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Predicting therapeutic and side effects
from drug binding affinities
to human proteome structures

Ryusuke Sawada,1,2,4 Yuko Sakajiri,1,3,4 Tomokazu Shibata,1 and Yoshihiro Yamanishi1,3,5,*
SUMMARY

Evaluation of the binding affinities of drugs to proteins is a crucial process for identifying drug pharmaco-
logical actions, but it requires three dimensional structures of proteins. Herein, we propose novel compu-
tational methods to predict the therapeutic indications and side effects of drug candidate compounds
from the binding affinities to human protein structures on a proteome-wide scale. Large-scale docking
simulations were performed for 7,582 drugs with 19,135 protein structures revealed by AlphaFold
(including experimentally unresolved proteins), andmachine learningmodels on the proteome-wide bind-
ing affinity score (PBAS) profiles were constructed. We demonstrated the usefulness of the method for
predicting the therapeutic indications for 559 diseases and side effects for 285 toxicities. The method
enabled to predict drug indications for which the related protein structures had not been experimentally
determined and to successfully extract proteins eliciting the side effects. The proposed method will be
useful in various applications in drug discovery.

INTRODUCTION

The identification of drug pharmacological actions such as therapeutic efficacy and side effects is a challenging issue.1 Drugs exhibit thera-

peutic and side effects when they interact with target proteins in the human body and off-targets. The information on drug-protein interac-

tions provides important clues for identifying these types of effects. Currently, computational approaches, such as machine learning and

docking simulations, can give a deeper insight into drug-protein interactions.2–5 Machine learning methods can predict drug-protein inter-

actions with high accuracy when a training dataset of sufficient size is available, but they do not work well for target proteins with little prior

information on ligands. Docking simulation can estimate the binding affinity of a drug to a target protein by calculating the binding free en-

ergy even when no prior information on interaction is available, but it requires three-dimensional (3D) structures of target proteins.

Because the experimental determination of protein 3D structures is time- and cost-consuming, 3D structural data are available for a limited

number of proteins. Currently, there are approximately 200 million natural proteins with known amino acid sequences, while 3D structures

have been determined experimentally only for 180,000.6 For protein sequences encoded in the human genome, fully determined 3D struc-

tures are available for only 14%and partially determined 3D structures are available for only 21% (Figure S1A). 180,000 protein structures regis-

tered in the Protein DataBank (PDB) archive are considered to cover almost the entire fold space for monomeric proteins in the environ-

ment.7–10 In fact, a sequence similarity search for all human proteins against PDB entries has revealed that 46% and >90% of the proteins

are fully and partially homologous, respectively (Figure S1B), which suggests a possibility of predicting 3D structures for most human proteins.

Over the years, the computational prediction of protein 3D structures from amino acid sequences has been tackled using two approaches:

namely homology (e.g., MODELLER11 and SWISS-MODEL12) and ab initio (e.g., ROSETTA13 and I-TASSER14) modeling, but it has been a diffi-

cult task.15 Recently, artificial intelligence (AI) technologies including transformers have been used for predicting protein 3D structures and

have been shown to outperform conventional homologymodeling techniques and ab initiomethods (RaptorX,16 DMPFold,17 trRosetta,18 and

AlphaFold version 119). In particular, AlphaFold version 220 won the Critical Assessment of Structure Prediction 1421 competition with unprec-

edented success and thus had a tremendous impact on the field of structural biology.22–25 The information on protein 3D structures revealed

by AlphaFold26 is a useful resource for medical and pharmaceutical research.

In this study, we propose novel computational methods to predict the therapeutic indications and side effects of drug candidate com-

pounds using the 3D structures of human whole proteins revealed by AlphaFold. We performed large-scale docking simulations of each

drug on all human protein structures, which was previously impossible to achieve thus far. The calculated binding affinities to all the proteins

(including structurally resolved and unresolved proteins) of each drug were summarized to create the proteome-wide binding affinity score
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Figure 1. Workflow of the proposed drug discovery methods using AlphaFold

(A) Structures of the drugs were obtained from KEGG DRUG.

(B) 3D structural data for all human proteins were retrieved from AlphaFoldDB.

(C) Ligand-binding pockets were detected for all human protein structures, and the binding affinities for all drug-protein pairs were assessed.

(D) Estimated binding affinities were compiled to generate the proteome-wide binding affinity score (PBAS) profiles.

(E and F) Using PBAS profiles, the prediction of potential drug therapeutic indications (E) and side effects (F) was conducted.
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(PBAS) profile. We show the usefulness of the method on the prediction of putative therapeutic indications and side effects of drugs from the

PBAS profiles with machine learning models. The proposed methods are considered useful in various applications for drug discovery.

RESULTS

Workflow of the proposed methods for predicting therapeutic indications and side effects

Theworkflowof the proposedmethods for predicting the therapeutic indications and side effects of drug candidate compounds using the 3D

structures of human whole proteins is shown in Figure 1. First, the 3D structures of all human proteins were obtained from the AlphaFold pro-

tein structure database26 (AlphaFoldDB) and the structures of all drugs were obtained from the Kyoto Encyclopedia of Genes and Genomes

(KEGG) DRUG database.27 Next, we identified the ligand-binding pockets in all the protein structures and performed docking simulations for

all possible drug-protein pairs to determine the binding affinities of drugs to proteins. The binding free energy values calculated from the

simulations weremerged to create the PBAS profiles of 7,582 drugs for 19,135 human protein structures. In this study, we show the usefulness

of the PBAS profiles on the prediction of therapeutic indications and side effects of drugs with machine learning models.

Docking simulations for possible pairs of drugs and all human protein structures

We performed extensive docking simulations for all drugs and human proteins using AutoDock Vina28 for fast calculations. We evaluated the

binding affinities of all drug-protein pairs using 7,582 drugs and 19,135 protein structures (18,347 different proteins). The results of the docking

simulations were combined to create the PBAS profiles of all drugs, representing each of their binding affinities to all human proteins (center

heatmap in Figure 2). Figure S2 shows the approximate binding affinities of the structurally unresolved and resolved proteins separately. Until

now, the 3D structures of approximately 30% of all human proteins have beenmodeled experimentally (resolved and partially resolved on the

left side of the heatmap), making it impossible to conduct docking simulations for the unresolved proteins. AlphaFold and AutoDock Vina

provided the capability to predict the binding affinity of any drug for both resolved and unresolved proteins.

An example of docking poses with the PBAS profile is shown in Figure S3, where the 3D structure was predicted using AlphaFold for

ABL1 (AlphaFoldDB ID: AF-P00519-F1-model_v1) and its inhibitor nilotinib. The resulting ligand-protein binding structure (PDB ID: 3cs9) is

shown in gray, which indicates that the structure predicted using AlphaFold (blue) and the experimentally determined structure match

well (root-mean-square deviation [RMSD] of atomic positions = 0.464 Å). Furthermore, the docking pose of nilotinib (yellow) predicted by

the docking simulation was also consistent with experimentally determined structure (RMSD = 1.369 Å).
2 iScience 27, 110032, June 21, 2024



Figure 2. Proteome-wide binding affinity score (PBAS) profile and clustering analysis

The PBAS profiles created from the results of docking simulations for all drugs with all human proteins are shown in the center of the heatmap. The estimated

binding affinities are expressed as a gradient, with the horizontal and vertical axes representing proteins (19,135 structures) and drugs (7,582 drugs), respectively.

Proteins and drugs are clustered separately, and the labels are shown for each cluster. The dendrogram on the left side of and under the heatmap shows the

clusters of drugs (D1–D8) and proteins (P1–P5), respectively. Enrichment analysis was performed for the protein and drug clusters. The table above the heatmap

reflects the results of the enrichment analysis of the structural domain groups of InterPro for the protein clusters. The number of proteins in each structural

domain group is shown as a gradient. The table on the right side of the heatmap contains the outcomes of the enrichment analysis for the Anatomical

Therapeutic Chemical (ATC) classification system groups for the drug clusters. The number of drugs enriched in the ATC group is marked as a gradient.
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Binding affinity-based protein clusters correlate with protein folds and structural domains

Hierarchical clustering was performed on proteins based on the similarities in binding affinity of the PBAS profiles (Figure 2). The horizontal

and vertical dendrograms in the heatmap show the protein and drug clusters, respectively. The proteins and drugs were divided into five

(P1–P5) and eight (D1–D8) clusters, respectively, according to the distance between clusters.

