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Cervical cancer (CC) remains high morbidity and mortality. We aimed to identify critical pathways underlying cervical carci-
nogenesis and establish a prognostic signature. Six datasets from the gene expression omnibus (GEO) database were used to screen
the differentially expressed genes (DEGs) between CC and normal tissues. We used the unions of the DEGs to perform functional
analysis.,e 108 overlapped DEGs were analyzed to determine a prognostic signature by Cox regression and Lasso analysis based on
,e Cancer Genome Atlas (TCGA) database. Gene Set Enrichment Analysis (GSEA) and Immune Cell Abundance Identifier
(ImmuCellAI) were used to determine the relationships between the signature and biological functions. ,e PI3K-Akt signaling
pathway, the Ras signaling pathway, and the viral carcinogenesis pathway may be critical for CC development. We identified seven
genes (PLOD2, DSG2, SPP1, CXCL8, MCM5, HLTF, and KLF4) to construct a risk score formula. Survival analysis showed that the
high-risk group indicated a worse prognosis than the low-risk group (p< 0.0001). ,e AUC of the prognostic signature was 0.7449,
0.7641, and 0.8146 at 1, 3, and 5 years. We also identified that the signature is an independent prognostic factor. GSEA showed five
pathways were relevant to the signature, such as the adherens junction pathway.,e signature also affected the abundances of various
types of immune cells, such as B cell, CD4+ Tcell, and CD8+ Tcell. Further, we found that SPP1 was co-expressed with HK3, CD163,
CCL3, CLEC5A, MMP8, TREM1, OLR1, and TREM2.,e results of Gene Ontology analysis showed that SPP1 and its co-expressed
related proteins mainly affected metabolic process, multicellular organismal process, cell communication, cell proliferation, protein
binding, and transporter activity. In conclusion, the present study explored the key pathways for CC development and the seven-gene
signature can effectively make the prognosis evaluation of CC patients.

1. Introduction

Cervical cancer (CC) is the fourth most commonly di-
agnosed cancer and the fourth leading cause of cancer-
associated mortality in women worldwide, with 570,000
new cases and 311,000 deaths estimated for 2018. ,e
incidence of CC has tended to be younger in recent years
[1–4]. ,e role of human papillomavirus (HPV) infection
has been well established [5, 6]. With the application and
development of high-throughput sequencing, many
studies have reported many vital genes and pathways in
CC carcinogenesis, such as PIK3CA, FBXW7, EP300,
MAPK signaling pathway, etc. [7–9]. However, the de-
tailed mechanism of carcinogenesis of CC is still unveiled
and needs to be further studied. In clinical practice, early-

stage CC patients are mainly treated with surgery, and
late-stage patients are treated with chemoradiotherapy
[10]. However, the rate of recurrence of CC is approxi-
mately 20%–25%, and the 5-year survival rate for late-
stage CC is less than 50% [11]. ,e International Feder-
ation of Gynecology and Obstetrics (FIGO) stage system
has been one of the CC’s most important prognostic
factors, while the significant differences in survival rate
are reported in the same FIGO stage [12]. ,erefore, it is
crucial to identify sensitive and specific biomarkers that
could predict the prognosis of CC patients and monitor
patients’ outcomes.

Based on the TCGA database and GEO database, we aim
to understand the mechanism of CC carcinogenesis and
predict the prognosis of CC patients more precisely.
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Differentially expressed genes (DEGs) were identified using
six datasets in the GEO database, and these DEGs were
processed to find the key pathways in CC development.
Besides, we found out the genes related to the prognosis of
patients from among the DEGs and established a model to
predict patients’ prognosis. To gain further insight into the
biological pathways and immune cells changes involved in
CC pathogenesis related to this prognostic model, Gene Set
Enrichment Analysis (GSEA) and immune cells abundance
analysis were performed (Supplementary Figure 1).

SPP1 is a secreted glycophosphoprotein of the SIBLING
family [13]. Deregulation of SPP1 has been identified in
various cancers [13–15]. Zhao et al. establish a five-gene
prognostic model for CC, of which SPP1 is among the genes.
,e functions of SPP1 include bone metabolism, immune
regulation, wound healing, cell survival and tumor pro-
gression. In this study, SPP1 may play an important role in
the development of cervical cancer. However, its detailed
function and mechanism are unclear. We thereforeexplored
the function of SPP1 in this study.

2. Methods

2.1. Quality Control and DEGs Identification. We recruited
six gene expression profiles of CC (GSE6791, GSE63514,
GSE7803, GSE9750, GSE39001, and GSE52903) from the
gene expression omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo) in this study. ,e information of
datasets is shown in Table 1. We downloaded the normalized
data of GSE6791, GSE63514, GSE7803, GSE39001, and
GSE52903. However, the data of GSE9750 was not nor-
malized, and we normalized its raw data through the R “affy”
package with the RMA algorithm method [16]. R “limma”
package was used to screen DEGs between normal and CC
tissues [17]. Genes with |LogFC| >1 and adjust p value <0.05
were considered as DEGs in this study.

