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ABSTRACT
Background. Brasilonema is a cyanobacterial genus found on the surface of mineral
substrates and plants such as bromeliads, orchids and eucalyptus. B. octagenarum
stands out among cyanobacteria due to causing damage to the leaves of its host in
an interaction not yet observed in other cyanobacteria. Previous studies revealed that
B. octagenaum UFV-E1 is capable of leading eucalyptus leaves to suffer internal tissue
damage and necrosis by unknown mechanisms. This work aimed to investigate the
effects of B. octagenarumUFV-E1 inoculation on Eucalyptus urograndis and to uncover
molecularmechanisms potentially involved in leaf damage by these cyanobacteria using
a comparative genomics approach.
Results. Leaves from E. urograndis saplings were exposed for 30 days to B. octagenarum
UFV-E1, which was followed by the characterization of its genome and its comparison
with the genomes of four other Brasilonema strains isolated from phyllosphere and
the surface of mineral substrates. While UFV-E1 inoculation caused an increase in
root and stem dry mass of the host plants, the sites colonized by cyanobacteria on
leaves presented a significant decrease in pigmentation, showing that the cyanobacterial
mats have an effect on leaf cell structure. Genomic analyses revealed that all evaluated
Brasilonema genomes harbored genes encoding molecules possibly involved in plant-
pathogen interactions, such as hydrolases targeting plant cell walls and proteins similar
to known virulence factors from plant pathogens. However, sequences related to the
type III secretory system and effectors were not detected, suggesting that, even if any
virulence factors could be expressed in contact with their hosts, they would not have
the structural means to actively reach plant cytoplasm.
Conclusions. Leaf damage by this species is likely related to the blockage of access to
sunlight by the efficient growth of cyanobacterial mats on the phyllosphere, which may
hinder the photosynthetic machinery and prevent access to some essential molecules.
These results reveal that the presence of cyanobacteria on leaf surfaces is not as
universally beneficial as previously thought, since they may not merely provide the
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products of nitrogen fixation to their hosts in exchange for physical support, but in
some cases also hinder regular leaf physiology leading to tissue damage.

Subjects Bioinformatics, Genetics, Genomics, Microbiology, Plant Science
Keywords Cyanobacteriota, Oxyphotobacteria, Phyllosphere, Lignocellulolytic enzymes,
Virulence factors, Horizontal gene transfer

INTRODUCTION
Cyanobacteria are microorganisms that colonize a wide variety of habitats, including the
phyllosphere, either as free-living colonies or in symbiotic relationships. Cyanobacterial
symbioses with eukaryotes are usually mutualistic, with cyanobionts providing partners
with fixed carbon or nitrogen and/or defending themwith toxins or sunscreens in exchange
for protection from extreme environmental conditions and predation (Usher, Bergman
& Raven, 2007; Adams et al., 2013; Rikkinen, 2007). Brasilonema octagenarum differs from
other symbiotic cyanobacteria in this regard by presenting strains that are capable of
damaging plant leaves (Aguiar et al., 2008), a behavior that as far as is currently known is
unique in this phylum.

Thus far, Brasilonema strains have been found on subaerophytic habitats from
tropical and subtropical environments of Brazil, French Antilles, Mexico, and USA with
ten species described, namely B. bromeliae, B. angustatum, B. burkei, B. geniculatum,
B. lichenoides, B. octagenarum, B. roberti-lamii, B. sennae, B. terrestre, and B. tolantongensis
(Fiore et al., 2007; Aguiar et al., 2008; Sant’Anna et al., 2011; Vaccarino & Johansen, 2012;
Becerra-Absalón et al., 2013; Rodarte et al., 2014; Miscoe et al., 2016; Villanueva et al., 2018;
Villanueva et al., 2019). The distribution of the genus Brasilonema is most likely pantropical
(Hauer, 2010; Kaštovský et al., 2010), thus new species are likely to be found in previously
unsurveyed geographical regions and habitats. Nevertheless, although other strains have
been isolated from the phyllospheres of different host species, plant damage has so far only
been observed in B. octagenarum.

Ultrastructural analyses have previously shown thatB. octagenarum UFV-E1 mats
can invade the mesophylls of Eucalyptus leaves under nursery conditions, which results in
internal cell damage and necrosis and leads to reduced rates of photosynthesis and stomatal
gas exchange, eventually causing reduction in growth and harming the productivity of the
host plant (Aguiar et al., 2008). This cyanobacterium colonized the aerial parts of Eucalyptus
saplings and mineral substrates at the vicinity of a greenhouse (Figs. 1A–1C), with leaves
colonized by strain UFV-E1 showing damage to limbs, petiole, and apical buds (Figs.
1D–1H). The molecular mechanisms by which this interaction occurs have not been
elucidated yet, and whether the cellular damage is caused directly by the cyanobacterium
or indirectly by its epiphytic growth is also currently unknown.

Since similar leaf damage has not been previously observed in cyanobacteria-plant
interactions, it is possible that Brasilonema octagenarum has acquired the capacity of
infecting plants from phytopathogenic organisms by horizontal gene transfer. Therefore,
this work aimed to experimentally reproduce under controlled conditions the effects of B.
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Figure 1 Infection of Eucalyptus urograndis saplings by Brasilonema octagenarum under greenhouse
conditions inMinas Gerais, southeast Brazil. Arrows point to cyanobacterial mats. (A) E. urograndis
nurseries presenting visible growth of B. octagenarummats on leaf surfaces. (B–C) B. octagenarum
biofilms colonizing mineral substrates in contact with water drained from a greenhouse containing E.
urograndis plants colonized by B. octagenarum UFV-E1. (D–H) Limbs, petiole, and apical buds of young
E. urograndis leaves colonized by B. octagenarum UFV-E1 presenting pathogenic symptoms, including
necrosis. Photo credit: Maione W. Franco.

Full-size DOI: 10.7717/peerj.9158/fig-1

octagenarumUFV-E1 colonization on eucalyptus leaves; to characterize its genome to search
formolecularmechanisms potentially involved in leaf damage by this strain; and to evaluate
whether horizontal gene transfer had any role on the evolution of these mechanisms. For
these purposes, the aerial parts of Eucalyptus urograndis saplings were inoculated with B.
octagenarum UFV-E1 cultures and subsequent changes in morphology, physiology and
growth of the plants were evaluated. Afterwards, the genomes of B. octagenarum UFV-E1
and four other Brasilonema spp. strains were sequenced, characterized and compared
and the presence of sequences orthologous to proteins previously reported as involved in
plant-pathogen interactions was inquired.