For proteins, we focused on their structural domains and conducted an enrichment analysis using database for annotation, visual-

ization, and integrated discovery (DAVID).29 The top table of the heatmap in Figure 2 shows the enrichment analysis results. Among the

significantly enriched domain structural groups, the top five are indicated by the gradient of table cells with respect to the number of

enriched proteins. The P1 group exhibited several motifs containing nuclear-localized proteins, such as the transcription factors ‘‘zinc

finger C2H2-type/integrase DNA-binding domain’’ and ‘‘Krueppel-associated box.’’ The P2 group, like P1, not only hadmany zinc finger-

related transcriptional regulatory domains but was also composed of different types of transcriptional regulatory domains, including

‘‘homeodomain-like’’; ‘‘homeodomain’’; and ‘‘homeobox, conserved site.’’ In the P3 group, proteins consisting of G protein-coupled

receptor (GPCR)-related domains in addition to zinc finger-related domains were identified. The P4 group included many domains

related to protein phosphorylation signaling, such as ‘‘P loop containing nucleoside triphosphate hydrolase’’; ‘‘protein kinase-like

domain’’; ‘‘WD40/YVTN repeat-like-containing domain’’; ‘‘protein kinase, catalytic domain’’; and ‘‘WD40 repeat.’’ The P5 group was

composed of more proteins associated with immunoglobulin-related domains. These results suggest that protein clusters derived

from the PBAS profiles correlate with protein folds and structural domains.

Binding affinity-based drug clusters correlate with polypharmacology and target specificity

Next, we evaluated the clustered groups of drugs. We determined which class of the Anatomical Therapeutic Chemical (ATC) classification

system corresponded to the drugs of each cluster group (table on the right side of the heatmap in Figure 2). Some clusters had a correlation

with the enrichedATC classification class. For example, antipsychotics (ATCgroupN) were abundant not only in cluster groupsD7 andD8 but
iScience 27, 110032, June 21, 2024 3
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also in the relatively distant D3 cluster group. These findings suggest that drugs form cluster groups based on their binding affinity, regardless

of the type of therapeutic indication (ATC classification).

The ATC classification system is based on the targeted organ and the disease, for which the drug is indicated; however, even drugs for the

same diseasemay have different binding proteins andmechanisms of action, whichmay be explained by the year in which the drugwas devel-

oped and approved for a therapeutic use.30 Therefore, we examined the distribution for the drug approval year of each drug cluster (Fig-

ure S4). The leftmost dendrogram displays the clusters of drug-binding affinity reflected in a gradient in the middle (Figure S4). Clusters

D1–D4 and D5–D8 were divided into two main groups depending on distances in the dendrogram, and the former group showed a lower

binding affinity than the latter group. Furthermore, the former group represented more recently approved drugs. It implies that in recent

years, there has been a trend toward the development of drugs with lower average binding affinities to human proteins.

In recent years, drugs that bind more strongly to specific target molecules tend to be approved.31,32 Therefore, we examined the

correlation between the drug’s year of approval in the PBAS profiles, its molecular weight, and logP values. The molecular weight

and logP values of drugs in the PBAS profiles tended to increase from the earlier to later times (Figure S5A). For each drug, we compared

the average value of the overall binding affinity with that of the top 10% with the highest value for this parameter (Figure S5B). The

average binding affinity of the drug to all proteins had a decreasing trend in recent years, whereas that of the top 10% of proteins

had an increasing trend in recent years. An increase in the molecular weight of each drug is associated with its structural complexity,

which results in an elevated binding specificity to the protein pocket site without gaps. An increase in the logP value may also indicate

that the drug is more hydrophobic, subsequently causing more selective binding to a few target proteins. Despite the decrease in bind-

ing strength to most proteins, the opposite trend for specific proteins may be explained by these increases in molecular weight and logP

values and the associated binding affinity and strength to specific proteins. These results suggest that drug clusters derived from the

PBAS profiles correlate with polypharmacology and target specificity.

Performance test with CASF-2016 core set

We applied our proposed method to the validation dataset of CASF-2016 core set33 and computed the docking scores. Subsequently, we

examined the correlation between these calculated docking scores and the experimentally determined binding constants, comparing

them with those of other methodologies (Figure S6). Values for other methodologies were obtained from the ‘‘Table S4’’ of a study by Su

et al.33 Figure S7 illustrates a detailed plot of our proposed method’s performance. The validation set encompasses the entire CASF-2016

core set, which includes binding structures between protein complex interaction interfaces and ligands. Notably, our proposed method

does not consider protein complexes. To ensure a fair evaluation, we generated a subdataset comprising only monomers (Monomer).

Furthermore, we created a human protein-only (PBAS protein-only) subdataset out of the monomer subdataset to evaluate the performance

of our proposed PBAS. We evaluated the performance of these three validation sets.

Upon utilizing all validation data, we observed a correlation coefficient of 0.417. Furthermore, when utilizing the monomer set excluding

complexes, a slight enhancement in performance was noted, with a correlation coefficient of 0.508.When considering only proteins within the

PBAS of the monomer set, the correlation coefficient improved to 0.596. Our proposed method demonstrated improved performance

compared to other methodologies, with results closely aligning with those of ‘‘AutoDock Vina,’’ which employs the same docking simulation

software.

Comprehensive prediction of drug therapeutic indications based on binding affinity to all human protein structures

We predicted the potential therapeutic indications of drugs using the PBAS profiles. The prediction was conducted using a template match-

ingmethodwith information on therapeutic target proteins for various diseases.2 The previous templatematchingmethodwas dependent on

known target protein information, so applicability was limited to approximately 4,000 proteins with information on at least one known ligand.

We proposed to use the PBAS profiles as an input in the template matching method, enabling us to take into account the interactions with a

much larger number of proteins in the prediction process of drug therapeutic indications. The stronger a drug binds, the higher its predictive

score for the applicable disease. The proposed method was applied to 7,582 drugs for 559 diseases.

Part of the drug-protein-disease network predicted using the proposed method is shown in Figure 3. For example, nilotinib, a tyrosine

kinase inhibitor, was predicted to bind to the tyrosine kinase ABL1, one of its original therapeutic target proteins in the treatment of myeloid

leukemia. Thus, it was confirmed that the proposed method was able to reproduce known drug indications based on the calculated binding

affinity.

Table S1 shows the predicted therapeutic indications of the parturition-inducing drug cloprostenol. The original therapeutic indication of

cloprostenol, ‘‘accelerated parturition,’’ was predicted to have the No.1 ranking. The results of a docking simulation with the prostaglandin F

receptor, the drug’s original target, are shown in Figure 4A. The binding affinity used for ranking was�10.1 kcal/mol, which was the top dock-

ing score (Table S2). Other newly predicted indications were ophthalmic hypertension and glaucoma. Interestingly, the therapeutic indica-

tions of cloprostenol in lowering intraocular pressure have been reported in animals, and its analogs have been used to treat increased intra-

ocular pressure in humans.34–36

As another example, Table S3 shows the results of the predicted therapeutic indications for the antidiabetic drug ertugliflozin. The original

therapeutic indication of ertugliflozin, i.e., ‘‘diabetes mellitus 2,’’ was predicted with a ranking of 11. Figure 4B shows the docking pose of

ertugliflozin and SLC5A2. The estimated binding affinity was �10.426 kcal/mol, indicating strong binding and an overall high ranking

(Table S4). Other predicted indications included cardiovascular disease and atherosclerotic cardiovascular disease. Ertugliflozin was reported
4 iScience 27, 110032, June 21, 2024



Figure 3. Small part of the drug-protein-disease network predicted by the proposed methods using proteome-wide binding affinity score profiles

Blue circles, green rhombuses, and red rectangles stand for drugs, diseases, and proteins, respectively. Orange broken and gray lines indicate the relationships

between the drugs and proteins obtained from the docking simulation results and those between proteins and possible disease indications, respectively.

ll
OPEN ACCESS

iScience
Article
to be effective in treating cardiovascular disease according to a completed phase 3 study.37 Thus, this method enabled us to predict a po-

tential therapeutic effect of ertugliflozin.