2.2. Functional Analysis Based on DEGs. ,e union of DEGs
of the six datasets was processed to Kyoto Encyclopedia of
Genes and Genomes (KEGG) and Gene Ontology (GO)
analysis by R “clusterProfiler” package [18]. ,e p value cutoff
and q value cutoff in this study were 0.01 and 0.05, respectively.

2.3. Download and Collation of CC Data in TCGA Database.
,e gene expression data of the 304 CC cases (Workflow
Type: HTSeq – FPKM-UQ) and corresponding clinical in-
formation were downloaded from,eCancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/) by R
“TCGAbiolinks” package [19]. ,e information of distant
metastasis, tumor status, vital status, and overall survival
(OS) was from the article of Liu et al. published in Cell in
2018 [20].

2.4. Conduction of the Risk Formula for Prognostic Prediction.
,e risk score formula was constructed using the data of CC
of the TCGA database. First, we used the Venn diagram to
find the overlapped DEGs of the six datasets and finally got

108 DEGs. By performing univariate Cox regression analysis
with R “survival” package, the association between the ex-
pression of 108 DEGs and patient’s OS was assessed. 26
DEGs with a p value of less than 0.05 were included in the
subsequent analysis. Second, based on the above identifi-
cation of prognosis-related genes for CC, we further needed
to narrow the gene range and establish a prognostic sig-
nature.,us, we performed the Least absolute shrinkage and
selection operator (Lasso) analysis by R “glmnet” package,
which constructs a more refined model using a penalty
function. ,is method can reduce the model’s complexity
and reduce the weight of some unimportant indicators to 0,
and 13 DEGs were left in this step. Next, we used the 13
DEGs to perform a multivariate Cox regression analysis. In
this step, we further optimized the model based on the
Akaike’s Information Criterion (AIC) value, and finally 7
genes (Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 2
(PLOD2), Desmoglein 2 (DSG2), Secreted Phosphoprotein 1
(SPP1), C-X-C Motif Chemokine Ligand 8 (CXCL8),
Minichromosome Maintenance Complex Component 5
(MCM5), Helicase Like Transcription Factor (HLTF),
Kruppel Like Factor 4 (KLF4)) were left. A risk formula
(prognostic signature) was then established based on a linear
combination of these DEGs’ expression levels, weighted by
their regression coefficients derived from the multivariate
Cox regression model. ,e formula was as follows: risk
score = [Expression level of PLOD2 ∗ (0.252751)] + [Ex-
pression level of DSG2 ∗ (0.381041)] + [Expression level of
SPP1 ∗ (0.170055)] + [Expression level of CXCL8 ∗
(0.163175)] + [Expression level of MCM5 ∗
(−0.514752)] + [Expression level of HLTF ∗ (−0.245823)]
+ [Expression level of KLF4 ∗ (−0.184198)]. Finally, a risk
score was computed for each patient with this formula and
patients were classified into high-risk and low-risk group, by
taking the median risk score as a cutoff point. To detect the
seven genes function, COXPREdb (https://coxpresdb.jp/)
was used to find the top 200 co-expressed genes of the seven
genes and then these co-expressed were processed to KEGG
analysis by R “clusterprofiler” package [18].

2.5. Assessment of the Signature’s Effect. We ranked each
patient’s risk score and counted the number of deaths in the
high-risk group and the low-risk group. Kaplan-Meier es-
timate based on the log-rank test was used to compare the
survival difference between the high-risk group and the low-
risk group by R “survminer” package. Receiver operating
characteristic (ROC) curves were employed to compare the

Table 1: Information of the datasets used in this study.

Datasets Year Platform
Participants

Normal Cervical cancer
GSE6791 2007 GPL570 8 20
GSE63514 2015 GPL570 24 28
GSE7803 2007 GPL96 10 21
GSE9750 2008 GPL96 24 33
GSE39001 2013 GPL6244 5 19
GSE52903 2015 GPL6244 17 55
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sensitivity and specificity of the survival prediction based on
the risk score model by R “survivalROC” package. To test
whether the prognostic signature was independent of clinical
variables, we performed the univariate Cox regression
analysis, and variables with p value <0.05 were then analyzed
by multivariable Cox regression analysis. ,en the inde-
pendent prognostic factor was chosen to construct the
nomogram by using R packages “rms” and “forestplot,” and
the ROC curves of the predictive nomogram were also
performed. All statistical analyses were finished with R
version 3.6.3.

