AID is highly expressed
in the germinal center and plays a role in SHM and CSR
[24, 74, 75]. Due to the ambiguous role of EBV in eBL
and sBL, the breakpoints involved in MYC translocation
have been analyzed and suggest that those in eBL are more
closely associated with the joining region while those in sBL
are more closely associated with switch regions [3, 76–78].
Regardless of the particular translocation involved or the
location of the breakpoint, all MYC translocations in BL
bring the gene under control of an Ig locus, resulting in
its constitutive activation. Because the expression of many
genes is controlled by c-myc, the outcome of its constitutive
expression is cell growth, uncontrolled proliferation, and

a reduced apoptotic threshold [24]. Overexpression of c-
myc contributes to proliferation by inducing the activity of
cyclins, while at the same time repressing the activity of
the cyclin inhibitor p27. The proapoptotic properties of c-
myc involve both the extrinsic (through interactions with
TRAIL) and intrinsic (through interactions with p53 and
Bim) pathways [79]. When taken together, these properties
explain the observation that BL cells have a high proliferative
index while remaining susceptible to apoptosis [24, 80].

Even though translocation of MYC is generally consid-
ered a hallmark for BL and this characteristic has been
uniformly observed across the different BL subtypes, c-
myc does not act alone. Overexpression of c-myc drives
cells into the cell cycle, but it also leads to apoptosis in
the absence of apoptosis-inhibiting signals. These signals
may be provided by other oncogenes, such as ras or bcl-
2, or in the case of EBV-positive BL by EBNA1, which
is antiapoptotic [81, 82]. Further, in order for c-myc to
initiate its transcriptional activities, it must first form a
heterodimer with the constitutively expressed max [82]. If
the formation of c-myc/max heterodimers is prevented, cells
do not undergo c-myc-induced transformation. Thus, while
overexpression of c-myc is required for development of BL,
it works in concert with other proteins to exert its effects on
the cell.

It should be noted that some studies have shown a
very small number of BL cases do not show any MYC
translocation, yet still overexpress c-myc. This has been
demonstrated for <10% of sBL and linked to miRNA
deregulation [83]. In cases of BL that are negative for
MYC translocations, downregulation of the miRNAs let-7c
and miRNA-34b (which negatively regulate c-myc mRNA
translation) has been observed and postulated to be the cause
of c-myc overexpression. In contrast, cases of BL with MYC
translocations also show higher expression levels of these
miRNAs. This gives two distinct mechanisms by which BL
cells may come to overexpress c-myc: (i) the translocation
of MYC to an Ig locus, and (ii) downregulation of miRNAs
which regulate translation of c-myc mRNA [83].

4. Burkitt Lymphoma and Immune Evasion

4.1. EBNA1 in Immune Evasion of BL. The immune system is
capable of generating both CD4+ and CD8+ T-cell responses
to several latent and lytic phase EBV-associated Ags, such
as LMP1, LMP2, EBNA2, and EBNA3. Unfortunately, BL
cells generally express only the EBNA1 protein, which is
poorly antigenic and has little to no HLA class I response.
The mechanism by which EBNA1 escapes HLA class I
presentation involves the presence of an internal glycine-
alanine (gly-ala) repeat that has a dual role in this process
(Table 1). First, the gly-ala repeat prevents the formation of
a functional complex with the proteasome, thus blocking
the protein degradation necessary for HLA class I loading
and presentation to CD8+ T cells [84]. Secondly, the gly-
ala repeat causes a decrease in the translation of the EBNA1
mRNA, reducing the production of antigenic peptides [85].
Because EBNA1 limits its presentation by HLA class I



Journal of Oncology 5

Table 1: Factors may contribute to the defects in immune recognition of BL cells.

Factor Cells Affected Function(s)/defect(s) in Immune Evasion

EBNA1
>90% eBL Negative regulation of own mRNA translation [64]

5–10% sBL Internal gly-ala repeat blocks proteasomal degradation and consequent

40% HIV associated BL HLA class I presentation [63]

C-myc All BL

Downregulation of HLA class I [30]

Antagonism of NF-κB pathway

Negative regulation of STAT1 signaling

Impairment of interferon response [59]

Downregulation of accessory molecules important in immune response:
LFA-1, LFA-3, ICAM-1, and TAP [86–90]

HLA class I All BL Down-regulated in BL [71–74]

Downregulation of CD80/86 in BL decreases HLA class I signaling

HLA class II All BL

Downregulation of CD80/86 in BL decreases HLA class II signaling

Upregulation of HLA-DO causes decrease in formation of class

II/peptide complexes [91, 92]
BLAIM may impair functional Ag

presentation by HLA class II (unpublished data).

molecules, the CD8+ T cell response to BL is largely
diminished.