Finally, Table S5 shows the results of predicted therapeutic indications for the analgesic drug buprenorphine. The original therapeutic

indication for buprenorphine, ‘‘cancer pain,’’ was predicted with a ranking of 15. The binding affinity to the mu-opioid receptor, which is

the main target of this drug, indicates that the original therapeutic indications were correctly predicted. Figure 4C shows the docking
Figure 4. Protein-compound binding structures estimated by docking simulation

Compounds and proteins are shown as a red rod and an ivory ribbon model, respectively.

(A) Overall structure of PTGFR docked with cloprostenol.

(B) Overall structure of SLC5A2 conjugated with ertugliflozin.

(C) Overall structure of OPRM1 merged with buprenorphine. All protein structures were estimated using AlphaFold.

iScience 27, 110032, June 21, 2024 5
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pose of buprenorphine and OPRM1. The binding affinity was high (Table S6). Although PDB only registered the 3D structures of similar

sequences for the mu-opioid receptor, this confirms that the therapeutic indication prediction can be made even if the experimentally deter-

mined 3D structure of the target protein is unavailable. Additional therapeutic indications of buprenorphine were predicted, including inflam-

matory diseases in the intestinal tract. Buprenorphine was previously shown to reduce intestinal inflammation in a mouse model.38

Experimental validation of binding affinities of PBAS for drug therapeutic indications

In order to substantiate the in silico findings, we conducted experimental validation through competitive binding assays for a drug across 30

human proteins (Table S7) associated with pharmacological actions, including therapeutic effects and side effects. Metergoline, known for its

vasodilatory properties to alleviate headache symptoms, acts as both a serotonin antagonist and dopamine agonist.39 A binding assay was

conducted to confirmmetergoline’s interaction with 30 proteins (Table S8). The proposedmethod predicted strong binding ofmetergoline to

serotonin receptor and dopamine receptor groups, which are known interacting proteins, and this was corroborated by verification experi-

ments. For instance, the inhibition rate for 5-HT1B receptor (HTR1B) was 100.4 (Inh %). The docking score stood at�10.3 (kcal/mol), validating

our docking and assay findings. Despite a weak correlation coefficient of �0.191 between overall experimental values and the proposed

method’s binding affinity, the highest predicted binding affinity was observed for Acetylcholinesterase (ACHE), which was confirmed in exper-

iments. Consequently, metergoline’s efficacy against central nervous system degenerative diseases like Alzheimer’s disease is anticipated.

Experimental protocols for proteins were provided in ‘‘in vitro binding and enzymatic assays’’ section in the supplementary information.

Comprehensive prediction of drug side effects based on binding affinities to all human protein structures

Next, we predicted drug side effects using the PBAS profiles. The binding affinities of each drug to all humanproteins were used as features in

the L1-regularized logistic regression model, a sparsity-induced classifier. There have been previous studies on the side effect prediction

based on the interactions of drugs with multiple proteins using machine learning models,4,5 but previous methods used only known drug-

protein interactions involving proteins with at least one known ligand, which was a serious limitation. An advantage of our proposed method

was the use of information on the interactions with all human proteins.

We compared the side effect prediction accuracy of the proposed method with that of existing techniques. The proposed PBAS profile

was compared with the following three types: (1) chemical substructure profile based on molecular structure descriptors, which is referred to

as a Fingerprint profile40; (2) target protein profile based on drug-protein interactions estimated using a structural similarity search, which is

referred to as the target estimation with similarity search (TESS) profile2; and (3) target protein profile based on drug-protein interactions esti-

mated by supervised learning, which is referred to as the target estimation with logistic regression (TELR) profile.5 Furthermore, we compared

the performance when combining the PBAS profile and the three profiles.

We evaluated the performance of each profile-based prediction with 5-fold cross-validation experiments using known drug side effects

obtained from the SIDERdatabase41 as gold standard data. The 5-fold cross-validation experimentwas repeated 30 times, and the area under

the ROC curve (AUC) and area under the Precision-Recall (AUPR) curve scores were calculated. Figure 5 shows the distribution of the AUC and

AUPR scores in repeated experiments. Table S9 shows themean value and standard deviation of the distribution of theAUCandAUPR scores.

The proposed PBAS profile outperformed the other three profiles at the significant level in terms of both AUC and AUPR. One explanation

about this observation would be that previous methods focused on a limited number of target proteins, whereas our approach allows for side

effect predictions by considering interactions with all humanproteins. In the case of combining PBAS and the other three profiles, it was found

that AUC and AUPR remained almost unchanged. Only the combination of TESS profile and PBAS significantly improved the performance.

Next, we made a large-scale side effect prediction of 7,582 drugs in KEGGDRUG and 285 side effects in SIDER. The side effect prediction

model was trained with all the drugs in SIDER, and the model was then applied to predicting the presence or absence of 285 side effects of

7,582 drugs. To evaluate the validity of the predicted side effects by our models, we elaborated the newly predicted side effects using inde-

pendent resources. For example, we used the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS), a dataset

that is independent of the side effect resources in Side Effect Resource (SIDER). SIDER, which was used for training, is a side effect dataset

collected primarily from drug inserts, whereas FAERS is a dataset collected from adverse drug events that occur after drugs are on themarket.

The number of overlapping drugs between 429 from SIDER and 1,673 from FAERS was 282. We examined whether the newly predicted side

effects using the SIDER-based model were actually reported in FAERS (Figure 5 and Table S9). The FAERS-based validation also showed that

the proposed PBAS profile exhibited higher AUC and AUPR values than the Fingerprint, TESS, and TELR profiles. These results suggest that it

is useful to consider the binding affinities of drugs to all human proteins in predicting drug side effects.

Drug-protein-side effect network reveals proteins eliciting side effects

The side effect prediction model has a feature extraction ability owing to the sparse modeling, so highly weighted proteins in the predictive

model can be considered important for the side effect and they are thought to be the proteins involved in the expression of side effects.

Actual weight values in the side effect predictive models are shown as a heatmap in Figure S8. It was observed that most weight values

were zeros and a small number of proteins were selected as important proteins for each side effect. Figure 6 shows a small part of drugs,

proteins, and side effects in the network diagram, where drug-protein links correspond to the drug-binding affinities to all human protein

structures, whereas protein side effect links correspond to the estimated weights in the predictive model. For example, the drug disulfiram

is predicted to cause nausea because it binds to opioid receptors. It is known that drug interactions with opioid receptors cause nausea as a

side effect.42 This implies that the predictive model successfully reproduced known drug-protein-side effect associations.
6 iScience 27, 110032, June 21, 2024



Figure 5. Performance evaluation on the side effect prediction

Asterisks indicate level of statistical significance: **p < 0.01. Upper two panels show the AUC (left) and AUPR (right) scores for the SIDER dataset, and lower two

panels show the scores for the FARES dataset. The results of replicates (n = 30) of cross-validation experiments for each of the seven profiles are shown. PBAS +

Fingerprint, PBAS + TESS, and PBAS + TELR represent the integrated profiles that combine PBAS with the other three profiles.
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Table S10 illustrates the examples of proteins that were regarded as important factors in causing side effects, and their validity was

confirmed through independent resources. The proteins for which our model extracted an association with side effects from the PBAS profile

are depicted further. For example, the insulin-inducible gene INSIG2 was identified as a protein responsible for weight gain. Consistently, it

has been previously reported that INSIG2 is a molecule associated with weight gain during drug use.43 A comprehensive evaluation of off-

target interactions is important for predicting the potential side effects of drugs in the human body.44,45 It is possible to elucidate the cause of

side effects from the viewpoint of binding proteins including off-targets, even if the association between side effects and proteins has not

been known. These results suggest that the proposed method is also useful for the biological interpretation of the mechanism of side effects

in terms of binding proteins.
DISCUSSION

Summary

In this study, we characterized the mode-of-action of drugs as per their binding affinities to the entire human protein structures revealed by

AlphaFold. Docking simulations for all possible pairs of drugs and human proteins were conducted, and the results were summarized as PBAS

profiles. We demonstrated the usefulness of the PBAS profile for predicting the therapeutic indications and side effects of drugs. We iden-

tified proteins that bind strongly to the drug fromPBAS profiles and constructed a three-way relationship between drug, protein, and disease.