MATERIAL AND METHODS
Leaf colonization
Brasilonema octagenarum was originally found and isolated by Aguiar et al. (2008) in an
eucalypt nursery in Minas Gerais, southeastern region of Brazil. B. octagenarum UFV-E1
was grown in liquid BG-11medium (Allen, 1968) at temperatures of 25± 2 ◦C, photoperiod
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of 16/8 h light/dark and irradiance of 115 µm photons m−2s−1. After 30 days, the cultures
were filtered using general purpose filter paper under sterile conditions and concentrated
into 10% of the initial volume of 3 L to eliminate supernatants and facilitate the inoculation
of leaves. Six Eucalyptus urograndis clonal plants were transplanted to 2 L pots containing
substrate and acclimatized for twoweeks in a greenhouse under the controlled conditions of
25−30 ◦C temperature and above 80% relative humidity. Cell suspensions were inoculated
homogeneously on the aerial parts of each plant, except for six uninoculated plants used
as controls. After 30 days, the cyanobacterial colonies were mechanically removed from
leaf limbs using gentle fingertip movements and the middle portion of the leaves was
used for extraction and quantification of pigment content. Three discs were taken from
different, fresh leaves (Ø = 0.59 cm) in each control or inoculated plant and immersed in
7 mL of dimethylsulfoxide (DMSO) (Wellburn, 1994) in the dark for 24 h. Absorbance was
determined at λ of 665.1, 680 and 450 for chlorophyll a, chlorophyll b and carotenoids,
respectively. Stem height and leaf area were evaluated, and stem, root and leaf dry masses
were measured after oven dehydration at 75 ◦C for 72 h. The leaf area was measured
using a leaf area integrator (Delta-T Devices, Cambridge, UK). The averages of the data
obtained were compared with the Tukey test (significance level P < 0.05) using SAS 9.2
(SAS Institute, Cary, USA).

Anatomical evaluation
Leaf blade samples collected from inoculated and control plants were fixed with 50%
FAA solution (formaldehyde, acetic acid and 70% ethanol) for 48 h and stored in 70%
ethanol (Johansen, 1940). After the middle blade region was sectioned and the samples
were embedded in Histosec (Merck, Kenilworth, USA), 10 µm cross sections were
obtained with an automatic advance rotary microtome. Part of the cuts were stained
with safranin/astra blue (Bukatsch, 1972) for observing the general structure and presence
of phenolic compounds, and the other part was stained with scarlet Sudan (Sass, 1951) for
cuticle observation. Next, the cuts were mounted on Permount synthetic resin (Thermo
Fisher Scientific, Waltham, USA). Sections were examined and images were captured
with the Olympus AX-70 photomicroscope system (Olympus, Shinjuku, Japan) using the
Image-Pro Discovery software (MediaCybernetics, Silver Spring, USA).

High-throughput sequencing
Brasilonema octagenarum UFV-E1, B. octagenarum CENA114, B. octagenarum UFV-
OR1, B. bromeliae SPC 951 and Brasilonema sp. UFV-L1 were grown as non-axenic,
unicyanobacterial cultures in 125 mL Erlenmeyer flasks containing 50 mL of sterile
BG-110 liquid medium (Allen, 1968; Stanier et al., 1971). For the reduction of associated
microbes, the samples were washed with ultrapure water, 0.05% Extran, 0.85% NaCl,
and a solution composed of 50 mM NaCl, pH 7.5 10 mM Tris-HCl and pH 8.0 2.5 mM
EDTA. After inoculation, incubation was carried out at 25 ± 1 ◦C with a photoperiod of
14 h of light and 10 h of darkness under fluorescent light of 40 µmol photons m−2 s−1.
Two-week-old cultures were centrifuged for 10 min at 7,690× g and cells were collected for
DNA extraction using a modified version of the protocol established by Lin et al. (2010).
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Paired-ends libraries were produced for all strains with the Nextera XT DNA Sample
Prep Kit (Illumina) according to manufacturer’s instructions. Additionally, mate-paired
libraries were prepared from 8 kbp inserts for strains UFV-E1 and CENA114 using the
Nextera Mate Pair Library Prep Kit (Illumina) according to the manufacturer’s protocols
in order to improve assemblies and obtain complete genomes for the main strain of this
study and the strain not isolated from phyllosphere. Sequencing was carried out in the
HiSeq 2500 platform using the HiSeq v4 Reagent Kit (Illumina) following the instructions
provided by the manufacturer.

Genome assembly
Bases with qualities lower than Phred 28, adapters and sequences shorter than 50 bp
were removed from the datasets with Trimmomatic 0.36 (Bolger, Lohse & Usadel, 2014).
Mate-paired libraries were further refined with NxTrim 0.4.2 (O’Connell et al., 2015)
for the separation of true mate-paired reads. De novo assemblies were carried out using
SPAdes 3.11.1 (Bankevich et al., 2012) and MaSuRCA 3.2.4 (Zimin et al., 2013). Kraken 1.0
(Wood & Salzberg, 2014) and MetaBAT 2.12.1 (Kang et al., 2015) were used for identifying
cyanobacterial sequences among the assembled contigs. Platanus 1.2.4 (Kajitani et al., 2014)
was used for further scaffolding and gap closing. Genome completeness and contamination
were estimated with CheckM 1.0.7 (Parks et al., 2014).

Genome annotation
The assembled genomes were automatically annotated with the NCBI Prokaryotic
Genome Annotation Pipeline (Tatusova et al., 2016). When necessary, manual curation
of annotations was performed with Artemis 16.0.17 (Carver et al., 2012) and BLAST
2.6.0+ (Camacho et al., 2009). Functional identification of translated protein sequences
into orthologous groups was performed with eggNOG 4.5.1 (Huerta-Cepas et al., 2016),
Blast2GO 5.2 (Götz et al., 2008) and WEGO (Ye et al., 2018). The RAST server (Overbeek
et al., 2014; Brettin et al., 2015) was used for predicting the subsystems present in the
assembled genomes. Protein sequences from the Pathogen-Host Interactions Database
version 4.5 (Urban et al., 2020) were used to uncover genes encoding proteins similar to
known virulence factors by using TBLASTN with cut-off values of 90% for coverage and
60% for positive-scoring amino acidmatches. Translated protein sequences for hypothetical
proteins were retrieved from the assembled genomes and their domains were predicted
with the Phobius web server (Käll, Krogh & Sonnhammer, 2007). Predictions for possible
effectors from the type III secretion system were performed with the EffectiveDB web
server (Eichinger et al., 2016).

Prediction of mobile genetic elements
The occurrence of mobile genetic elements in the genomes obtained was verified
according to the protocols described in Alvarenga et al. (2018). Insertion sequences
were predicted with OASIS 8/11/08 (Robinson, Lee & Marx, 2012), ISEScan 1.5.4.3
(Xie & Tang, 2017) and the ISfinder database (Siguier et al., 2006; Siguier et al., 2012).
Prophages were predicted with PhiSpy 3.2 (Akhter, Aziz & Edwards, 2012) and VirSorter
1.0.3 (Roux, Enault & Hurwitz, 2015). CRISPRs were detected with MinCED 0.2.0
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(https://github.com/ctSkennerton/minced). For the uncovering of genomic regions with
anomalous content, Alien_Hunter 1.7 (Vernikos & Parkhill, 2006), OligoWords 1.2.1 and
SeqWord Sniffer 2.0 (Ganesan et al., 2008) were used.