2.6. Gene Set Enrichment Analysis (GSEA). GSEA (version
4.1.0) was used to explore the signaling pathways related to
the risk score model [21]. ,e phenotypes were determined
by the cutoff value of the risk score. ,e annotated gene set
was selected (c2.cp.kegg.v7.1.symbols.gmt) as the reference
gene set. Gene set permutations were performed 1000 times
for analysis. ,e normalized enrichment score (NES),
nominal p value, and false discovery rate (FDR) q value were
used to sort the pathways enriched in each group. Pathways
with NES >1, nominal p value <0.05 and FDR q value <0.25
were selected out.

2.7. Immune Cell Component Analysis. CXCL8 is an im-
mune-related gene, and we therefore used the Immune Cell
Abundance Identifier (ImmuCellAI), which estimates the
abundance of 24 immune cells, to detect whether the
prognostic signature will affect the immune microenvi-
ronment [22].

2.8.LinkedomicsDatabaseAnalysis. We further analyzed the
cancer-promoting mechanism of SPP1 by using Link-
edOmics analysis software based on the TCGA database.,e
co-expression-related proteins of SPP1 were searched using
LinkedOmics database. Cancer types to be studied were
directly selected (38 cancers in total). Cervical cancer was
selected as an example in this study. Analysis was carried out
according to molecular typing, staging, and other data. ,e
statistical analysis method was person correlation coefficient
analysis. ,en, GO analysis was performed on SPP1 and its
co-expressed related proteins.

3. Results

3.1.QualityControl andDEGs Identification. We selected six
gene expression datasets of CC (GSE6791, GSE63514,
GSE7803, GSE9750, GSE39001, and GSE52903) to assess the
DEGs between CC and normal tissues. ,e quality control
results of the six datasets are shown in Supplementary
Figure 2. ,e information of the datasets and the number of
DEGs of each dataset are shown in Table 1 and Figure 1(a).

3.2. Functional Analysis Based onDEGs. ,e union of DEGs
of the six datasets was processed to KEGG and GO analysis.
In the KEGG analysis, the upregulated genes enriched in
many well-known pathways, such as the cell cycle, the DNA

replication, and the nucleotide excision repair (Figure 1(b)).
And the downregulated genes are related to many cancer-
related pathways, such as the Ras signaling pathway and the
PI3K-Akt signaling pathway (Figure 1(b)). In the GO
analysis, the upregulated genes mainly participate in the
biological process (BP) related to cell cycle, such as the DNA
replication, the G2/M transition of mitotic cell cycle, the
regulation of mitotic cell cycle phase transition, etc.
(Figure 1(c)). While the downregulated genes mainly enrich
in BP of the cornification, the epidermis development, the
peptide cross-linking, etc. (Figure 1(d)). ,e results of
cellular component (CC) and molecular function (MF) are
also shown in Figures 1(c) and 1(d).

3.3. Information of CC in the TCGA Database. We included
and counted the CC’s clinical information, including age,
keratinization, FIGO stage, differentiation, and lympho-
vascular invasion. And the information of distant metastasis,
tumor status, vital status, and OS information was from the
article Liu et al. (Table 2) [20]. Also, the gene expression data
and clinical information were matched, which were used for
the subsequent survival analysis.

3.4. Establishment of a Seven-Genes Signature for Prognosis
Prediction. ,e Venn diagram shows the 108 overlapped
DEGs of the six datasets, of which 69 were upregulated genes
and 39 were downregulated genes (Figure 2(a)). ,e names
of the 108 DEGs are shown in the Supplementary Table 1.
,e relationship between the 108 DEGs and the patient’s OS
was assessed by univariate Cox regression analysis, and 26
DEGs whose parameter p values were less than 0.05 were
chosen for subsequent analysis (Supplementary Table 2).
Considering the number of genes and collinearity, Lasso
regression analysis was used to narrow the gene range, and
only 13 genes were remained in this step (Figures 2(b) and
2(c)). Next, the 13 genes were processed to the multivariate
Cox regression model, and we further optimized the model
based on the AIC value. Finally, 7 genes (PLOD2, DSG2,
SPP1, CXCL8, MCM5, HLTF, KLF4) were screened out as
the predictor signature and their detailed information in-
cluding coefficients, HR value, and p value is shown in
Figure 2(d). Of these, positive coefficients for the PLOD2,
DSG2, SPP1, and CXCL8 indicated that their upregulated
levels of expression were associated with shorter survival.
,e negative coefficient of MCM5, HLTF, and KLF4 indi-
cated that upregulated level of expression was associated
with longer survival. A prognostic model based on the
coefficients was established and the risk score formula was as
follows: risk score = [Expression level of PLOD2 ∗
(0.252751)] + [Expression level of DSG2 ∗ (0.381041)]
+ [Expression level of SPP1 ∗ (0.170055)] + [Expression
level of CXCL8 ∗ (0.163175)] + [Expression level of MCM5
∗ (−0.514752)] + [Expression level of HLTF ∗ (−0.245823)]
+ [Expression level of KLF4 ∗ (−0.184198)]. We then cal-
culated the seven-genes signature risk score of each patient
in using the above formula. ,e median risk score (0.3865)
was used as the cutoff point to divide the patients into two
groups, the high-risk group (N= 152), and the low-risk
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group (N= 152) (Supplementary Table 3). In addition, to
understand the function of the seven genes, the co-expressed
genes were processed to KEGG analysis and they enriched in