For predicting drug side effects, the PBAS profiles were used as the feature vectors of the drugs inmachine learningmodels. Even for proteins

whose 3D structures had not been experimentally determined, we successfully made predictions of drug therapeutic indications and side

effects based on the binding affinities of the drugs with the protein 3D structures.

We used the proteome-wide structures revealed by AlphaFold for all human proteins in order to construct the PBAS profiles representing

the binding affinities of drugs to all human proteins. Hierarchical clustering analysis of the PBAS profiles uncovers the link between the protein

clusters and structural domain families. Moreover, the hierarchical clustering analysis revealed that drug clusters correlated with target spec-

ificity and drug approval year; the more recent the drug tends to have the higher binding affinity to specific target proteins and the lower

binding affinity to the other off-target proteins. The PBAS profiles may successfully reflect the fact that recent drugs are designed to bind

to specific target proteins and have fewer side effects.31,32
Interpretation and importance

We evaluated the effectiveness of our proposed PBAS profile using the CASF-2016 core set. We examined the correlation between these

calculated docking scores and the experimentally determined binding constants, comparing them with values obtained from other method-

ologies. The correlation coefficients for all pairs demonstrated moderate performance, comparable to other tests utilizing AutoDock Vina
iScience 27, 110032, June 21, 2024 7



Figure 6. Small part of the drug-protein-side effect network predicted using our method

Blue circles, red rectangles, and green rhombuses indicate drugs, proteins, and side effects, respectively. Orange-dashed and green-dotted lines show the drug-

protein relationships estimated from the docking simulation and the relationships between side effects and proteins with high weights in the predictive model,

respectively.
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(Figures S6 and S7). There is potential to enhance performance by incorporating alternative docking simulation techniques. Notably, perfor-

mance showed improvement when restricting the validation dataset to proteins utilized in PBAS. Additionally, in docking simulations employ-

ing structures predicted by AlphaFold, the utilization of human proteins tended to yield better results compared to non-human proteins.

The PBAS profiles revealed that the interaction patternwith all humanproteins variedmarkedly among the drugs. Somedrugswere bound

to only a small fraction of proteins, whereas other drugs were bound to many proteins. In fact, it has been shown that pharmaceutical com-

pounds may interact with more proteins than previously thought in vivo.44–48 Differences in the interaction patterns are difficult to explain

based only on drug action or efficacy. Although drug development research tends to focus on specific therapeutic proteins that are directly

associated with disease treatment, this study suggests that off-target activities on other proteins are also essential factors in evaluating both

efficacy and side effects.44

Limitations of the study

Our proposed method has several limitations. In the docking simulation of this study, only one ligand-binding pocket was considered per

protein; however, some proteins have multiple binding sites. For example, some drugs exert inhibitory or active effects by binding to the

allosteric site of target proteins (e.g., ivermectin and glutamate-gated chloride channel,49 omecamtiv mecarbil, and myosin50). In addition,

our study used only a fixed parameter for all docking simulations. For a more precise evaluation, we plan to perform docking simulations

for multiple-binding pockets with refined parameters in a future study. In this study, the protein structures used in the docking simulation

were those of a monomer. However, some proteins function as heteromeric or homomeric complexes, whereas some drugs actually target

the protein-protein binding interface of these complexes (e.g., benzodiazepine and gamma-aminobutyric acid type A receptor51). In the

future, we plan to use AlphaFold-Multimer52 and other methods to predict the structure of protein complexes and use them in docking sim-

ulations for the PBAS profiles.
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Software and algorithms

AutoDock Vina Version 1.1 https://vina.scripps.edu/

AutoSite Version 1.0 https://ccsb.scripps.edu/autosite/

Open Babel Version 3.1.0 https://openbabel.org/index.html

Open-Source PyMOL Version 2.5.0 https://github.com/schrodinger/pymol-open-source/

Python Version 3.9.11 https://www.python.org/downloads/

RDKit Version 2020.09.1.0 https://www.rdkit.org

Other

PBAS profiles This study https://yamanishi.cs.i.nagoya-u.ac.jp/pbas/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to the lead contact, Yoshihiro Yamanishi (yamanishi@i.nagoya-u.ac.jp).
Materials availability

This study did not generate new unique materials.
Data and code availability

� PBAS profiles, ligand-binding pocket information for docking simulation and four types of compound profiles for side effect predictive

models were available at https://yamanishi.cs.i.nagoya-u.ac.jp/pbas/.
� All data reported in this paper can be made available by lead contact upon request.
� This paper does not report the original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

In vitro binding and enzymatic assays

The validity of the results of Compound–protein interactions (CPIs) predicted by docking simulations was verified by binding studies.

The molecular targets for the binding studies were 30 proteins involved in therapeutic and side effects.53 The targets included 19

G-protein-coupled receptors, 2 ion channels, 6 enzymes, and 3 transporters expressed in the central nervous, cardiovascular, respi-

ratory, digestive, and renal systems. The 30 proteins are listed below: A2A Human Adenosine GPCR (A2A), a1A Human Adrenoceptor

GPCR (a1A), a2A Human Adrenoceptor GPCR (a2A), b1 Human Adrenoceptor GPCR (b1), b2 Human Adrenoceptor GPCR (b2), CB1

Human Cannabinoid GPCR (CB1), D1 Human Dopamine GPCR (D1), D2S Human Dopamine GPCR (D2S), H1 Human Histamine GPCR

(H1), H2 Human Histamine GPCR (H2), M1 Human Acetylcholine (Muscarinic) GPCR (M1), M3 Human Acetylcholine (Muscarinic) GPCR

(M3), d(DOP) Human Opioid GPCR (d (DOP)), k (KOP) Human Opioid GPCR (k (KOP)), m (MOP) Human Opioid GPCR (m(MOP)),

5-HT1A Human Serotonin GPCR (5-HT1A), 5HT1B Human Serotonin GPCR (5-HT1B), 5-HT2A Human Serotonin GPCR(5-HT2A),

5-HT2B Human Serotonin GPCR (5-HT2B), Cav1.2 (L-type) Rat Calcium Ion Channel (Dihydropyridine Site)(Cav1.2 (L-type)), hERG

Human Potassium Ion Channel [3H] Dofetilide (hERG), Lck Human TK kinase (Lck), COX-1 Human Cyclooxygenase (COX-1), COX-2

Human Cyclooxygenase (COX-2), Acetylcholinesterase, PDE3A Human Phosphodiesterase (PDE3A), PDE4D2 Human Phosphodies-

terase (PDE4D), NET Human Norepinephrine Transporter (NET), DAT Human Dopamine Transporter (DAT), Serotonin Transporter

(SET) Human SET.

For the Binding Assay, one of Radioligand binding, spectrofluorimetry and spectrophotometry was used. The inhibition rate (%Inh.) was

calculated bymeasuring the extent to which the additional compound inhibited the original ligand’s specific binding to the protein. Details of

the panel target list, which includes 30 target proteins, are given in Table S7.
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Details of experimental methods for each protein type

Assay no. 1: A2A Human Adenosine GPCR (A2A)

Human recombinant adenosine A2A receptors54 expressed in human HEK-293 cells are used in modified Tris-HCl buffer pH 7.4. A15 mg

aliquot is incubated with 50 nM [3H] CGS-21680 for 90 min at 25�C. Non-specific binding is estimated in the presence of 50 mM NECA. Re-

ceptors are filtered and washed, the filters are then counted to determine [3H] CGS- 21680 specifically bound. Compounds are screened

at 10 mM.

Assay no. 2:a1A Human Adrenoceptor GPCR (a1A)

Human recombinant adrenergic a1A receptors
55,56 expressed in humanChem-1 cells are used inmodifiedHEPES buffer pH 7.4. A 2 mg aliquot

is incubatedwith 0.6 nM [3H] Prazosin for 60min at 25�C. Non-specific binding is estimated in the presence of 10 mMphentolamine. Receptors

are filtered and washed, the filters are then counted to determine [3H] Prazosin specifically bound. Compounds are screened at 10 mM.

Assay no. 3:a2A Human Adrenoceptor GPCR (a2A)

Human recombinant adrenergic a2A receptors57,58 expressed in CHO-K1 cells are used in modified Tris-HCl buffer pH 7.4. A 2 mg aliquot is

incubated with 1.5 nM [3H] Rauwolscine for 60 min at 25�C. Non-specific binding is estimated in the presence of 10 mM WB-4101.