Genome comparisons and phylogenomic analyses
OrthoANIu 1.2 (Yoon et al., 2017) and USEARCH 10.0.240 (Edgar, 2010) were used for
estimating average nucleotide identity among the assembled genomes. Orthologous protein
clusters shared among the strains were surveyed by the OrthoVenn server (Wang et al.,
2015). The assembled genomes were included in a dataset with 154 complete and nearly
complete cyanobacterial genomes retrieved from the NCBI RefSeq database (O’Leary
et al., 2016) for selection of marker sequences with Metaxa 1.0.2 (Bengtsson et al., 2011)
and Phyla-AMPHORA 03/19/13 (Wang &Wu, 2013). Multiple sequence alignments for
sixty single-copy translated protein sequences shared by all genomes and 16S rRNA gene
sequences were produced with MAFFT 7.309 (Katoh & Standley, 2013) and concatenated
into a single alignment. A maximum likelihood phylogenomic tree was reconstructed
from the concatenated translated proteins/16S rRNA gene alignment with RAxML 8.2.9
(Stamatakis, 2014) using the best-fit evolutionary models for each partition as calculated
with the phylogenomics-tools pipeline (https://github.com/kbseah/phylogenomics-tools).
The tree was visualized with FigTree 1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/) and
edited with Inkscape 0.92 (https://inkscape.org/).

RESULTS
Eucalyptus leaf inoculation
We first reinoculated B. octagenarum strain UFV-E1 on E. urograndis leaves to check if the
cyanobacterial colonization and its effects previously found under natural conditions could
be artificially replicated on seedlings. One month after inoculation, E. urograndis leaves
colonized by strain UFV-E1 showed a significant decrease of 19% in the Chl a/Chl b ratio
in the areas colonized by the cyanobacterium (Table 1). When the content of the pigments
Chl a, Chl b and carotenes were analyzed individually, significant alteration in the colonized
areas in relation to the control samples was not verified (Table 1). The inoculated plants
had an increase in root and stem dry mass (19% and 23%, respectively) and stem height
(7%), while leaf dry mass and area showed no significant differences between inoculated
plants and controls (Table 2).

B. octagenarum UFV-E1 colonized E. urograndis blades at points scattered along leaf
surfaces (Figs. 2A and 2B). After the removal of the cyanobacterial colonies (Fig. 2C), the
regions previously covered by denser colonies showed alterations in pigmentation (Fig. 2D).
Transverse sections of E. urograndis leaves from the control group showed a prominent
central rib on the abaxial face, presenting a bicollateral vascular bundle on both sides and
fundamental parenchyma (Fig. 3A). The epidermis was unstratified, covered by cuticle,
showing stomata mainly on the abaxial face. The mesophyll was dorsinventral, composed
of palisade parenchyma formed by one or two layers of cells, and lacunar parenchyma,
formed by three or four layers (Fig. 3B). In the plants colonized by B. octagenarum, colonies
were observed mainly on the adaxial face (Figs. 3C and 3D). No structural changes were
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Table 1 Pigment content in leaf areas of Eucalyptus urograndis plants colonized by Brasilonema octa-
genarum. *Significant effect at P ≤ 0.05, Tukey test.

Sample Chl a (µg cm−2) Chl b (µg cm−2) Carotenoids (µg cm−2) Chl a/b*

controls 15.64± 0.47 6.78± 0.29 2.98± 0.21 2.32± 0.10
inoculated plants 14.45± 0.44 7.42± 0.33 2.93± 0.30 1.95± 0.06

Table 2 Growth variables evaluated in E. urograndis plants after inoculation with B. octagenarum.
Significant effects at * P ≤ 0.05 and ** P ≤ 0.01, Tukey test.

Sample Root dry
weight (g)

Stem dry
weight (g)

Leaves dry
weight (g)

Leaf area (cm2) Stem
height (cm)

controls 15.11*± 0.63 23.07**± 1.01 21.22± 1.82 3,586.5± 255.3 83.3**± 1.3
inoculated
pants

17.94± 0.73 28.36± 0.99 22.47± 0.49 4,136.5± 147.5 89.5± 1.2

observed caused by colonization (Fig. 3C) in the regions of the central rib or the remainder
of the leaf lamina (Fig. 3D). The cuticle remained without changes in the regions colonized
by B. octagenarum (Figs. 3F and 3G) in comparison with the controls (Figs. 3E and 3G).

Genomic sequencing and characterization
The genome sequencing of Brasilonema strains resulted in the assembly of nearly complete
genomes for B. octagenarum UFV-E1 and B. octagenarum CENA114 while draft genomes
were obtained for B. octagenarum UFV-OR1, B. bromeliae SPC 951 and Brasilonema sp.
UFV-L1 (Fig. 4A, Table 3). The genome sequences obtained in this work were deposited
in the NCBI Genome database under the accession numbers CP030118–CP030123,
QMEA00000000, QMEB00000000, QMEC00000000. Predictions for the nearly complete
chromosomes of strains UFV-E1 and CENA114 uncovered 17 and 14 genome islands,
respectively. Additionally, 158 insertion sequences were found in both sequences. No
prophages were detected in those chromosomes. On the other hand, two remnant prophage
regions were predicted in each plasmid from both strains. Except for the UFV-E1 190 kbp
plasmid, two genome islands were also detected in those plasmids. Moreover, 11 additional
insertion sequenceswere found in the 250 kbp plasmids, while 18 and 16 insertion sequences
were detected in the 190 kbp plasmids from UFV-E1 and CENA114, respectively. Finally,
9 CRISPR loci were predicted in both nearly complete chromosomes. Average nucleotide
identity (ANI) among strains UFV-E1, CENA114, and UFV-OR1 was calculated as 99%,
showing that they are actually representatives of the same species, B. octagenarum, which
presented 90 and 85 ANI percentages when their genomes were compared to the genomes
of B. bromeliae SPC 951 and Brasilonema sp. UFV-L1, respectively (Fig. 4B). Clustering
analyses revealed a large number of orthologous protein clusters shared among the analyzed
Brasilonema genomes, with a very small amount of protein clusters exclusive to each strain
(Fig. 4C).

In the virulence, disease and defense subsystem predicted in the nearly complete B.
octagenarum genomes, genes involved in resistance to fluoroquinolone- and betalactam-
based antibiotics were found, in addition to genes for resistance to copper, mercury, arsenic,
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Figure 2 Eucalyptus urograndis leaves colonized by Brasilonema octagenarumUFV-E1. (A) General
appearance of colonized leaves presenting conspicuous growth of cyanobacterial filaments. (B) Cyanobac-
terial mats covering the central vein of the host leaf. (C) Removal of cyanobacterial colonies from the
leaf surface. (D) Discoloration in leaf areas previously covered by cyanobacterial colonies. Photo credit:
Maione W. Franco.

Full-size DOI: 10.7717/peerj.9158/fig-2

chromium and cobalt/zinc/cadmium, suggesting that these cyanobacteria may have some
tolerance to environmental disturbances, such as contamination by toxic element.However,
subsystem coverage was very low in the assembled genomes, as merely 18% of sequences in
the B. octagenarum genomes could be included into known subsystems, while subsystem
coverage in the B. bromeliae SPC 951 and Brasilonema sp. UFV-L1 genomes amounted to
17% of their content. Similarly, the most abundant functional categories for clusters of
orthologous groups (COGs) in all genomes were those with general function prediction
only or unknown function. Overall all strains presented very similar number of genes
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Figure 3 Photomicrographs of cross sections from Eucalyptus urograndis leaves stained with safran-
in/astra blue (A–D) or Sudan (E–G). (A) Cross section of a control leaf, showing the xylem (Xy) and
phloem (Fl) in a general view of its central rib. (B) Portion of a control leaf blade in higher magnitude,
showing more details of the epidermis of the adaxial (Ead) and abaxial (Eab) surfaces, a secretory cav-
ity (Cs), the palisade parenchyma (Pp) and the lacunar parenchyma (Pl). (C) Central rib colonized by
Brasilonema octagenarum, with filaments on the adaxial side of the epidermis. (D) Portion of the leaf lam-
ina evidencing the fasciculate growth pattern of the cyanobacterial filaments (Fi) on the adaxial surface.
(E) Control leaf epidermis showing a red-orange cuticle (Ct). (F) Integral cuticle in inoculated plants, ev-
idencing an hormogonium (Ho). (G) Portion of the colonized leaf blade, presenting a dense layer of fila-
ments of B. octagenarum on the adaxial side with an intact cuticle. Photo credit: Maione W. Franco.