many cancer-related pathways, such as the PI3K-Akt sig-
naling pathway, the Toll-like receptor signaling pathway,
and the P53 signaling pathway. And the co-expression genes
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Figure 1: ,e number of DEGs in each dataset and KEGG and GO analysis of DEGs. (a) ,e number of DEGs in each dataset. (b) KEGG
analysis. (c) GO analysis of upregulated genes. (d) GO analysis of downregulated genes. DEGs, differentially expressed genes; KEGG, Kyoto
Encyclopedia of Genes and Genomes; GO, Gene Ontology.
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of PLOD2 and DSG2 also enriched in the Human papil-
lomavirus infection which is inseparable with CC devel-
opment (Supplementary Figure 3).

3.5. Assessment of the Signature’s Effect. ,e samples were
ranked according to their risk scores (Figure 3(a)) and the
number of deaths increased significantly with the increase of
the risk score (Figure 3(b)). A heatmap was visualized to
demonstrate the expression profiles of the 7 genes
(Figure 3(c)). We identified that the OS of the high-risk
group is significantly shorter than the low-risk group by
Kaplan-Meier method (Figure 3(d)). To further investigate
the discrimination power of the signature, ROC curves were
further performed. ,e area under the curve (AUC) of the
signature was 0.7449, 0.7641, and 0.8146 at 1, 3, and 5 years
(Figure 3(e)). To test whether the signature was independent
of clinical variables, univariate and multivariate Cox re-
gression analysis were performed, showing that lympho-
vascular invasion (HR, 7.0050; 95%CI, 1.3995–35.0632;
p � 0.0178), tumor status (HR, 94.2939; 95%CI,
17.2409–515.7118; p< 0.0001), and the signature (HR,
6.5823; 95%CI, 1.9382–22.3537; p � 0.0025) are the inde-
pendent predictor of poor overall survival (Figures 4(a) and
4(b)). Next, we established a nomogram combining the three
independent factor (Figure 4(c)). ,e AUC for 1-, 3-, and 5-
year survival using the predictive nomogram reached 0.7549,
0.8062, and 0.8064, respectively (Figure 4(d)).

3.6. Identification of the Seven-Gene Signature Altered
Pathways. To identify potentially altered signaling path-
ways related to the signature, we performed GSEA analysis
based on the risk score classification. We selected out 5
significantly enriched signaling pathways based on the
standard NES >1, nominal p value <0.05, and FDR q value

<0.25, including adherent junction, ECM-receptor inter-
action and focal adhesion, etc. (Figure 5 and Supple-
mentary Table 4).

3.7. Immune Cell Component Analysis. ImmuCellAI was
used to analyze the difference of immune cells between the
high-risk and the low-risk group (Supplementary Table 5).
,e abundance of Tr1 cells, B cells, CD4+ Tcells, and CD8+
T cells were significantly increased in the low-risk group,
while the ,17 cells, NKT cells, NK cells, and Neutrophil
were significantly increased in the high-risk group
(Figure 6).

3.8. Analysis of SPP1 Co-Expressed Related Proteins and Gene
Ontology. We further analyzed the cancer-promoting
mechanism of SPP1 by using LinkedOmics (https://www.
linkedomics.org/login.php) analysis software based on the
TCGA database (Figure 7(a)). ,rough analysis, we found
that SPP1 was co-expressed with HK3, CD163, CCL3,
CLEC5A,MMP8, TREM1, OLR1, and TREM2 (Figure 7(b)).
,e results of GO analysis showed that SPP1 and its co-
expressed related proteins mainly affected metabolic pro-
cess, multicellular organismal process, cell communication,
cell proliferation, protein binding, and transporter activity
(Figure 7(c)). ,ese results further elucidate the carcino-
genic mechanism of SPP1, which increased the under-
standing of SPP1.

4. Discussion

,e morbidity and mortality of CC remain high. Although
the role of HPV in CC has been well established and many
researches have been done in uncovering the potential
molecular mechanism of CC development, the underlying

Table 2: Characteristics of the cervical cancer patients in the TCGA database.