Receptors are filtered and washed, the filters are then counted to determine [3H] Rauwolscine specifically bound. Compounds are screened

at 10 mM.

Assay no. 4:b1 Human Adrenoceptor GPCR (b1)

Human recombinant adrenergic b1 receptors
59 expressed in CHO-K1 cells are used inmodified Tris-HCl buffer pH 7.4. A 25 mg aliquot is incu-

bated with 0.03 nM [125I] Cyanopindolol for 120 min at 25�C. Non-specific binding is estimated in the presence of 100 mM S (�)-Propranolol.

Receptors are filtered and washed, the filters are then counted to determine [125I] Cyanopindolol specifically bound. Compounds are

screened at 10 mM.

Assay no. 5:b2 Human Adrenoceptor GPCR (b2)

Human recombinant adrenergic b2 receptors
60 expressed in CHO cells are used in modified Tris-HCl buffer pH 7.4. A 50 mg aliquot is incu-

bated with 0.2 nM [3H] CGP-12177 for 60 min at 25�C. Non-specific binding is estimated in the presence of 10 mM ICI-118551. Receptors are

filtered and washed, the filters are then counted to determine [3H] CGP-12177 specifically bound. Compounds are screened at 10 mM.

Assay no. 6: CB1 Human Cannabinoid GPCR (CB1)

Human recombinant cannabinoid CB1 receptors
61,62 expressed in rat hematopoietic Chem-1 cells are used in modified HEPES buffer pH 7.4.

A 5 mg aliquot of membrane is incubated with 2 nM [3H]SR141716A for 60 min at 37�C. Non-specific binding is estimated in the presence of

10 mM CP 55,940. Membranes are filtered and washed 4 times and the filters are counted to determine [3H] SR141716A specifically bound.

Compounds are screened at 10 mM.

Assay no. 7: D1 Human Dopamine GPCR (D1)

Human recombinant dopamine D1 receptors
63,64 expressed in CHO cells are used in modified Tris-HCl buffer pH 7.4. A 20 mg aliquot is incu-

bated with 1.4 nM [3H] SCH-23390 for 120 min at 37�C. Non-specific binding is estimated in the presence of 10 mM (+)-butaclamol. Receptors

are filtered and washed, the filters are then counted to determine [3H] SCH-23390 specifically bound. Compounds are screened at 10 mM.

Assay no. 8: D2S Human Dopamine GPCR (D2S)

Human recombinant dopamine D2S receptors
65,66 expressed in CHO cells are used in modified Tris-HCl buffer pH 7.4. A 15 mg aliquot is incu-

bated with 0.16 nM [3H] Spiperone for 120min at 25�C. Non-specific binding is estimated in the presence of 10 mMhaloperidol. Receptors are

filtered and washed, the filters are then counted to determine [3H] Spiperone specifically bound. Compounds are screened at 10 mM.

Assay no. 9: H1 Human Histamine GPCR (H1)

Human recombinant histamine H1 receptors
67 expressed in CHO-K1 cells are used in modified Tris-HCl buffer pH 7.4. A 10 mg aliquot is incu-

bated with 1.2 nM [3H] Pyrilamine for 180 min at 25�C. Non-specific binding is estimated in the presence of 1 mM pyrilamine. Receptors are

filtered and washed, the filters are then counted to determine [3H] Pyrilamine specifically bound. Compounds are screened at 10 mM.

Assay no. 10: H2 Human Histamine GPCR (H2)

Human recombinant histamine H2 receptors
68 expressed in CHO-K1 cells are prepared in K-Na phosphate buffer pH 7.4. A 2 mg aliquot is

incubated with 0.1 nM [125I] Aminopotentidine for 120 min at 25�C. Non-specific binding is estimated in the presence of 3 mM Tiotidine. Re-

ceptors are filtered and washed, the filters are then counted to determine [125I] Aminopotentidine specifically bound. Compounds are

screened at 10 mM.
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Assay no. 11: M1 Human Acetylcholine (muscarinic) GPCR (M1)

Human recombinant muscarinic M1 receptors
69,70 expressed in CHO-K1 cells are used in modified Tris-HCl buffer pH 7.4. A 16 mg aliquot is

incubated with 0.8 nM [3H] N-Methylscopolamine for 120 min at 25�C. Non-specific binding is estimated in the presence of 1 mM Atropine.

Receptors are filtered and washed, the filters are then counted to determine [3H] N-Methylscopolamine specifically bound. Compounds are

screened at 10 mM.

Assay no. 12: M3 Human Acetylcholine (muscarinic) GPCR (M3)

Human recombinant muscarinic M3 receptors
69,70 expressed in CHO-K1 cells are used in modified Tris-HCl buffer pH 7.4. A 12 mg aliquot is

incubated with 0.8 nM [3H] N-Methylscopolamine for 120 min at 25�C. Non-specific binding is estimated in the presence of 1 mM atropine.

Receptors are filtered and washed, the filters are then counted to determine [3H] N- Methylscopolamine specifically bound. Compounds are

screened at 10 mM.

Assay no. 13:d(DOP) Human Opioid GPCR (d (DOP))

Human recombinant opiated1 receptors
71,72 expressed in HEK293 cells are used inmodified Tris-HCl buffer pH 7.4. A 9 mg aliquot is incubated

with 1.3 nM [3H] Naltrindole for 60 min at 25�C. Nonspecific binding is estimated in the presence of 1 mMNaltrindole. Receptors are filtered

and washed, the filters are then counted to determine [3H] Naltrindole specifically bound. Compounds are screened at 10 mM.

Assay no. 14: k (KOP) Human Opioid GPCR (k (KOP))

Human recombinant opiate k receptors73,74 expressed in human HEK-293 cells are used in modified Tris-HCl buffer pH 7.4. A 30 mg aliquot is

incubated with 0.6 nM [3H] Diprenorphine for 60 min at 25�C. Nonspecific binding is estimated in the presence of 10 mM naloxone. Receptors

are filtered and washed, the filters are then counted to determine [3H] Diprenorphine specifically bound. Compounds are screened at 10 mM.

Assay no. 15: m (MOP) Human Opioid GPCR (m(MOP))

Human recombinant opiate m receptors74 expressed in CHO-K1 cells are used in modified Tris-HCl buffer pH 7.4. A 11mg aliquot is incubated

with 0.6 nM [3H] Diprenorphine for 60min at 25�C. Nonspecific binding is estimated in the presence of 10 mMnaloxone. Receptors are filtered

and washed, the filters are then counted to determine [3H] Diprenorphine specifically bound. Compounds are screened at 10 mM.

Assay no. 16: 5-HT1A Human Serotonin GPCR (5-HT1A)

Human recombinant serotonin 5-HT1A receptors
75,76 expressed in CHO-K1 cells are used inmodified Tris-HCl buffer pH 7.4. An 8 mg aliquot is

incubated with 1.5 nM [3H]8-OH-DPAT for 60min at 25�C. Non-specific binding is estimated in the presence of 10 mMmetergoline. Receptors

are filtered and washed, the filters are then counted to determine [3H]8-OH-DPAT specifically bound. Compounds are screened at 10 mM.

Assay no. 17: 5HT1B Human Serotonin GPCR (5-HT1B)

Human recombinant serotonin 5-HT1B receptors
77,78 expressed in Chem-1 cells are used in modified Tris-HCl buffer pH 7.4. A 2 mg aliquot of

membrane is incubated with 1 nM [3H]GR125743 for 90 min at 37�C. Non-specific binding is estimated in the presence of 10 mM 5-HT. Mem-

branes are filtered and washed, the filters are then counted to determine [3H]GR125743 specifically bound. Compounds are screened

at 10 mM.

Assay no. 18: 5-HT2A Human Serotonin GPCR (5-HT2A)

Human recombinant serotonin 5-HT2A receptors79,80 expressed in CHO-K1 cells are used in modified Tris-HCl buffer pH 7.4. A 30 mg aliquot

is incubatedwith 0.5 nM [3H]Ketanserin for 60min at 25�C. Non-specific binding is estimated in the presence of 1 mMMianserin. Receptors are

filtered and washed, the filters are then counted to determine [3H] Ketanserin specifically bound. Compounds are screened at 10 mM.