While EBNA1 limits its presentation via the HLA class
I pathway, alternative methods of Ag presentation may
allow for EBNA1 epitopes to be displayed by HLA class II
proteins. Studies conducted in the lab of Christian Munz
reveal that EBV-seropositive adults virtually always express
EBNA1-specific CD4+ T cells [93, 94]. Further, Leung et
al. [95] have demonstrated that autophagy may play a
key role in the presentation of EBNA1 epitopes by HLA
class II, which is normally thought of in the context of
presenting extracellular Ags. In this study they demonstrated
that removal of a nuclear location sequence (NLS) from
EBNA1 resulted in HLA class II presentation of EBNA1
epitopes on the surface of B-LCL [95, 96]. Furthermore, the
resulting Ag presentation was sensitive to treatment with
3-methyladenine, an inhibitor of autophagy. While these
results certainly shed valuable light on the role of CD4+
T cells in recognizing the EBNA1 Ag and open the door
to possible therapies for certain EBV-related disorders, the
implications for BL may be more limited. Our recent study
has also shown that BL cells are deficient in their ability to
functionally present Ags via the HLA class II pathway. Thus,
understanding the mechanisms by which BL cells escape
immune recognition, may open new avenues for devising
novel immunotherapies against malignant B cells.

4.2. c-myc in Immune Evasion of BL. The picture described
above for EBNA1 is somewhat clouded with the realization
that EBNA1 in B-LCL can be recognized by CD8+ T cells,
implying that EBNA1 is not the sole player leading to
immune evasion by BL, and other factors could be involved
[91, 92]. EBNA1 is generally the only EBV Ag produced in
EBV-positive BL, but atypical cases of BL do exist in which
other EBV Ags are synthesized. The immune response to
these tumors was addressed by Kelly et al. [97] in a study

where 10 cell lines were established from confirmed eBL
tumors. Screening of the cell lines revealed 3 which expressed
EBNA1, -3A, -3B, 3C, and truncated LMP. As previously
discussed, the EBNA3 family is highly immunogenic and a
better target for inducing CD8+ T-cell responses. Yet, even in
these atypical BL tumors which expressed the EBNA3 family,
optimum CD8+ T cell activation was not observed.

These puzzling observations can be partially explained by
c-myc’s activity in reducing the immunogenicity of BL. It is
well established that cytotoxic CD8+ T cells do not efficiently
recognize BL cells (whether positive or negative for EBV)
and are thus incapable of mounting an immune response
[35]. c-myc expression in some tumors is inversely correlated
with expression of HLA class I, and this may also be true
for BL (Table 1). In this study, though the mechanisms
responsible were not elucidated, an immunogenic B-LCL
that is normally recognized by cytotoxic T cells was rendered
nonimmunogenic when c-myc was overexpressed [35]. An
additional piece of the puzzle in determining how c-myc
exerts its immune inhibitory activities was provided when
Schlee et al. [86] demonstrated that c-myc overexpression
alters mRNA profiles in conditional B-cell lymphoma lines
via the NFκB activation pathway (Table 1).

Earlier studies had shown that overexpression of c-
myc led to decreased expression of accessory molecules
important in the immune response, including LFA-1, LFA-
3, ICAM-1, and TAP [87–90] (Table 1). Conversely, Staege
et al. [35] found that inactivation of c-myc results in
restored expression levels of these accessory molecules and
Ag presentation. Further insight into c-myc’s involvement
in immune evasion is gleaned from studies showing that
another hallmark feature of BL is little to no expression
of NF-κB [90, 98, 99]. It was eventually determined that
low NF-κB was responsible for the decreased expression
of the accessory molecules observed in conditions of c-
myc overexpression. In BL, NF-κB regulates proapoptotic
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Ubiquitin
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HLA I

Figure 1: Defects in HLA class I antigen processing and presentation associated with BL. Cytosolic proteins are ubiquitinated, marking
them for proteasomal degradation. Peptides generated from proteasomal degradation are then transported into the endoplasmic reticulum
(ER) lumen by TAP (transporter associated with Ag presentation) and loaded onto HLA class I proteins. These class I peptide complexes
are transported through the Golgi network to the cell surface for presentation to CD8+ T cells. The EBV EBNA1 protein contains a Gly/Ala
repeat that impairs its proteasomal processing, resulting in the generation of peptides that are not readily accessible to class I molecules.
Thus, peptides generated from EBNA1 proteins are unable to activate CD8+ T cells in the context of HLA class I molecules.

genes and restoration of its expression results in increased
expression of Fas nd eventual cell death [90].