Clinical characteristics subgroup Frequency Percentage
Total 304
Age Range: 20–88 (average: 48.2, median: 46)

Keratinization
No 119 68.4
Yes 55 31.6
N1 60 31.1

FIGO

I 162 54.5
II 69 23.2
III 45 15.2
IV 21 7.1

Differentiation grade ≤G2 153 56.3
≥G3 119 43.7

Lymphovascular invasion Absent 71 47.3
Present 79 52.7

Distant metastasis No 273 89.8
Yes 31 10.2

Tumor status Tumor free 197 71.1
With tumor 80 28.9

Vital status Alive 233 76.6
Dead 71 23.4
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mechanism remains unclear. ,e surgical and chemo-
radiotherapy of CC are very mature, while many patients still
suffered from recurrence and metastasis. ,e present re-
search performed an integrated bioinformatical analysis
based upon six mRNA expression profile datasets of the
GEO database and 304 CC patients of the TCGA database to
further uncover the mechanism of CC and discover more
promising and valuable prognosis-related biomarkers in CC.

We used the union of the DEGs of the six datasets to
perform KEGG and GO analysis. In the KEGG analysis, the
upregulated genes enriched in the cell cycle, the DNA
replication, the nucleotide excision repair, etc., and the
DEGs may promote cell proliferation by being involved in
these pathways. ,ese pathways are common in various
kinds of cancer, such as colorectal cancer and gastric cancer
[23–25]. In addition, the upregulated genes also enriched in
the viral carcinogenesis, which may also prove the role of
HPV in the development of CC. ,e downregulated genes
enriched in the PI3K-Akt signaling pathway and the Ras
signaling pathway, which have been reported to play critical
roles in CC [9]. In the GO analysis, the upregulated genes
were mainly related to cell cycle related terms, such as the
DNA replication, the G2/M transition of mitotic cell cycle,
and the regulation of mitotic cell cycle phase transition. ,is
result is similar to that of KEGG to a large extent. In contrast,
the downregulated genes enriched in many epidermis-re-
lated pathways, such as epidermis development, epithelial
cell proliferation, positive regulation of epithelial cell pro-
liferation, and structural constituent of epidermis. In
summary, the enriched GO terms and KEGG pathways
explained the specific molecular mechanisms of CC to some
extent.

We identified 108 common DEGs between the CC tis-
sues and normal tissues of the six datasets, including 69
upregulated genes and 39 downregulated genes. We further
analyzed the relationship between the prognosis of CC
patients and the expression levels of the 108 DEGs by
univariate Cox analysis, of which 26 DEGs indicated the
significant correlation with OS (p< 0.05). Next, we per-
formed both lasso and multivariate Cox analysis to narrow

the gene range, and finally we got 7 genes (PLOD2, DSG2,
SPP1, CXCL8, MCM5, HLTF, KLF4) to establish a prog-
nostic model which was able to distinguish CC patients into
the high-risk group and low-risk group. PLOD2 encodes the
key enzyme mediating the formation of the stabilized col-
lagen cross-link, which sometimes can be considered as the
“highway” for cancer cell migration and invasion [26].
PLOD2 overexpressed in many cancers, including hepato-
cellular carcinoma, breast cancer, and sarcoma [26].
Overexpression of PLOD2 can also induce cell migration
and invasion in CC and PLOD2 is correlated with the
prognosis of CC patients [27, 28]. DSG2 is a cell adhesion
protein of the cadherin superfamily, which can regulate cell-
cell contact. AndDSG2 has been reported to play key roles in
tumorigenesis [29, 30]. Qin et al. have reported that DSG2
can promote tumor proliferation and metastasis and is
correlated with poor prognosis in early-stage CC [31].
CXCL8 is an important cytokine that can modulate pro-
liferation, invasion, and migration of tumor cells and can
induce tumor immunosuppression. It has been reported that
the CXCL8-CXCR1/2 axis has the potential to be applied as a
cancer therapeutic target [32]. Yan et al. found that CXCL8
high expression was a poor independent prognostic pa-
rameter for CC patients [33]. MCM5 is a member of the
MCM family of chromatin-binding proteins and participates
in cell cycle regulation [34]. MCM5 has been reported as a
predictive biomarker for both cervical preinvasive neoplasia
and CC [35]. HLTF belongs to the SWI/SNF family of
proteins involved in chromatin remodeling and DNA repair,
suggesting that it acts as a tumor suppressor gene [36]. HLTF
expression is altered in cancer through two mechanisms:
gene silencing by promoter hypermethylation or expression
of truncated proteins that lack functional domains [36].
,ese mechanisms have been widely proved in digestive
tract cancers [37, 38]. In CC, Cho et al. showed over-
expression of HLTF might confer patients with resistance to
radiation [39]. KLF4 functions both as a tumor suppressor
and an oncogene, which is involved in cell differentiation
and cell-cycle arrest [40]. It has shown that KLF4 can
regulate cell proliferation, migration, and invasion in
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Figure 2: Construction of the seven-gene prognostic signature for cervical cancer. (a),e overlapped upregulated genes. (b),e overlapped
downregulated genes. (c) ,e lasso analysis identified the most correlated genes with prognosis. (d) ,e distribution of each lambda and
confidence interval. (e) Further narrowing of the gene range by multivariate Cox analysis and 7 genes was determined. Lasso, least absolute
shrinkage and selection operator.
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Figure 3: Assessment of the prognostic signature. (a) Distribution of risk score in the high-risk group and the low-risk group. (b) Survival
status between the high-risk group and the low-risk group. (c) ,e heatmap of expression profile of 7 genes. Red parts represent
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Figure 4: Continued.
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multiple cancers, including breast cancer, gastrointestinal
cancer, and esophageal cancer [41–43]. Yang and Zheng
identified the tumor suppressor role of KLF4 in CC and
found that promoter hypermethylation of KLF4 can inactive
its tumor suppressor function in CC [44, 45]. To further
understand the function of the 7 genes we selected, the top
200 co-expressed genes of the 7 genes were processed to
KEGG analysis, which shows many critical pathways for CC
development, including the PI3K-Akt signaling pathway, the
Huam papillomavirus infection, and the p53 signaling
pathway.