Assay no. 19: 5-HT2B Human Serotonin GPCR (5-HT2B)

Human recombinant serotonin 5-HT2B receptor79 expressed in CHO-K1 cells are used to prepare membranes in modified Tris-HCl buffer

pH 7.4. A 30 mg aliquot of membrane protein is incubated with 1.2 nM [3H] LSD for 60 min at 37�C. Non-specific binding is estimated in

the presence of 10 mM serotonin. Membranes are filtered and washed, the filters are then counted to determine [3H] LSD specifically bound.

Compounds are screened at 10 mM.

Assay no. 20: Cav1.2 (L-type) Rat Calcium Ion Channel (Dihydropyridine Site)(Cav1.2 (L-type))

Cerebral cortices of maleWistar derived rats weighing 175G 25 g are used to prepare L-type dihydropyridine calcium channel81,82 in Tris-HCl

buffer pH 7.4. A 2.5mg aliquot is incubatedwith 0.1 nM [3H] Nitrendipine for 90min at 25�C.Non-specific binding is estimated in the presence

of 1 mM nitrendipine. Membranes are filtered and washed, the filters are then counted to determine [3H] Nitrendipine specifically bound.

Compounds are screened at 10 mM.
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Assay no. 21: hERG Human Potassium Ion Channel [3H] Dofetilide (hERG)

Human recombinant potassium channel HERG83–85 expressed in human HEK- 293 cells are used in modified Tris-HCl buffer pH 7.4. A 7.5 mg

aliquot is incubated with 3 nM [3H]Dofetilide for 60 min at 25�C. Non-specific binding is estimated in the presence of 10 mMDofetilide. Chan-

nel proteins are filtered and washed, the filters are then counted to determine [3H] Dofetilide specifically bound. Compounds are screened

at 10 mM.

Assay no. 22: Lck Human TK kinase (Lck)

Human recombinant protein kinase LCK86 expressed in insect cells is used. Test compound and/or vehicle is preincubated with 0.4 mg/mL

enzyme in modified HEPES buffer pH 7.4 for 15 min at 37�C. The reaction is initiated by addition of 0.2 mg/mL poly (Glu:Tyr), 10 mM ATP

and 0.25 mCi [g32P]ATP for another 30 min incubation period and terminated by further addition of 3% H3PO4. An aliquot is removed and

counted to determine the amount of [32P] Poly (Glu:Tyr) formed. Compounds are screened at 10 mM.

Assay no. 23: COX-1 Human Cyclooxygenase (COX-1)

Human recombinant cyclooxygenase COX-187,88 expressed in baculovirus infected Sf9 cells are used. Test compound and/or vehicle is incu-

bated with 0.44 mg/mL COX-1 in modified Tris-HCl buffer pH 8.0 for 15 min at 25�C. The reaction is initiated by addition of 3 mM arachidonic

acid and 100 mM Ampliflu Red for another 3 min incubation period. Determination of the amount of Resorufin formed is read spectrofluori-

metrically at 535 nm/590 nm. Compounds are screened at 10 mM.

Assay no. 24: COX-2 Human Cyclooxygenase (COX-2)

Human recombinant cyclooxygenase-289,90 expressed in insect Sf21 cells is used. Test compound and/or vehicle is preincubatedwith 34 U/mL

enzyme in modified Tris-HCl buffer pH 8.0 for 15 min at 25�C. The reaction is initiated by addition of 3 mM arachidonic acid and 100 mM

Ampliflu Red for another 3 min incubation period. Determination of the amount of Resorufin formed is read spectrofluorimetrically at

535 nm/590 nm. Compounds are screened at 10 mM.

Assay no. 25: Acetylcholinesterase

Human recombinant acetylcholinesterase91,92 expressed in HEK-293 cells (Sigma, C-1682) is used. Test compound and/or vehicle is preincu-

batedwith 4.1 ng/mL of enzyme for 15min at 25�C in phosphate buffer pH 7.4. The reaction is initiated by addition of 0.7mMacetylthiocholine

iodide and 0.5mM5,5-dithiobis-2-nitrobenzoic acid for another 20min incubation period. The thiocholine generated reacts continuously with

dithiobisnitrobenzoic acid to produce 5-thio-2-nitro-benzoic acid, and its spectrophotometric absorbance is read at 405 nm. Compounds are

screened at 10 mM.

Assay no. 26: PDE3A Human Phosphodiesterase (PDE3A)

Human recombinant PDE3A93,94 expressed in insect Sf9 cells are used. Test compound and/or vehicle is preincubated with 20 ng/mL enzyme

in Tris- HCl buffer pH 7.2 for 15 min at 25�C. The reaction is initiated by addition of 100 nM fluorescein labeled cAMP for another 30 min in-

cubation period and terminated by addition of IMAP binding solution. IMAP complexes with phosphate groups on nucleotide monophos-

phate generated from cyclic nucleotides through PDE activity. Determination of the amount of complex formed is read spectrofluorimetrically

at 470 nm/525 nm. Compounds are screened at 10 mM.

Assay no. 27: PDE4D2 Human Phosphodiesterase (PDE4D)

Human recombinant PDE4D295,96 expressed in insect Sf9 cells are used. Test compound and/or vehicle is preincubated with 5 ng/mL enzyme

in Tris-HCl buffer pH 7.2 for 15 min at 25�C. The reaction is initiated by addition of 100 nM fluorescein labeled cAMP for another 15 min in-

cubation period and terminated by addition of IMAP binding solution. IMAP complexes with phosphate groups on nucleotide monophos-

phate generated from cyclic nucleotides through PDE activity. Determination of the amount of complex formed is read spectrofluorimetrically

at 470 nm/525 nm. Compounds are screened at 10 mM.

Assay no. 28: NET Human Norepinephrine Transporter (NET)

Human recombinant norepinephrine transporters97 expressed in dog kidney MDCK cells are used in modified Tris-HCl buffer pH 7.4. A

40 mg aliquot is incubated with 0.2 nM [125I] RTI-55 for 3 h at 4�C. Non-specific binding is estimated in the presence of 10 mM desipramine.

Transporters are filtered and washed, the filters are then counted to determine [125I] RTI- 55 specifically bound. Compounds are screened

at 10 mM.

Assay no. 29: DAT Human Dopamine Transporter (DAT)

Human recombinant dopamine transporters98,99 expressed in CHO-S cells are used in modified Tris-HCl buffer pH 7.4. A 0.4 mg aliquot is

incubated with 0.15 nM [125I] RTI-55 for 3 h at 4�C. Non-specific binding is estimated in the presence of 10 mM nomifensine. Transporter

are filtered and washed, the filters are then counted to determine [125I] RTI-55 specifically bound. Compounds are screened at 10 mM.
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Assay no. 30: Serotonin Transporter Human Serotonin Transporter

Human recombinant SET100,101 expressed in human HEK-293 cell are used in modified Tris-HCl buffer pH 7.4. A 9 mg aliquot is incubated with

0.4 nM [3H] Paroxetine for 60min at 25�C.Non-specific binding is estimated in the presence of 10 mM imipramine. Transporters are filtered and

washed, the filters are then counted to determine [3H] Paroxetine specifically bound. Compounds are screened at 10 mM.
METHOD DETAILS

Protein 3D structures

The 3D structures of all human proteins were obtained from the AlphaFoldDB26 (20,594 proteins and 23,391 structures, UniProt proteome ID:

UP000005640, AlphaFoldDB structure version 1). The number of structures was greater than that of proteins because proteins with long amino

acid sequences were divided into fragment sequences before the 3D structure prediction. Therefore, multiple structures could arise from a

single protein, but these structures were treated separately.

Next, the low-confidence parts of the protein structure predicted using AlphaFold were removed. In the AlphaFold-based framework,

each amino acid in the resulting structure is assigned a prediction confidence level (i.e., pLDDT, PAE, and pTMP).102 The confidence level

primarily reflects the confidence level of the training data, andmany of the regions with low confidence levels are intrinsically disordered pro-

tein (IDP) domains.103,104 In general, IDP domains do not have a fixed structure, and the rigid-body model in the docking simulations cannot

correctly evaluate the binding affinity with the protein regions without fixed structure and ligand compounds. Therefore, to minimize the in-

fluence of these regions of undetermined structure on the docking simulation results, the parts with low predictive reliability were removed in

advance. The criterion for removal was pLDDT>70, which is considered highly reliable in the AlphaFoldDB. After preprocessing the structures

and the binding pocket search (for details, see the ‘‘detection of ligand-binding pockets for docking simulation’’ subsection), the final number

of 3D structures available for docking simulation were found to be 19,135 structures and 18,347 protein types.