Full-size DOI: 10.7717/peerj.9158/fig-3

related to known COG and GO terms (Fig. 5, Table S2), suggesting that these species may
perform similar ecological roles. The analysis of translated protein sequences from genes
annotated as encoding hypothetical proteins with the Phobius webserver revealed that
roughly three quarters are likely non-cytoplasmic and approximately one quarter of these
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Figure 4 Comparisons between the Brasilonema genomes characterized in this work. (A) Circu-
lar map of the nearly complete genome of B. octagenarum UFV-E1 compared to the other Brasilonema
genomes indicating regions with possible origin by horizontal transfer. (B) Percentages of average nu-
cleotide identities shared between the Brasilonema genomes obtained. (C) Quantification of protein clus-
ters orthologous between Brasilonema strains and estimation of the amount of singletons encoded in the
analyzed genomes.

Full-size DOI: 10.7717/peerj.9158/fig-4

sequences present transmembrane domains (Table 4). This suggests that a considerable
number of yet uncharacterized proteins are exported from the cells, with some of them
possibly involved in ecological interactions.

In accordance with the latest system of cyanobacterial classification by Komárek et al.
(2014), the phylogenomic analysis showed that the Brasilonema strains were closely related
to Scytonema representatives, thus confirming previous polyphasic descriptions of the
family Scytonemataceae, which in turn clustered inside the order Nostocales (Fig. 6), as
expected based on previous works on the taxonomic positioning of these cyanobacteria
(Fiore et al., 2007; Komárek et al., 2014).

Evaluation of sequences that might be involved in plant interactions
Twenty five secondary metabolite gene clusters were predicted in the nearly complete
genomes of strains UFV-E1 and CENA114, including clusters encoding the pathways for
polyketides, non-ribosomal peptides, post-translationally-modified peptides, bacteriocins,
terpenes, indoles, and phenazines, most of which presented low similarity to reference
clusters involved in the biosynthesis of known molecules. Five gene clusters, however,
presented 100% similarity to references for clusters that encode the biosynthesis of the
cyclic non-ribosomal peptides anabaenopeptin and nostopeptolide, the sesquiterpene
geosmin, the polyketide 1-heptadecene, and the UV-protecting amino acid shinorine.
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Table 3 Genomic features of the Brasilonema spp. strains characterized in this work.

Feature UFV-E1 CENA114 UFV-OR1 SPC 951 UFV-L1

completeness (%) 99.52 100.00 99.28 90.48 99.40
contamination (%) 2.89 2.17 3.01 2.37 1.20
total size (bp) 8,258,380 8,226,398 8,094,337 6,277,767 8,321,598
–chromosome 7,816,330 7,782,641 — — —
–plasmid 1 251,877 252,036 — — —
–plasmid 2 190,173 191,721 — — —
coding sequences
(bp)

6,559,505 6,529,766 6,271,238 4,742,865 6,443,634

–chromosome 6,198,811 6,170,908 — — —
–plasmid 1 204,544 204,193 — — —
–plasmid 2 156,150 154,665 — — —
GC content (%) 42.49 42.50 42.48 42.97 41.97
genes 6,950 6,929 6,908 5,693 7,214
protein-coding genes 6,395 6,371 6,309 5,207 6,652
pseudogenes 497 502 541 432 516
RNA genes 58 56 58 54 46
ncRNA 4 4 4 4 4
genes with assigned
subsystems

1,394 1,388 1,427 1,137 1,397

genes assigned to
COG categories with
known function

3,440 3,426 3,379 2,741 3,389

hypothetical proteins 2,081 2,092 2,074 1,695 2,314

Similarity to references for the biosynthesis of known cyanotoxins, which might be
involved in plant-pathogen interactions, was not found in any of the assembled genomes.

Annotations in all the Brasilonema genomes uncovered several genes encoding enzymes
that likely have cellulose, lignin and xylan as substrates (Table 5), which may therefore have
a role on leaf colonization and interact with host cell walls. Other enzymes that might have
some role during plant colonization have also been annotated in the genomes of all the
Brasilonema strains, including proteins involved in chitin and protein degradation, auxin
biosynthesis and biofilm formation through exopolysaccharide biosynthesis (Table 6).

Protein sequences with similarity to relevant virulence factors from plant pathogens
deposited in the PathogenHost Interaction database were found encoded in the genomes of
all five Brasilonema strains analyzed in the present work (Table 7). Similarities were found
with proteins from phytopathogenic bacteria (Burkholderia glumae, Erwinia amylovora,
Pantoea ananatis, Ralstonia solanacearum, Xanthomonas campestris, X. citri and X. oryzae),
fungi (Botrytis cinerea, Colletotrichum lagenaria, Fusarium graminearum, F. oxysporum,
Magnaporthe oryzae and Parastagonospora nodorum) and nematodes (Bursaphelenchus
xylophilus), which target leaves, shoots, roots, cones, panicles, seedlings, cotyledons or fruits.
Among the set of virulence factors with homologous sequences in the Brasilonema genomes
(36 proteins), the majority (26 proteins) can be considered essential to phytopathogenicity
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Figure 5 Functional annotations of genes included in the Brasilonema spp. genomes characterized
in this work, evidencing high similarity between strains and species in this genus. (A) Gene Ontology
terms associated with the predicted properties of the products encoded in Brasilonema genomes. (B) Dis-
tribution of COG categories among Brasilonema genomes, showing that they encode a large number of
poorly characterized proteins. COG categories W, Y, and Z did not present any matches and thus were
suppressed.

Full-size DOI: 10.7717/peerj.9158/fig-5

since the virulence of the organisms that express these factors may be reduced or even lost
after deleterious mutations occur in their coding sequences (Table 7).

It is noteworthy that both nearly complete B. octagenarum genomes presented regions
with content showing divergent composition when compared to their average content,
which is commonly found in horizontally-acquired sequences, while further evidences of
horizontal transfer were obtained by predictions of other mobile genetic elements (Fig. 4A).
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Table 4 Domains predicted from hypothetical protein sequences encoded in Brasilonema genomes.

Strain Cytoplasmic Non
cytoplasmic

Non cytoplasmic
+ signal peptide

Cytoplasmic +
non cytoplasmic +
transmembrane

Cytoplasmic +
non cytoplasmic +
transmembrane +
signal peptide

B. octagenarum UFV-E1 98 1,200 324 417 42
B. octagenarum CENA114 96 1,206 329 415 44
B. octagenarum UFV-OR1 99 1,195 313 399 42
B. bromeliae SPC 951 83 1,019 204 316 44
Brasilonema sp. UFV-L1 140 1,410 278 416 50
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sequences of the 16S rRNA gene and sixty proteins codified in single-copy genes present in the genomes
from the strains evaluated in the present work (highlighted in bold) and nearly complete cyanobacterial
genomes and chromosome scaffolds from the NCBI RefSeq database.