In addition to the impaired NFκB response, Schlee et
al. [86] also found that genes involved in interferon (IFN)
responses were down-regulated in BL when compared to
B-LCL. These genes included STAT1 and STAT2 and a
similar pattern was observed for genes connected to B-cell
receptor signaling. This group also showed a sharp decrease
in STAT1 protein and RNA expression in BL cells relative to
B-LCL. The negative regulation of STAT1 by c-myc occurred
directly, through blocking STAT1 expression, and indirectly
by suppressing IFN induction. Thus, the overexpression of
c-myc appears capable of decreasing the immunogenicity of
both EBV-negative and EBV-positive BL by altering genes in
the NF-κB pathway. In EBV-positive BL cells, these activities
would augment the poor antigenic property of EBNA1,
facilitating immune evasion.

4.3. Evasion of HLA Class I Presentation. HLA class I
molecules are expressed on every nucleated cell of the body
and are involved in Ag presentation of cytosolic peptides to
CD8+ T cells [100, 101]. As proteins are produced in the
cytosol, they may become ubiquitinated, marking them for

degradation in the proteasome (Figure 1). Peptides resulting
from proteasomal degradation are transported into the
lumen of the endoplasmic reticulum (ER) via the transporter
associated with Ag presentation (TAP). In the ER lumen,
HLA class I molecules can bind peptides approximately 8–
10 amino acids long. Peptide-HLA class I complexes are then
transported to the cell membrane for presentation to CTL
(Figure 1). If the peptide is recognized by a CTL as being
non-self, the CTL may induce apoptosis in the target cell
through the perforin/granzyme pathway. Viral proteins are
synthesized in the cytosol and are subjected to the same
proteasomal degradation and HLA class I presentation for
cellular protein as shown in Figure 1. This process is essential
to the immune system’s ability to monitor for viral infections
and transformed cells and to mount an appropriate response.
Indeed, the importance of this pathway is revealed by the
strategy of HLA class I downregulation employed by many
viruses and transformed cells to reduce their immunogenic-
ity.

Although the pathway described above is the primary
mechanism by which cells present endogenous Ag in the
context of HLA class I, there are two alternative strategies
that allow cells to present exogenous Ags via HLA class
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Figure 2: Defects in HLA class II antigen processing and presentation associated with BL. Extracellular Ags are endocytosed and degraded
in increasingly acidified endolysosomal compartments. GILT helps in Ag/peptide processing by reducing disulfide bonds in the acidic
environment. These peptides are further processed by acidic cathepsins for loading onto HLA class II proteins. HLA class II is synthesized
in the ER lumen and forms a complex with Ii that is transported through the trans-Golgi network for processing by cathepsins in the
endolysosomal compartments. Here Ii is degraded, leaving a fragment, CLIP, in the class II binding groove. HLA-DM mediates the release
of CLIP and the loading of appropriate peptides onto HLA class II molecules. These complexes are then transported to the cell surface for
presentation to CD4+ T cells. BL-associated inhibitory molecules (BLAIM) may interfere with functional class II presentation that perturbs
CD4+ T cell recognition of BL.

I molecules. First, HLA class I molecules may bind short
exogenous peptides for presentation to CTL [102]. Studies
have demonstrated that some exogenous Ags can be directly
delivered to the ER and that these Ags can be presented by
HLA class I molecules [103, 104]. In spite of these mecha-
nisms by which Ag may be presented by HLA class I, BL cells
are not effectively controlled by CTL [84, 105]. EBNA1, the
sole EBV Ag expressed in EBV-positive BL, uses an internal
gly-ala repeat to prevent its optimum presentation by HLA
class I and largely escapes CTL detection (Figure 1).