Based on the prognostic signature, the number of deaths
increased significantly with risk score increase.
Kaplan–Meier survival analysis showed that the high-risk
group indicated a worse prognosis than the low-risk group
(p< 0.0001). ,e AUC of the risk model was 0.7449, 0.7641,
and 0.8146 at 1, 3, and 5 years. Next, the univariate and
multivariate Cox regression analyses were performed,
identifying that lymphovascular invasion, the tumor status,
and the signature are independent prognostic factors in CC.
,e AUC of the predictive nomogram combining the three
independent factors for 1, 3, and 5-year survival reached
0.7549, 0.8062, and 0.8064.

To further investigate the model’s underlying mecha-
nism, we performed the GSEA to explore the signaling
pathways related to the risk score model, and 5 pathways
were selected out. ,e adherens junction pathway is an
element of cell-cell junction, essential for maintaining tissue
architecture and cell polarity and can regulate cell movement
and proliferation. E-cadherin, and α- and β-catenin are the
main components of AJ [46]. Loss or downregulation of
E-cadherin expression is frequently observed in cancers and
correlates with the malignancy of the tumors [47]. Fujimoto
et al. have reported that decreased expression of main

adhesion molecules may result in invasiveness and metas-
tasis of CC [48]. Li et al. identified that the genes at
breakpoints of HPV integration in CC also enrich in the
adherens junction pathway [49]. ,e ECM-receptor inter-
action pathway controls many cellular activities such as
adhesion, migration, differentiation, proliferation, and ap-
optosis [50]. ,is pathway participates in the progression of
various cancers such as breast cancer, prostate cancer, and
gastric cancer [51–53]. Using two datasets of the GEO da-
tabase, Wu et al. found that the ECM-receptor interaction
pathway is the key pathway during CC development [54].
Focal adhesion refers to the specialized structures at cell-
extracellular matrix contact points, which play essential roles
in important biological processes, including cell motility, cell
proliferation, and cell differentiation [55]. Increased ex-
pression and amplification of the focal adhesion kinase gene
in human cancer cells are common [56]. Xu et al. showed
that PLOD2 could improve the migration and invasion of
CC cells by focal adhesion formation [27]. We also found the
other two pathways in this study, the renal cell carcinoma
and small cell lung cancer pathways, whichmay indicate that
the underlying molecular mechanism of CC development
may coincide with the two kinds of cancer. In addition, we
analyzed whether the risk model affects the immune mi-
croenvironment. ,e abundance of Tr1 cells, B cells, CD4+
T cells, and CD8+ T cells are significantly increased in the
low-risk group, while the,17 cells, NKTcells, NK cells, and
Neutrophil are significantly increased in the high-risk group.
Wang et al. found that a higher level of activated memory
CD4+ T cells was independently associated with favorable
OS in CC [57]. Although we don’t have the result of activated
memory CD4+ T cells, the abundance of CD4+ T cells is
higher in the low-risk group. It has shown that both the CC
patients and cervical precancerous lesion patients have a
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Figure 4: ,e Cox regression analysis for evaluating the independent prognostic value of the risk score. (a) ,e univariate Cox analysis. (b)
,e multivariate Cox analysis. (c) ,e nomogram to predict the probabilities 1-year, 3-year, and 5-year OS in patients. (d) ROC curves
according to the nomogram. Age, continuous variable; keratinization, yes vs. no; FIGO, continuous variable at I, II, III, and IV stages; grade,
≥G3 vs. <G3; lymphovascular invasion, yes vs. no; distant metastasis, yes vs. no; tumor status, with tumor vs. tumor free; ROC, receiver
operating characteristic.
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higher proportion of ,17 cells. Increased ,17 cells were
associated with clinical stage, lymph node metastasis, and
invasion, and therefore accelerate the disease’s progression
[58]. And this may partially explain the higher level of ,17
cells in the high-risk group.