Full-size DOI: 10.7717/peerj.9158/fig-6

However, none of the sequences similar to known virulence factors in the Brasilonema
genomes were found within regions estimated as originating from horizontal transfer, and
thus these genes are unlikely to be of xenologous origin.
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Table 5 Annotations for enzymes encoded in Brasilonema genomes potentially having plant polysaccharides as substrates.

Protein Substrate UFV-E1 CENA114 UFV-OR1 SPC 951 UFV-L1

cellulase M cellulose + + + + +
1,4-beta-glucanase / beta-1,4-glucanase cellulose + + + + +
endo-1,4-beta-glucanase cellulose + + + + +
endo-1,4-beta-glucanase E1 precursor cellulose + + + + +
endo-1,4-beta-xylanase xylan + + + + +
endo-1,4-beta-xylanase Z precursor xylan + + + + +
alpha-glucosidase glucoside + + + + +
beta-glucosidase / beta-fucosidase glucoside / fucoside + + + – –
6-fosfo-beta-glucosidase / beta-galactosidase glucoside / galactoside + + + – +
malto-oligosyltrehalose trehalohydrolase malto-oligosyltrehalose + + + – –
4-carboxymuconolactone
decarboxylase/alkylhydroperoxidase

lignin + + + – +

catalase KatE lignin – – – + +
catalase-peroxidase KatG lignin + + + – –
catalase-like hemeprotein lignin + + + + +
manganese catalase lignin + + + + +
dye-decoloring peroxidase lignin + + + – –
Bcp-type thiol peroxidase lignin + + + + +
alpha-amylase / alpha-manosidase starch + + + + +

DISCUSSION
The initial growth of B. octagenarum on the surface of E. urograndis leaves apparently
occurred as a relationship of epiphytism, as no detrimental effects to the host plant were
initially observed. B. octagenarum colonization of E. urograndis later provided benefits to
the host, which was evidenced by the higher production of root and stem dry mass in
comparison to the control group (Table 2). The production and release of plant growth
regulators by cyanobacteria has been confirmed in several studies with the identification of
abscisic acid, auxins, cytokinins, ethylene and gibberelins (Singh et al., 2017), and stimulus
to plant growth caused by cyanobacteria has been observed when these microorganisms are
used as biofertilizers (Jhala, Panpatte & Vyas, 2017;Muñoz Rojas et al., 2018). Therefore, it
is likely that colonization by cyanobacteria stimulated the growth of the host plants by the
release of plant growth regulators by B. octagenarum.

On the other hand, the consequential decrease in the Chl a/b ratio in leaves resulting in
the lighter green areas observed in Fig. 2 is most likely a direct response to the decrease in
light incidence caused by sunlight blockage by the epiphyllic cyanobacterial colonies. Chl
a/b ratio tends to decrease in response to shading, as previously observed in experiments
with decreased light incidence in Tetrastigma hemsleyanum (Dai et al., 2009). This likely
represents the early stages of leaf damage by the cyanobacterium and could lead to more
severe consequences to the host plant in case of prolonged exposure. As described byAguiar
et al. (2008), in plants that remain for long periods under nursery conditions favorable to
the development of microbial mats, extended cyanobacterial colonization starts to act as a
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Table 6 Proteins encoded in the genomes of Brasilonema spp. strains presenting functional predictions previously described as involved in
plant-infection processes.

Protein Function UFV-E1 CENA114 UFV-OR1 SPC 951 UFV-L1

glucosamine-6-phosphate deaminase chitin degradation + + + + +
N-acetylglucosamine-6-phosphate deacetylase chitin degradation + + + + +
N-acetylglucosamine kinase chitin degradation + + + – +
N-acetylglucosamine-related transporter NagX chitin degradation + + + + +
ClpP class periplasmic serine protease protein degradation + + + + +
serine protease protein degradation + + + + +
rhomboid family serine protease protein degradation + + + + +
serpin family serine protease inhibitor protein degradation + + + + +
anthranilate phosphoribosyltransferase auxin biosynthesis + + + + +
phosphoribosylanthranilate isomerase auxin biosynthesis + + + + +
aromatic L-amino acid decarboxylase auxin biosynthesis + + + – +
indole-3-pyruvate decarboxylase auxin biosynthesis + + + – –
tryptophan synthase –alpha chain auxin biosynthesis + + + + +
tryptophan synthase –beta chain auxin biosynthesis + + + + +
auxin efflux carrier protein auxin biosynthesis + + + + +
exopolysaccharide synthesis protein exopolysaccharide biosynthesis + + + – +
exopolysaccharide production protein ExoZ exopolysaccharide biosynthesis + + + + +
exopolysaccharide production protein ExoQ exopolysaccharide biosynthesis + + + – +
Hop protein type III secretion system effector + + + + +

stress factor compromising the source/drain balance of eucalyptus plants and could result
in necrosis.

Overall, the Brasilonema protein sequences that presented similarity to sequences in
PHI-base could perform roles in diverse molecular mechanisms such as biosynthesis and
degradation, transport, signaling, regulation, starvation response, reproduction, motility
and other processes, including currently unknown functions. Ten matches between the
translated protein sequences from the Brasilonema genomes and proteins deposited in
PHI-base (C5A9K4, D4I307, F5HCK8, G4ML75, G4MTK2, Q4UTV7, Q4UUL4, Q8XSV8,
Q8Y0J2 and Q9C1T0) are likely to indicate enzymes with roles in primary metabolism
(Cooley et al., 1999; Namiki et al., 2007; O’Connell et al., 2013; Karki & Ham, 2014; Ramos
et al., 2014; Feng et al., 2015; Saint-Macary et al., 2015; Zhang et al., 2015a). Since mutants
for the inactivation of the genes that encode their homologues in pathogens usually
present auxotrophy, the presence of genes for proteins homologous to those factors in
the Brasilonema genomes does not necessarily reflect any additional capacity of these
strains to colonize plant surfaces. Additionally, a number of sequences in the Brasilonema
genomes have presented similarity with polyketide synthases of unknown functions
deposited in PHI-base (UniProt accession numbers I1RSU2, Q6RKH3, Q6RKH4 and
Q6RKH5), but since the inactivation of the genes encoding these enzymes have not
affected pathogenicity, it is unlikely that their homologues in Brasilonema genomes have
roles in plant colonization. Four sequences from the UFV-E1 genome matched proteins
that have been described as part of two-component systems involved in pathogenic
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Table 7 Virulence factors synthesized by phytopathogens with similarity to proteins encoded in Brasilonema genomes. An expanded version of
this table is provided as Table S1.