A more general approach is also utilized by BL cells to
avoid detection by CTL, and this involves the downregulation
of HLA class I protein expression (Table 1). This is a common
strategy that is widely observed in various virus-infected and
transformed cells. In one study, BL lines derived from five
HLA-A11-positive donors (both EBV positive and negative)
were shown to have decreased expression levels of HLA-
A11 and were resistant to lysis by HLA-A11-restricted CTLs
generated by stimulation with autologous B-LCL [106].
Other groups have investigated this aspect of BL immune
evasion and reported similar observations, with HLA-A11
being the most commonly reported down-regulated form of
HLA class I molecules [107, 108]. Based on the observations
that a CTL response is capable of controlling outgrowth
of B-LCL but is ineffective against EBV-positive BL cells,
Jilg et al. [109] found that B-LCL expressed considerably

higher levels of HLA class I molecules than those of BL.
By preventing HLA class I presentation of the lone EBV
Ag expressed in BL and by down-regulating HLA class I
expression, BL minimizes detection by CTL and thus escapes
a major portion of the immune response to both EBV-
positive and EBV-negative BL. With CTL detection being
largely avoided, the job of immune detection is left up to
HLA class II-mediated Ag presentation.

4.4. Evasion of HLA Class II Presentation. While the HLA
class I-mediated immune response to BL has been very
well studied, the HLA class II-mediated response has not
received nearly as much attention. BL cells express HLA
class II molecules but their role in optimum Ag presentation
and CD4+ T-cell stimulation remains unclear. HLA class
II proteins are constitutively expressed by professional Ag
presenting cells (APCs), such as macrophages, dendritic cells,
and B cells [110, 111]. Unlike the HLA class I binding pocket,
the ends of the class II peptide-binding groove are open,
thus allowing the bound peptides to extend from the ends of
the groove, accommodating larger peptides of approximately
12–25 amino acids in length [112–114]. Additionally, HLA
class I primarily presents endogenous Ags while HLA class
II presents exogenous Ags including tumor and viral Ags.
Although the emphasis has been given to the generation
of CTL responses, these efforts have only led to short and
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Figure 3: Comparison of BL and B-LCL highlighting the protein expression pattern of immune components that affects their abilities to
stimulate CD4+ T cells. BL cells normally express EBNA1, but not EBNA2 and LMP1. When compared to B-LCL, BL cells express higher
levels c-myc, HLA-DO and BLAIM and lower levels of costimulatory molecules (CD80/86) that differentially regulate Ag processing and
presentation, resulting in poor CD4+ T cell recognition of BL.

weak responses in vaccinated patients. Increasing evidence
suggests that the induction of optimal antitumor immunity
requires both CD4+ and CD8+ T cells specific for tumor-
associated Ags [115, 116].

Numerous differences exist between HLA class I and class
II synthesis and Ag processing, and these differences partially
reflect the nature of the Ags bound by each class. HLA
class II molecules are composed of alpha (α) and beta (β)
chains which are assembled in the ER and associated with the
invariant chain (Ii) [112–114]. Ii aids in transporting class
II molecules to the endolysosomal compartments, where
Ii is sequentially degraded by cathepsins, leaving class II-
associated invariant-chain peptide (CLIP) on the class II
binding groove [110, 113]. Ags/Peptides are also processed
in the endolysosomal compartments by acidic cathepsins
for class II loading and presentation to T cells [117].
Some proteins, however, are not easily unfolded for further
processing by endolysosomal cathepsins. We have shown that
the expression of Gamma-IFN-inducible Lysosomal Thiol
reductase (GILT) is essential for the proper processing of
disulfide containing Ags and peptides inside the cells [118–
120]. GILT reduces disulfide bonds, allowing proteins to
be unfolded and then processed by acidic proteases [121].
Removal of CLIP and formation of stable class II-peptide
complexes is mediated by a nonclassical class II protein,
HLA-DM [122, 123]. Once peptide is bound to a class II
protein, the HLA class II-peptide complex is transported to
the cell surface for presentation to CD4+ T cells (Figure 2).

BL cells express lower levels of costimulatory molecules
(e.g., CD80 and CD86) that may modulate immune recogni-
tion via both class I and class II pathways (Figure 3; Table 1).
HLA class II Ag presentation is also partially regulated by
another nonclassical class II molecule, HLA-DO, which is

primarily expressed by B lymphocytes [124]. Overexpression
of HLA-DO molecules correlates to inhibition of HLA-DM
activity, resulting in accumulation of cell-surface CLIP [125].
Studies have shown that the EBV positive BL cell line Raji
expresses much higher levels of HLA-DO when compared
to two EBV negative BL cell lines, Ramos, and BJAB [125,
126]. Elevated levels of HLA-DO in BL cells correlate with
much higher levels of cell-surface CLIP and may interfere
with peptide binding to class II molecules. This provides
one mechanism by which BL may escape immune detection
via the HLA class II pathway of Ag presentation (Figure 3;
Table 1).