It has been shown [59] that SPP1 can bind to CD44v6 and
promote tumor cell proliferation and survival through JNK
pathway. SPP1 also promotes the expression of cancer stem cell
markers such as OCT4 and SOX2. ,is can not only improve
the survival rate of cancer cells, but also enhance the resistance
to oxaliplatin and other chemotherapy drugs [60]. In colorectal
cancer patients, SPP1 induces high expression of CD44v6
through the Wnt-β-catenin pathway to stimulate cancer
progression [61]. ,is study found that SPP1 is an abnormally
expressed gene in the development of cervical cancer. Studies
have reported that the expression level of SPP1 is closely related
to the occurrence, development, invasion, and metastasis of
malignant tumors [62]. In order to further understand the
exact mechanism of SPP1 promoting tumor development, this
study conducted in-depth bioinformatics analysis on the
cancer-promoting mechanism of SPP1. ,rough the analysis,
we found that SPP1 was co-expressed with HK3, CD163,
CCL3, CLEC5A, MMP8, TREM1, OLR1, and TREM2.

In colorectal cancer, HK3 overexpression was associated
with epithelial-mesenchymal transition [63]. It has been
reported that OLR1 promotes pancreatic cancer metastasis
via increased c-Myc expression and transcription of
HMGA2 [64]. In human osteosarcoma cells, CCL3 promotes
angiogenesis by dysregulation of VEGFa [65]. ,ese results
further elucidate the carcinogenic mechanism of SPP1 and
increased the understanding of SPP1, that is, SPP1 may be a
potential key target for the treatment of cervical cancer.
However, the molecular mechanism of how it regulates cells
in cervical cancer needs to be further studied.

In conclusion, we utilized the public online database to
find the related pathways underlying CC development and
establish a CC’s prognostic model. First, the PI3K-Akt
signaling pathway, the Ras signaling pathway, and the viral
carcinogenesis pathway may be the critical pathways for CC
development. Second, we established a seven-gene prog-
nostic signature for CC and validated the effects of the
signature. Finally, we explored the possible mechanism
underlying the prognostic signature p53 signaling pathway
and further elucidate the carcinogenic mechanism of SPP1.

Data Availability

Publicly available datasets were analyzed in this study. ,ese
can be found in ,e Cancer Genome Atlas (https://portal.
gdc.cancer.gov/) and the NCBI Gene Expression Omnibus
(GSE6791, GSE63514, GSE7803, GSE9750, GSE39001, and
GSE52903).
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Supplementary Figure 1: workflow chart of this study.
Supplementary Figure 2: quality control of the six datasets.
Supplementary Figure 3: KEGG analysis of the top 200
coexpressed genes of the 7 genes of the prognostic signature.
KEGG, Kyoto Encyclopedia of Genes and Genomes. Sup-
plementary Table 1: 108 Common DEGs of the six datasets.
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Figure 7: Analysis of SPP1 co-expressed related proteins and Gene Ontology. (a) SPP1 co-expressed related proteins. (b) SPP1 was
positively correlated with HK3, CD163, CCL3, CLEC5A, MMP8, TREM1, OLR1, and TREM2. (c) Results of functional enrichment analysis
of SPP1 and its co-expressed proteins.

Journal of Oncology 13

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/


Supplementary Table 2: the associations between overall
survival and 108 common DEGs using univariate cox
analysis. Supplementary Table 3: the risk score and risk
group of each patient of the TCGA database. Supplementary
Table 4: gene sets enriched in the high-risk group. Sup-
plementary Table 5: immune cells abundance analysis of the
high-risk group and the low-risk group. (Supplementary
Materials)
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as a tumor suppressor in cervical carcinoma,”Cancer, vol. 118,
no. 15, pp. 3691–3702, 2012.

[45] W. T. Yang and P. S. Zheng, “Promoter hypermethylation of
KLF4 inactivates its tumor suppressor function in cervical
carcinogenesis,” PLoS One, vol. 9, no. 2, 2014.

[46] W. Meng and M. Takeichi, “Adherens junction: molecular
architecture and regulation,” Cold Spring Harbor Perspectives
in Biology, vol. 1, no. 6, Article ID a002899, 2009.

[47] C. Birchmeier, W. Birchmeier, and B. Brand-Saheri, “Epi-
thelial-mesenchymal transitions in cancer progression,” Cells
Tissues Organs, vol. 156, no. 3, pp. 217–226, 1996.

[48] J. Fujimoto, S. Ichigo, R. Hirose, H. Sakaguchi, and T. Tamaya,
“Expression of E-cadherin and α- and β-catenin mRNAs in
uterine cervical cancers,” Tumor Biology, vol. 18, no. 4,
pp. 206–212, 1997.