UniProt
accession

Protein Function UFV-E1 CENA114 UFV-OR1 SPC 951 UFV-L1

A0A0K0GHK1 SreR two-component system regulation + + + + +
A0A0K0GI30 DetR two-component system cytoplasmic

signaling
+ + + + +

A0A0U1YU79 PilT twitching motility + + + + +
A4K9H6 PhoP two-component system regulation + + + + +
A4QUT2 CPXB catalase-peroxidase + + + – –
B0LFQ7 Bx-Prx reproduction and pathogenicity + + + + +
C5A846 PidR two-component system regulation + + + + +
C5A9K4 AroB 3-dehydroquinate synthase + + + – +
D4HUY4 YhbH ribosome-associated modulation pro-

tein
+ + + + +

D4HX24 RpoS regulation of stress and starvation re-
sponse

– – – + +

D4HXR8 AcrD resistance-nodulation-cell division
transport

+ + + + +

D4I307 ArgD N-acetylornithine aminotransferase + + – – +
F5HCK8 IPMDH 3-isopropylmalate dehydrogenase + + + + +
G4ML75 MET6 methyltetrahydropteroyltriglutamate-

homocysteine S-methyltransferase
+ + + – –

G4MTK2 MoARG1 arginine biosynthesis + + + + +
G4MXC5 MoPRX1 peroxiredoxin peroxidase + + + + +
G4N4N6 MoSFA1 S-(hydroxymethyl)glutathione dehy-

drogenase
+ + + + +

G4NCL5 MGG_00383 hypothetical protein + + + + +
I1RSU2 PKS9/KSA1 polyketide synthase + + + + –
P87025 THR1 reductase – – – + +
Q12634 BUF/BUF1 undefined + + + + +
Q2LK92 BcPIC5/BcFKBP12 rapamycin sensitivity + + + + +
Q4UQD0 XC_3703 cyclic di-GMP effector + + + – +
Q4UTV7 XC_2466 aspartate alpha-decarboxylase + + + + +
Q4UUL4 XC_2203 nucleotide diphosphate kinase + + + + +
Q58PW8 HsvA hrp-associated systemic virulence – – – – +
Q5H3K9 ColR undefined + + + + +
Q6RKH3 PKS7 polyketide synthase + + + – +
Q6RKH4 PKS6 polyketide synthase + + + – +
Q6RKH5 PKS5 polyketide synthase + + + – –
Q7WTQ9 AcrB multidrug efflux pump + + + + +
Q8PM59 PstB phosphate metabolism + + + + +
Q8XSV8 FabG2 3-ketoacyl-acyl carrier protein reduc-

tase
+ + + + +

Q8Y0J2 FabG1 3-ketoacyl-acyl carrier protein reduc-
tase

+ + + + +

(continued on next page)

Alvarenga et al. (2020), PeerJ, DOI 10.7717/peerj.9158 16/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.9158#supp-1
https://www.uniprot.org/uniprot/A0A0K0GHK1
https://www.uniprot.org/uniprot/A0A0K0GI30
https://www.uniprot.org/uniprot/A0A0U1YU79
https://www.uniprot.org/uniprot/A4K9H6
https://www.uniprot.org/uniprot/A4QUT2
https://www.uniprot.org/uniprot/B0LFQ7
https://www.uniprot.org/uniprot/C5A846
https://www.uniprot.org/uniprot/C5A9K4
https://www.uniprot.org/uniprot/D4HUY4
https://www.uniprot.org/uniprot/D4HX24
https://www.uniprot.org/uniprot/D4HXR8
https://www.uniprot.org/uniprot/D4I307
https://www.uniprot.org/uniprot/F5HCK8
https://www.uniprot.org/uniprot/G4ML75
https://www.uniprot.org/uniprot/G4MTK2
https://www.uniprot.org/uniprot/G4MXC5
https://www.uniprot.org/uniprot/G4N4N6
https://www.uniprot.org/uniprot/G4NCL5
https://www.uniprot.org/uniprot/I1RSU2
https://www.uniprot.org/uniprot/P87025
https://www.uniprot.org/uniprot/Q12634
https://www.uniprot.org/uniprot/Q2LK92
https://www.uniprot.org/uniprot/Q4UQD0
https://www.uniprot.org/uniprot/Q4UTV7
https://www.uniprot.org/uniprot/Q4UUL4
https://www.uniprot.org/uniprot/Q58PW8
https://www.uniprot.org/uniprot/Q5H3K9
https://www.uniprot.org/uniprot/Q6RKH3
https://www.uniprot.org/uniprot/Q6RKH4
https://www.uniprot.org/uniprot/Q6RKH5
https://www.uniprot.org/uniprot/Q7WTQ9
https://www.uniprot.org/uniprot/Q8PM59
https://www.uniprot.org/uniprot/Q8XSV8
https://www.uniprot.org/uniprot/Q8Y0J2
http://dx.doi.org/10.7717/peerj.9158


Table 7 (continued)

UniProt
accession

Protein Function UFV-E1 CENA114 UFV-OR1 SPC 951 UFV-L1

Q9C1T0 ARG1 argininosuccinate lyase + + + + +
Q9UWF0 CAM undefined – – – – +

processes (accessions A0A0K0GHK1, A0A0K0GI30, A4K9H6 and C5A846), but since
two-component systems control behavior not only during pathogenicity, but also in cell
communication and environmental adaptation (Zschiedrich, Keidel & Szurmant, 2016),
these proteins might also have biological roles other than plant colonization.

The remaining protein sequences with similarity to PHI-base entries could have
important roles for plant colonization. FiveBrasilonema sequences have presented similarity
with proteins involved in regulatory cascades for virulence (D4HUY4, D4HX24, Q4UQD0,
Q58PW8 and Q5H3K9) (Oh, Kim & Beer, 2005; Subramoni et al., 2012; An et al., 2014;
Ancona, Li & Zhao, 2014; Santander et al., 2014). Two hypothetical proteins from PHI-base
(G4NCL5 and Q2LK92) presenting similarity to Brasilonema sequences were previously
shown to have significant effects on plant pathogenicity, including severe symptoms like
necrosis (Gioti et al., 2006; Jeon et al., 2007). Three copies of the twitching motility gene
pilT were annotated in the UFV-E1 genome, important for spreading pathogen cells on the
surface of the host (Weller-Stuart et al., 2017). Three translated protein sequences from the
UFV-E1 genome have shown similarity with catalase-peroxidases and peroxiredoxins from
PHI-base (accessions A4QUT2, B0LFQ7 andG4MXC5), enzymes with very important roles
in themaintenance of redoxhomeostasis and the protection of pathogen cells fromoxidative
damage brought by hydrogen peroxide produced by host cells (Tanabe et al., 2011; Fu et
al., 2014;Mir et al., 2015; Santander, Figàs-Segura & Biosca, 2018). Genes for other proteins
potentially involved in detoxification have also been predicted, including multidrug efflux
pumps (D4HXR8 and Q7WTQ9), which may confer resistance to phytoalexins (Burse,
Weingart & Ullrich, 2004), and S-(hydroxymethyl)gluthatione dehydrogenase (G4N4N6),
which is produced by phytopathogens as protection against damage from nitric oxide
(Zhang et al., 2015b).