Accumulating evidence suggests that endogenous Ags
are also processed and presented by the class II molecules
for stimulation of CD4+ T cells [127, 128]. Study has also
demonstrated the proteasome and TAP-dependent pathway
of HLA class II Ag presentation for two influenza epitopes
[129]. Among the proteasome independent pathways, only
macroautophagy has been observed to deliver endogenous
substrates to HLA class II [127, 130]. Endogenous Ag can
also be processed and delivered by macroautophagy to HLA
class II for presentation to and activation of CD4+ T cells
[131, 132]. The involvement of macroautophagy in the
presentation of EBNA1 to HLA class II may provide the
means by which BL Ags could be presented to CD4+ T cells
via the class II pathway.

While EBNA1 is not optimally processed or presented
through the HLA class I pathway, healthy EBV seroposi-
tive individuals do produce EBNA1-specific CD4+ T cells.
Studies have demonstrated that under certain conditions
EBNA1 specific Th cells can recognize EBNA1 sensitized
BL cells and mount an immune response, suggesting a role
for HLA class II in the presentation of this Ag [133–135].
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An EBNA1-specific CD4+ T-cell response was found to be
required and sufficient to suppress tumor growth in a mouse
model [136]. A possible role for CD4+ T cells in mounting
an EBNA1-targeted response is further evidenced by the fact
that children with eBL demonstrate a loss of EBNA1-specific,
IFN-γ-secreting T cells [137, 138].

Various groups have demonstrated the capacity of B-
LCL to efficiently present EBV-associated Ags to CD4+ T
cells via HLA class II, but previously published results in
our laboratory have revealed that BL cells are deficient
in this ability [33, 139, 140]. We have demonstrated that
BL express normal levels of HLA class II and the major
components of the class II pathway, and that the expressed
class II molecules were capable of binding peptide, but were
incapable of activating CD4+ T cells (Figure 3). This was in
contrast to B-LCL which functionally presented Ag to CD4+
T cells. The inability of BL to present Ag was overcome
when the cells were incubated in a pH 5.5 buffer, and
elutions of BL-associated molecules prevented functional Ag
presentation by B-LCL (unpublished data). These findings
suggest that BLAIM may inhibit Ag presentation by HLA
class II molecules (Figure 3). Abnormalities of HLA class
II protein function in BL cells also impair cellular and
humoral immune responses, suggesting that insights into BL
pathogenesis and immune escape should be considered for
devising better immunotherapeutics against BL.

5. Conclusions

BL is a highly aggressive non-Hodgkin’s lymphoma, found
primarily in equatorial Africa and Papua New Guinea, but
also observed with lesser frequency in other parts of the
world. Cases of BL may vary in EBV association and clinical
manifestation, but virtually all show c-myc translocation
to an Ig locus and resultant overexpression. Although the
relative contributions of EBV, HIV, and malaria to the
development of BL remain largely unclear, we discussed a
host of factors that may influence BL pathogenesis. Similarly,
the mechanisms by which BL may evade class II-restricted
immune recognition were discussed. Future studies may
focus on molecular events that alter c-myc expression and
immune-mediated elimination of BL.

This paper suggests that the low immunogenicity of
EBNA1 in EBV-positive BL is partially responsible for the
poor CD8+ T cell response, but this does not account
for the diminished CD4+ T-cell response. Because CD8+
T cells are incapable of clearing BL cells, HLA class II
Ag presentation and immune recognition of BL should
receive more attention. Recent studies also indicate that
alternative pathways for Ag processing may exist which
would allow for HLA class II presentation of BL Ags
through macroautophagy or cross-presentation. However,
ongoing research in our laboratory strongly suggests the
existence of a BL-associated inhibitory molecule(s) which
blocks CD4+ T-cell activation in the context of HLA class II
molecules. Current studies are being conducted to isolate and
characterize this inhibitory molecule and determine its mode
of action. Successful identification of this molecule would

open doors for novel therapeutic treatments of BL as well as
shed light on immune evasion strategies that may be used by
other malignancies.

While currently used chemotherapy and chemoim-
munotherapy treatment regimens for BL have achieved
high survival rates in both adults and children, research in
this area remains vitally important for several reasons: (a)
adults show lower response rates than children, (b) adults
are less tolerant of the treatment-associated toxicities and
immunodeficiency, (c) HIV-associated BL patients suffer
more severe mucositis and infections as a result of treatment,
and (d) combination approaches are effective at improving
survival rates, but the use of rituximab in HIV patients
remains controversial. Factors that disrupt immune recog-
nition demand further investigation for developing novel
immunotherapies for better treatment and improved quality
of life for the BL patients.
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