Some studies indicate that docking simulations using AlphaFold predicted structures is not good enough.105,106 However, the aim of this

study is to explore the potential applications of assessing the binding affinity of each drug to all human proteins in various crucial aspects of

drug discovery, such as predicting indications and side effects.While employing a homologymodeling structure could sometimes yieldmore

precise binding affinities, we opted for the AlphaFold structure in this research to prioritize the comprehensive coverage of protein structures

across the genome.
Drug chemical structures

The two-dimensional (2D) structures of 8,112 drugs were obtained from the KEGGDRUG27 database, which stores a variety of information on

drugs registered in Japan, Europe, and the United States. The KEGG DRUG database comprises approximately 8,000 drugs that have been

approved in Japan, Europe, and the United States. Consequently, the drugs examined in this study encompass all those approved by the

FDA. Additionally, optimized 3D structures were generated from 2D data using RDKit (RDKit: Open-source cheminformatics, https://www.

rdkit.org).

For the preliminary analysis of the PBAS profiles, the information on drug approval year was also obtained from KEGG DRUG.27 Of the

drugs, for which docking simulations were performed, the year of approval for 524 drugs was obtained (Figure S9).

Fingerprint profiles representing the substructures and related features of the drugs were prepared for comparisons of side effect pre-

dictions. The fingerprint profiles were prepared according to the protocol used in previous studies.2,5 The Morgan fingerprint,40 an

extended-connectivity fingerprints (ECFP)-like fingerprint, was calculated. RDKit was used to calculate theMorgan fingerprints, and the num-

ber of features in each fingerprint was set to 2,048.
Disease–therapeutic target protein associations

We manually constructed a set of the relationships between diseases and therapeutic target proteins for use in the prediction of drug ther-

apeutic indications. There are already several databases that integrate the data on diseases and genes, but most of them focus on genetic

diseases, and the genes correlate to disease-causing genes, which do not always correspond to the therapeutic target proteins.We collected

andmanually curated the information on the therapeutic target proteins of various diseases from themedical literature. Finally, 2,062 disease–

target protein relationships were prepared, including 250 diseases and 462 proteins.
Drug side effects used for training dataset in the side effect prediction model

The information on drug side effects in a training set for the side effect predictionmodel was obtained from the SIDER database.41 SIDER is a

large database that collects information on side effects from pharmaceutical package inserts. Because it is difficult to correctly predict rare

adverse drug reactions in the framework of supervised learning, we used only side effects that have been frequently reported. The criteria are

as follows: (1) Side effects are defined as ‘‘frequent’’ or with a frequency ofR1% in the frequency information defined in SIDER. (2) Additionally,

the types of side effects correspond to those classified as ‘‘disorder’’ in the Unified Medical Language System.107 (3) Only drugs, for which at

least 10 side effects have been reported, are included. Based on these criteria, a dataset of 15,035 drug side effect pairs involving 429 drugs

and 285 side effects was constructed. This dataset was also used as the gold standard data for cross-validation experiments during the per-

formance evaluation of the prediction model.
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Drug side effects used as an independent resource for performance evaluation

To evaluate the validity of the prediction results using external resources, adverse event reports were extracted from the FAERS database for

validation. FAERS is a large database that contains reports of adverse events that occurred after the drug was marketed and used. It was in-

dependent of the SIDERdatabase used for training the predictivemodel. The adverse drug reactions reported from the first quarter of 2004 to

the second quarter of 2019 were downloaded from the FDA website (https://www.fda.gov). We used adverse drug reactions that were de-

tected with a frequency of R1% for drugs with >300 reports of the drug itself. To further exclude water, metal ions, and macromolecules,

the following conditions were set: drugs composed of three or more atomswith molecular weights ranging from 50 to 1,000. Only side effects

that were the outputs of the SIDER learning model were selected. The final validation dataset consisted of 1,673 drugs, 280 side effects, and

83,456 drug–side effect relationships. The overlap between the 429 SIDER drugs used in the training data and the 1,673 FAERS drugs in the

validation data was 282.

Compound–protein interactions for side effect prediction methods

A CPI dataset was prepared to generate the two target protein profiles, namely TESS and TELR, for the comparison of accuracy in predicting

side effects. According to the previous study,5 the CPIs were obtained from public databases including ChEMBL,108 BindingDB,109

DrugBank,110 and KEGG DRUG.27 With reference to existing reports,45 we selected only CPIs that clearly showed pharmacological activity

(e.g., half maximal inhibitory concentration of <1 mM. Finally, 1,830,624 CPIs were investigated for 1,288,343 compounds and 4,643 proteins.

Detection of ligand-binding pockets for docking simulation

Ligand-binding pockets were detected using AutoSite111 for docking simulations. First, hydrogen atoms were added to the protein confor-

mation data (pdb file) using Open Babel 3.1.0112 at pH 7.4. Next, the Gasteiger charge113 was calculated for each atom and converted to a

pdbqt file. AutoSite detects multiple ligand-binding pockets ranked according to their ligand-binding site likeness. Only the top-1-ranked

ligand-binding pocket for each protein was used for docking simulations. All the detected ligand binding pocket of each protein are shown

in the supplementary information.

Docking simulation to construct the proteome-wide binding affinity score profiles

We conducted large-scale docking simulations for drugs on human whole-protein 3D structure data for constructing the PBAS profiles.

AutoDock Vina v1.1,28 a widely used docking program elaborated by the Scripps Research Institute, was applied. It evaluates the binding

affinity of a compound to a protein with high speed and moderate scoring accuracy. Protein 3D structure data (pdbqt file format) generated

during the detection of binding pocket sites were used for docking simulations on the binding pocket regions. For the parameter option for

runningAuto dock vina, the ‘‘energy_range’’ was set to 4, and default valueswere used for the other options. This docking settingwas fixed for

all ligand-receptor pairs. All estimated docking results for possible pairs of drugs and humanproteins are publicly available as PBAS profiles in

the supplementary information.

In this study, our objective is to conduct comprehensive docking simulations for all potential combinations of drugs and human proteins.

While numerous docking simulation software and tools exist, each presents a trade-off between calculation accuracy and speed.Weopted for

AutoDock Vina due to its rapid calculation speed and cost-free availability, although it may yield less accurate binding affinity values

compared to commercial alternatives.

Clustering and enrichment analysis of the proteome-wide binding affinity score profiles

Hierarchical clustering and enrichment analysis were performed to investigate the similarities of drugs and proteins according to their binding

affinity patterns encoded in the PBAS profiles. Hierarchical clustering was conducted on both the protein and drug sides of the PBAS profile

matrix. Clustering with the Ward algorithm was performed using the Python SciPy114 library.

An enrichment analysis of the ATC classification was conducted for each drug cluster to examine the relationships between drugs and their

therapeutic indications. The ATC classification of drugs was obtained from KEGG DRUG,27 and p-values were calculated with Fisher’s exact

test using the Python SciPy114 library. Only ATC codes that were statistically significant (p < 0.05) were assigned and extracted.

To examine the relationships between proteins and their structural features, DAVID29 was used for each cluster to calculate the enrichment

of the proteins classified in InterPro.115 InterPro is a taxonomic database of protein families, domains and functional sites, and it allows func-

tional characterization of known proteins. Only InterPro structural domain groups that were statistically significant (p< 0.05) assignments were

identified and extracted.

Performance test with CASF-2016 core set

The CASF-2016 core set,33 obtained from BindingDB, served as the validation dataset. The docking site used binding pocket information

outlined in the CASF-2016 core set. Using theOpen Source version of PyMOL (https://github.com/schrodinger/pymol-open-source), binding

pocket structure data and corresponding protein AlphaFold structures were aligned. The align command facilitated the superimposition of

structures, defining a box region encompassing all matched atoms as the docking site. Three validation datasets were prepared: All, Mono-

mer, and PBAS. ‘‘All’’ denotes the set of pairs (254 ligand-receptor pairs) assessable using the proposed method (AlphaFold structure +

AutoDock Vina) from all ligand-receptor pairs in the CASF-2016 core set. Although the CASF-2016 core set encompasses approximately
18 iScience 27, 110032, June 21, 2024
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100 pairs of complex protein receptors, these complexes were excluded in the proposed method, necessitating the creation of a fair evalu-

ation subset, Monomer, comprising only monomer pairs (167 ligand-receptor pairs). Furthermore, to evaluate the performance of the PBAS

profile introduced in this study, a subset PBAS was derived, selecting only protein receptors included in the PBAS profile from the Monomer

set (97 ligand-receptor pairs). AutoDock Vina’s docking options mirrored those used in PBAS.