Although the identification of sequences similar to virulence factors in the Brasilonema
genomes represents a potential for these cyanobacteria to cause damage to plants, their role
within Brasilonema interactions with their hosts warrants further functional studies for
the evaluation of the conditions under which these genes can be expressed. Nevertheless,
except for one gene encoding a putative secreted protein that is likely a distant homolog
of the Hop effector protein (Table 5), which is also found in other cyanobacteria with a
presumed function of kinase (Zhang et al., 2016), the type III secretion system as well as
its effectors appear to be completely absent in the assembled Brasilonema genomes. This
is in agreement with observations for other cyanobacteria showing that they present the
types I, II and IV secretion systems, but not the type III (Gonçalves et al., 2019). Since the
transmission of this secretion system can occur either by vertical or horizontal transfer
(Jackson et al., 2011), its absence in Brasilonema spp. together with the lack of evidence
for horizontal transfer in the encoding of other molecules provides further evidence that
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leaf damage in this species emerged independently and not from the acquisition of genetic
material from plant pathogens.

The role of type III secretion systems together with cell wall-degrading enzymes,
serine proteases, phytohormones, siderophores and exopolysaccharides, among other
molecules, has been increasingly recognized in plant pathogenesis (Lindeberg, 2012;Melotto
& Kunkel, 2013). Most phytopathogens that affect plant productivity (including species
of Xanthomonas, Pseudomonas, Agrobacterium, Ralstonia and Erwinia) are gram-negative,
as are cyanobacteria, and one of the main mechanisms of virulence and pathogenicity
of these phytopathogens is the type III secretion system, through which effector proteins
are injected into host tissues, bringing about several functions that promote pathogenic
processes (Sherif et al., 2015). Consequently, even if potential virulence factors, plant cell
wall-degrading enzymes and other molecules were produced by the cyanobacteria in
contact with their hosts, the absence of the type III secretion system in Brasilonema spp. is
therefore a great obstacle for these microbes to actively infect plant cells.

CONCLUSIONS
Brasilonema octagenarum UFV-E1 efficient growth and colonization of the phyllosphere
was shown to cause lighter green areas on Eucalyptus urograndis leaves as a result of
the decrease in the Chl a/b ratio. Sequences similar to known virulence factors from
phytopathogens were found not only in the genome of B. octagenarum UFV-E1, originally
isolated from damaged E. urograndis leaves, but also in the genome of B. octagenarum
UFV-OR1, isolated from orchid leaves but not reported as causing damage to its host.
However, none of these sequences were located within horizontally transferred regions,
suggesting that horizontal gene transfer did not play a significant role in the emergence
of the capacity for damaging leaves by Brasilonema. If these proteins also act as virulence
factors, leaf damage by this species may be either restricted in host range or triggered by
a more complex, uncommon set of factors making it a phenomenon of rare occurrence
and thus not commonly observed. Similar sequences were also found in the genomes of
B. octagenarum CENA114, obtained from a wet iron water pipe, B. bromeliae SPC 951 and
Brasilonema sp. UFV-L1, isolated respectively from bromeliad and ligustrum leaves, which
could suggest that the potential for leaf damage is not restricted to a single phyllosphere
species, but also present in Brasilonema strains from other habitats and species.

Nevertheless, it is unlikely that these cyanobacteria could be capable of injecting any
virulence factors and effectors into their plant hosts considering that the type III secretion
system is the main vehicle of infection in known phytopathogenic bacteria but it is absent
in this genus. Therefore, even if virulence factors could be expressed by the cyanobacteria
in contact with plants, they appear to have no way of reaching the cytoplasm of their
hosts since their genomes do not encode the structural proteins necessary for this process.
This makes damage by B. octagenarum largely an indirect consequence of the growth of
cyanobacterial mats on the leaf surface, causing the blockage of sunlight and hindering
photosynthesis by the host, which could possibly progress into more severe consequences
after extended colonization. It is therefore possible that other epiphyllic cyanobacteria,
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even those that do not produce any potential virulence factors, also cause similar damage
if specific environmental conditions allow for their biomass to achieve significant volume.
Consequently, even though epiphyllic cyanobacteria are traditionally thought of as being
universally beneficial to their hosts, benefits to plants may come at a cost that may
outbalance them when certain conditions that greatly favor cyanobacterial growth are
met.

ACKNOWLEDGEMENTS
We acknowledge the late Prof. Rosane Aguiar for designing and advising the experiments
on leaf colonization by Brasilonema and providing invaluable contributions to the field of
cyanobacteriology in Brazil. We would also like to thank the reviewers for their insightful
comments and thoughtful contributions, which have greatly improved the manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the São Paulo Research Foundation (FAPESP) (grants #
2013/50425-8 toMarli F. Fiore, #2015/14600-5 and #2018/01563-2 toDanilloO. Alvarenga)
and the National Council for Scientific and Technological Development (CNPq) (grants #
310244/2015-3 to Marli F. Fiore, #302599/2016-9 to Alessandro M. Varani). The funders
had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
São Paulo Research Foundation (FAPESP): #2013/50425-8, #2015/14600-5, #2018/01563-2.
National Council for Scientific and Technological Development (CNPq): #310244/2015-3,
#302599/2016-9.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Danillo O. Alvarenga and Maione W. Franco conceived and designed the experiments,
performed the experiments, analyzed the data, prepared figures and/or tables, authored
or reviewed drafts of the paper, and approved the final draft.
• Kaarina Sivonen analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.
• Marli F. Fiore conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the paper, and approved the final draft.
• Alessandro M. Varani conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the paper, and approved the final draft.

Alvarenga et al. (2020), PeerJ, DOI 10.7717/peerj.9158 19/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.9158


Data Availability
The following information was supplied regarding data availability:

The sequences are available at GenBank: CP030118–CP030123, QMEA00000000,
QMEB00000000, QMEC00000000.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.9158#supplemental-information.

REFERENCES
Adams DG, Bergman B, Nierzwicki-Bauer SA, Rai AN, Schüssler A. 2013. Cyanobac-

terial plant symbioses. In: Rosenberg E, DeLong EF, Stackebrandt E, Lory S,
Thompson F, eds. The prokaryotes: prokaryotic biology and symbiotic associations.
Berlin: Springer-Verlag, 359–400.

Aguiar R, Fiore MF, FrancoMW, Ventrella MC, Lorenzi AS, Vanetti CA, Alfenas
AC. 2008. A novel epiphytic cyanobacterial species from the genus Brasilonema
causing damage to Eucalyptus leaves. Journal of Phycology 44:1322–1334
DOI 10.1111/j.1529-8817.2008.00584.x.

Akhter S, Aziz RK, Edwards RA. 2012. PhiSphy: a novel algorithm for finding prophages
in bacterial genomes that combines similarity- and composition-based strategies.
Nucleic Acids Research 40:e126 DOI 10.1093/nar/gks406.

AllenMM. 1968. Simple conditions for growth of unicellular blue–green algae on plates.
Journal of Phycology 4:1–4 DOI 10.1111/j.1529-8817.1968.tb04667.x.

Alvarenga DO,Moreira LM, Chandler M, Varani AM. 2018. A practical guide for
comparative genomics of mobile genetic elements in prokaryotic genomes. In:
Setubal JC, Stoye PF, Stadler PF, eds.Methods in molecular biology 1704: comparative
genomics. New York: Humana Press, 213–242.

An S, Carly DL, McCarthy Y, Murdoch SL,Ward J, Febrer M, Dow JM, Ryan RP. 2014.
Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence.
PLOS ONE 10:e1004429 DOI 10.1371/journal.ppat.1004429.