[49] W. Li, Y. Qi, X. Cui et al., “Characteristic of HPV integration
in the genome and transcriptome of cervical cancer tissues,”
BioMed Research International, vol. 2018, Article ID 6242173,
7 pages, 2018.

[50] A. van der Flier and A. Sonnenberg, “Function and inter-
actions of integrins,” Cell and Tissue Research, vol. 305, no. 3,
pp. 285–298, 2001.

[51] Y. Bao, L. Wang, L. Shi et al., “Transcriptome profiling
revealed multiple genes and ECM-receptor interaction
pathways that may be associated with breast cancer,” Cellular
and Molecular Biology Letters, vol. 24, Article ID 38, 2019.

[52] M. K. Andersen, K. Rise, G. F. Giskeødegård et al., “Integrative
metabolic and transcriptomic profiling of prostate cancer
tissue containing reactive stroma,” Scientific Reports, vol. 8,
Article ID 14269, 2018.

[53] P. Yan, Y. He, K. Xie, S. Kong, andW. Zhao, “In silico analyses
for potential key genes associated with gastric cancer,” PeerJ,
vol. 6, Article ID e6092, 2018.

[54] K. Wu, Y. Yi, F. Liu, W. Wu, Y. Chen, and W. Zhang,
“Identification of key pathways and genes in the progression
of cervical cancer using bioinformatics analysis,” Oncology
Letters, vol. 16, no. 1, pp. 1003–1009, 2018.

[55] M. A. Wozniak, K. Modzelewska, L. Kwong, and P. J. Keely,
“Focal adhesion regulation of cell behavior,” Biochimica et
Biophysica Acta, vol. 1692, no. 2-3, pp. 103–119, 2004.

[56] M. Agochiya, V. G. Brunton, D. W. Owens et al., “Increased
dosage and amplification of the focal adhesion kinase gene in
human cancer cells,”Oncogene, vol. 18, no. 41, pp. 5646–5653,
1999.

[57] J. Wang, Z. Li, A. Gao, Q. Wen, and Y. Sun, “,e prognostic
landscape of tumor-infiltrating immune cells in cervical
cancer,” Biomedicine & Pharmacotherapy, vol. 120, Article ID
109444, 2019.

[58] Y. Zhang, D. Ma, Y. Zhang et al., “,e imbalance of,17/Treg
in patients with uterine cervical cancer,” Clinica chimica acta;
international journal of clinical chemistry, vol. 412, no. 11-12,
pp. 894–900, 2011.

[59] G. Rao, H. Wang, B. Li et al., “Reciprocal interactions between
tumor-associated macrophages and CD44-positive cancer
cells via osteopontin/CD44 promote tumorigenicity in co-
lorectal cancer,” Clinical Cancer Research, vol. 19, no. 4,
pp. 785–797, 2013.

[60] L. Ng, T. Wan, A. Chow et al., “Osteopontin overexpression
induced tumor progression and chemoresistance to oxali-
platin through induction of stem-like properties in human
colorectal cancer,” Stem Cells International, vol. 2015, Article
ID 247892, 8 pages, 2015.

[61] M. Todaro, M. Gaggianesi, V. Catalano et al., “CD44v6 is a
marker of constitutive and reprogrammed cancer stem cells
driving colon cancer metastasis,” Cell Stem Cell, vol. 14, no. 3,
pp. 342–356, 2014.

[62] R. Wei, J. P. C. Wong, and H. F. Kwok, “Osteopontin—a
promising biomarker for cancer therapy,” Journal of Cancer,
vol. 8, no. 12, pp. 2173–2183, 2017.

[63] E. A. Pudova, A. V. Kudryavtseva, M. S. Fedorova et al., “HK3
overexpression associated with epithelial-mesenchymal

Journal of Oncology 15



transition in colorectal cancer,” BMC Genomics, vol. 19, no. 3,
pp. 113–13, 2018.

[64] G. Yang, G. Xiong, M. Feng et al., “OLR1 promotes pancreatic
cancer metastasis via increased c-Myc expression and tran-
scription of HMGA2,” Molecular Cancer Research, vol. 18,
no. 5, pp. 685–697, 2020.

[65] Y. Y. Liao, H. C. Tsai, P. Y. Chou et al., “CCL3 promotes
angiogenesis by dysregulation of miR-374b/VEGF-A axis in
human osteosarcoma cells,” Oncotarget, vol. 7, no. 4,
pp. 4310–25, 2016.

[66] S. Meng, R. Ning, J. Zhang et al., “Identification of key
pathways and establishment of a seven-gene prognostic sig-
nature in cervical cancer,” Research Square, 2021.

16 Journal of Oncology