Prediction of drug therapeutic indications by template matching

For therapeutic indication prediction, we used the templatematchingmethod2 based on the therapeutic target protein–disease associations.

The previous method used only known target proteins with at least one known ligand, whereas our method used PBAS consisting of all pro-

teins. The predictive score (referred to as TMscore) of the i-th drug against the k-th disease was calculated using the following formula:

TMscoreði; kÞ = min
�
xðPBASÞi 1 tk

�

where1 is the Adamar product, meaning the element-by-element product of the vectors. xðPBASÞi is a vector of PBAS profiles of the i-th drug

(xðPBASÞ = ðe1;e2;.;ej;.;edÞ
��ej ˛R;ej < 0;j = 1;.;d), where element ej indicates the binding affinity to the j-th protein. There are d proteins

in total. tk is a multihot vector (t = ðt1;t2;.;tj;.;tdÞ
��tj ˛ f0;1g;j = 1;.;d) representing therapeutic target proteins for the k-th disease. If the

j-th protein is a therapeutic target for a disease, tj returns 1, and if it is not, tj returns 0.

The TMscore is calculated for all drug–disease pairs. The final prediction score is the binding free energy obtained from the docking score.

Therefore, the prediction method is designed to select drugs that bind more strongly to the therapeutic target protein for a disease. The use

of the templatematchingmethod enables the provision of a drug-protein-disease network, making the biological interpretation of predicted

drug therapeutic indications easier.

Construction of TESS profiles

The target protein profile for each drug was prepared by TESS, which is referred to as a TESS profile and used for comparing the side effect

prediction performance. In accordance with previous studies,2,5 the similarities of each drug with compounds in the CPI dataset were

evaluated.

The predicted interaction score (TESSscore) between drug i and protein j was calculated as follows:

TESSscoreði; jÞ = max
�
sðsimÞ
i 1 cðCPIÞj

�

where 1 is the Adamar product, meaning the element-wise product of the vectors. sðsimÞ
i is the structural similarity profile of drug i to com-

pounds in the CPI dataset (sðsimÞ = ðs1;s2;.;su;.;snÞju = 1;.;n). su is the structural similarity between drug i and CPI dataset compound u.

cðCPIÞj is a multihot vector showing the presence or absence of an interaction between protein j and compounds in the CPI dataset. For the

vector (cðCPIÞ = ðc1;c2;.;cu;.;cnÞ
��cu ˛ f0;1g;u = 1;.;n), the value of element cu is 1 if protein j interacts and 0 if it does not. There are n

compounds in the database in total, and the compounds in the CPI dataset indicated by each element between vector sðsimÞ and vector cðCPIÞ

are matched.

su is the structural similarity between drug i and compound u in the CPI dataset. It was calculated using the generalized Jaccard correlation

coefficient (GJ) as follows:2

su = GJ
�
f ðFPÞi ; f ðFPÞu

�
=

Pl
h minðah;bhÞPl
h maxðah;bhÞ

where drug i is represented by the binary feature vector as fðFPÞi = ða1;a2;.;alÞ, and compound u in the CPI dataset is represented by

the binary feature vector as fðFPÞu = ðb1;b2;.;blÞ, where l is the number of features. KEGG chemical function and substructure116 is

used (l = 24; 401) as a chemical descriptor, where minð$; $Þ takes the minimum of the two given values and maxð$; $Þ stands for the

maximum.

Construction of target estimation with logistic regression profiles

The target protein profile for each drug was prepared using TELR, which is referred to as a TELR profile and used for comparing the side effect

prediction performance. Following previous studies,2,5 a target protein profile was developed using a supervised classification framework

with the CPI dataset.

The supervised learning method predicts the likelihood of interaction with individual target proteins in CPI data using the chemical

structure profile zðchemÞ of a query compound and L1-regularized logistic regression classifier. For a training set consisting of n com-

pounds and p target protein labels, we constructed p supervised classifiers that predict the interaction of a query compound with

the j-th target protein (j = 1; 2;.; p), where p is the number of target proteins with at least one known ligand. Hyperparameters

of the predictive models were optimized for each target protein using a grid search based on cross-validation. KCF-S116 was used

for the chemical structure profile zðchemÞ.
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A supervised classification machine learning model was used to predict side effects. The method is similar to that presented in previous

studies.2,5 The classifier was constructed using a linear model, where each drug is represented using a feature vector as x˛Rd , where d is

the number of all proteins. The prediction score calculated by the linear function f ðxÞ = wTxðPBASÞ is then used to predict the presence

or absence of each side effect. The weight vectorw˛Rd is defined during the learning process; therefore, it correctly predicts the side effect

of the drug in the training data. Because each element of the feature vector xðPBASÞ corresponds to an element of its weight vector w, it is

possible to extract important features that contribute to the correct prediction by referring to the weight value w that corresponds to an

element of xðPBASÞ. Here, the predictive model was constructed using the logistical regression algorithm.

f
�
xðPBASÞ

�
=

1

1+expðwTxðPBASÞÞ
Furthermore, by replacing the feature vector xðPBASÞ of the classifier by each of the other profiles (Fingerprint, TESS, and TELR), the side

effect predictionmodel of each of the other profiles was constructed. All profile scores were binarized with thresholds.We assumed that each

drug would bind to the top 10% of proteins based on binding affinities, thus setting threshold values vary according to each drug’s binding

affinity.

When training amodel, if the number of proteins is very large compared with that of drugs in the training data, overfittingmay occur. Here,

L1 regularization was used to avoid it. Learning weights using L1 regularization is expected to facilitate model interpretation, because most

elements of the weight vector are set to zero.

Given a training dataset fxðPBASÞi ; yigni = 1; yi ˛ f+ 1; � 1g composed of n drugs and labels, the value of element yi is 1 if the i-th drug has the

side effect and 0 if it does not. The weights of themodel are estimated using the following equation with the L1 regularization term (first term)

and the loss function (second term):

min
w

kwk1 +C
Xn

i = 1

log
�
1 + exp

�
� yiw

TxðPBASÞi

��

where kwk1 is the L1 norm, whichmeans the sumof the absolute values of the vectorw (kwk1 =
Pd

j

��wj

��), andC is a hyperparameter to control

overfitting. To solve the problemof imbalance between positive- and negative-labeled drugs in the training data, the error term for the former

was emphasized over that for the latter.
Performance evaluations of side effect prediction models

For the performance evaluation using SIDER, the gold standard set of drugs was divided into five subsets of approximately equal size, and five

accuracy validation experiments were conducted. Each subset was in turn used as the test set, and a prediction model was trained on the

remaining four subsets. This model was used on the test drug, and the accuracy of the test set was evaluated. Cross-validation experiments

were performed for each model. The same training and test drugs were used in all experiments; therefore, the same conditions for cross-

validation experiments were fulfilled.

Performance was also evaluated using FAERS, which was independent of the training data. Prediction models were trained on the SIDER

dataset, and the models were adjusted to the drugs in FAERS. Prediction accuracy was evaluated based on the concordance of prediction

scores with the correct labels in FAERS.

The prediction performance of the model was assessed using ROC and PR curves. The ROC curve is a plot of true-positive against false-

positive ratios, and the AUPR is 1 and 0.5 for perfect inference and random prediction, respectively. The PR curve is a plot of precision (good-

ness of fit) against recall (recall). The ratio of the number of positive example samples to that of samples was considered the evaluation score.

The hyperparameters for each method were optimized using a grid search applying the AUC and AUPR scores as objective functions.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performedwith Python. Statistical significance was assessed using unpaired, two-tailed Student’s t-tests.p values are

indicated in figure legends and source data. p < 0.05 is indicated with single asterisks, p < 0.001 with double asterisks, and p < 0.0001 with

triple asterisks.
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