Ancona V, LiW, Zhao Y. 2014. Alternative sigma factor RpoN and its modulation
protein YhbH are indispensable for Erwinia amylovora virulence. Molecular.
Molecular Plant Pathology 15:58–66 DOI 10.1111/mpp.12065.

Bankevich A, Nurk S, Antipov D, Grevich AA, DvorkinM, Kulikov A, Lesin VM,
Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler
G, AlekseyevMA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm
and its applications to single-cell sequencing. Jornal of Computational Biology
19:455–477 DOI 10.1089/cmb.2012.0021.

Becerra-Absalón I, Rodarte B, Osorio K, Alba-Lois L, Segal-Kischinevzky C, Montejano
G. 2013. A new species of Brasilonema (Scytonemataceae, Cyanoprokaryota) from
Tolantongo, Hidalgo, Central Mexico. Fottea 13:25–38 DOI 10.5507/fot.2013.003.

Alvarenga et al. (2020), PeerJ, DOI 10.7717/peerj.9158 20/27

https://peerj.com
http://www.ncbi.nlm.nih.gov/nuccore/CP030118
http://www.ncbi.nlm.nih.gov/nuccore/CP030123
http://www.ncbi.nlm.nih.gov/nuccore/QMEA00000000
http://www.ncbi.nlm.nih.gov/nuccore/QMEB00000000
http://www.ncbi.nlm.nih.gov/nuccore/QMEC00000000
http://dx.doi.org/10.7717/peerj.9158#supplemental-information
http://dx.doi.org/10.7717/peerj.9158#supplemental-information
http://dx.doi.org/10.1111/j.1529-8817.2008.00584.x
http://dx.doi.org/10.1093/nar/gks406
http://dx.doi.org/10.1111/j.1529-8817.1968.tb04667.x
http://dx.doi.org/10.1371/journal.ppat.1004429
http://dx.doi.org/10.1111/mpp.12065
http://dx.doi.org/10.1089/cmb.2012.0021
http://dx.doi.org/10.5507/fot.2013.003
http://dx.doi.org/10.7717/peerj.9158


Bengtsson J, Eriksson KM, HartmannM,Wang Z, Shenoy BD, Grelet GA, Abarenkov
K, Petri A, RosenbladMA, Nilsson RH. 2011.Metaxa: a software tool for automated
detection and discrimination among ribosomal small subunit (12S/16S/18S)
sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in
metagenomes and environmental sequencing datasets. Antonie van Leeuwenhoek
100:471 DOI 10.1007/s10482-011-9598-6.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics 30:2114–2120 DOI 10.1093/bioinformatics/btu170.

Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R,
Parrello B, Pusch GD, Shukla M, 3rd ThomasonJA, Stevens R, Vonstein V, AR7
Wattam, Xia F. 2015. RASTtk: a modular and extensible implementation of the
RAST algorithm for building custom annotation pipelines and annotating batches
of genomes. Scientific Reports 5:8365 DOI 10.1038/srep08365.

Bukatsch F. 1972. Bemerkungen zur doppelfärbung astrablau-safranin.Mikrokosmos
61:255.

Burse A,Weingart H, UllrichMS. 2004. The phytoalexin-inducible multidrug efflux
pump AcrAB contributes to virulence in the fire blight pathogen, Erwinia amylovora.
Molecular Plant Microbe Interactions 17:43–54 DOI 10.1094/MPMI.2004.17.1.43.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden
TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421
DOI 10.1186/1471-2105-10-421.

Carver T, Harris SR, BerrimanM, Parkhill J, McQuillan JA. 2012. Artemis: an inte-
grated platform for visualization and analysis of high-throughput sequence-based
experimental data. Bioinformatics 15:464–469 DOI 10.1093/bioinformatics/btr703.

Cooley RN, Monk TP, McLoughlin SB, Foster SG, Dancer JE. 1999. Gene disruption and
biochemical characterisation of 3-isopropylmalate dehydrogenase from Stagonospora
nodorum. Pesticide Science 55:364–367
DOI 10.1002/(SICI)1096-9063(199903)55:3<364::AID-PS910>3.0.CO;2-K.

Dai Y, Shen Z, Liu Y,Wang L, Hannaway D, Lu H. 2009. Effects of shade treatment on
the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of
Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany
65:177–182 DOI 10.1016/j.envexpbot.2008.12.008.

Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinfor-
matics 26:2460–2461 DOI 10.1093/bioinformatics/btq461.

Eichinger V, Nussbaumer T, Platzer A, Jehl MA, Arnold R, Rattei T. 2016. Effective
DB–updates and novel features for a better annotation of bacterial secreted proteins
and type III, IV, VI secretion systems. Nucleic Acids Research 44:D669–D674
DOI 10.1093/nar/gkv1269.

Feng SX, Ma JC, Yang J, Hu Z, Zhu L, Bi HK, Sun YR,Wang HH. 2015. Ralstonia
solanacearum fatty acid composition is determined by interaction of two 3-ketoacyl-
acyl carrier protein reductases encoded on separate replicons. BMCMicrobiology
15:223 DOI 10.1186/s12866-015-0554-x.

Alvarenga et al. (2020), PeerJ, DOI 10.7717/peerj.9158 21/27

https://peerj.com
http://dx.doi.org/10.1007/s10482-011-9598-6
http://dx.doi.org/10.1093/bioinformatics/btu170
http://dx.doi.org/10.1038/srep08365
http://dx.doi.org/10.1094/MPMI.2004.17.1.43
http://dx.doi.org/10.1186/1471-2105-10-421
http://dx.doi.org/10.1093/bioinformatics/btr703
http://dx.doi.org/10.1002/(SICI)1096-9063(199903)55:3\lt 364::AID-PS910\gt 3.0.CO;2-K
http://dx.doi.org/10.1016/j.envexpbot.2008.12.008
http://dx.doi.org/10.1093/bioinformatics/btq461
http://dx.doi.org/10.1093/nar/gkv1269
http://dx.doi.org/10.1186/s12866-015-0554-x
http://dx.doi.org/10.7717/peerj.9158


Fiore MF, Sant’Anna CL, AzevedoMTP, Komárek J, Kaštovský J, Sulek J, Lorenzi AS.
2007. The cyanobacterial genus Brasilonema gen. nov. a molecular and phenotypic
evaluation. Journal of Phycology 43:789–798 DOI 10.1111/j.1529-8817.2007.00376.x.

Fu HY, Ren JH, Huang L, Li H, Ye JR. 2014. Screening and functional analysis of the per-
oxiredoxin specifically expressed in Bursaphelenchus xylophilus—the causative agent
of pine wilt disease. International Journal of Molecular Sciences 15:10215–20232
DOI 10.3390/ijms150610215.

Ganesan H, Rakitianskaia AS, Davenport CF, Tümmler B, Reva ON. 2008. The
SeqWord Genome Browser: an online tool for the identification and visualization
of atypical regions of bacterial genomes through oligonucleotide usage. BMC
Bioinformatics 9:333 DOI 10.1186/1471-2105-9-333.

Gioti A, Simon A, Pêcheur PLe, Giraud C, Pradier JM, ViaudM, Levis C. 2006. Expres-
sion profiling of Botrytis cinerea genes identifies three patterns of up-regulation in
planta and an FKBP12 protein affecting pathogenicity. Journal of Molecular Biology
358:372–386 DOI 10.1016/j.jmb.2006.01.076.
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