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Abstract 

Liquid-liquid phase separation (LLPS) has received significant attention in recent biological studies. It refers to a 
phenomenon that biomolecule exceeds the solubility, condensates and separates itself from solution in liquid like 
droplets formation. Our understanding of it has also changed from memebraneless organelles to compartmentaliza-
tion, muti-functional crucibles, and reaction regulators. Although this phenomenon has been employed for a variety 
of biological processes, recent studies mainly focus on its physiological significance, and the comprehensive research 
of the underlying physical mechanism is limited. The characteristics of side chains of amino acids and the interaction 
tendency of proteins function importantly in regulating LLPS thus should be pay more attention on. In addition, the 
importance of post-translational modifications (PTMs) has been underestimated, despite their abundance and crucial 
functions in maintaining the electrostatic balance. In this review, we first introduce the driving forces and protein 
secondary structures involved in LLPS and their different physical functions in cell life processes. Subsequently, we 
summarize the existing reports on PTM regulation related to LLPS and analyze the underlying basic principles, hoping 
to find some common relations between LLPS and PTM. Finally, we speculate several unreported PTMs that may have 
a significant impact on phase separation basing on the findings.
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Introduction
Rapid technological development has facilitated the 
understanding of biology at the molecular level, which 
provides a new perspective to known life processes. For 
example, in 1899, Edmund Beecher Wilsonin proposed 
that the cytoplasm consists of small, suspended drop-
lets [1]. The basic biological principle of LLPS is simple; 
when macromolecules are subjected to external stim-
uli or changes, they form condensed liquids with small 

volumes and high concentrations by gathering together 
in a limited space. Accordingly, cells can regulate physical 
processes at the protein level to avoid time- and energy-
consuming translation processes such that existing pro-
teins are effectively used to respond in time and achieve 
intracellular functional compartmentalization without 
additional energy inputs [1, 2]. Many kinds of proteins 
can form liquid-like droplets. Recently, stimulator inter-
feron genes (STINGs) were found to undergo liquid-liq-
uid phase separation (LLPS) when overactivated by virus 
stimulation and form a sponge-like three-dimensional 
structure to adsorb excessive tank bind kinase 1 and 
insulate interferon regulatory factor 3 to avoid inflam-
matory responses [2]. Nevertheless, the driving forces 
of STINGs droplets formation at the micron level still 
remain unknown [3–5]. Consequently, further studies 

Open Access

Molecular Biomedicine

*Correspondence:  zhoufangfang@suda.edu.cn; l_zhang@zju.edu.cn

1 MOE Laboratory of Biosystems Homeostasis & Protection and Innovation 
Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 
Hangzhou 310058, China
3 Institutes of Biology and Medical Science, Soochow University, 
Suzhou 215123, P. R. China
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-8139-0474
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43556-022-00075-2&domain=pdf


Page 2 of 17Li et al. Molecular Biomedicine            (2022) 3:13 

are needed to gain deep insights in to the mechanism of 
LLPS.

Recently, phase separation has been detected in mul-
tiple biological processes, such as DNA damage repair, 
mRNA transcription, protein translation, membrane 
receptor assembly, cytoskeleton stabilization, embryonic 
development, and plant floral cycle regulation [3–9]. 
LLPS is involved in different physiological processes, 
and its basic functions include providing reaction ves-
sel, enrichment, localization, buffering, inactivation, and 
sensing (Fig.  1) [10–12]. For instance, in mRNA tran-
scription, elongated nucleic acids provide ideal platforms 
for the interaction of multi proteins, which accounts 
for many transcription factors in LLPS-dependent pro-
cesses [13]. Another example, P-body participates in the 
renewal of mRNA by concentrating enzymes in the cyto-
plasm, while shielding numerous mRNA strands that do 
not require translation from the protein [14].

There is a positive correlation between compartmen-
talization and protein post-translational modification 
(PTM) in evolution [15, 16]. PTMs, similar to LLPS, a 
fast-regulating and reversible processes that govern life 
procedure, are the subsequent steps of protein trans-
lation, which includes chemical groups attached to or 

divested from the substrates. As for compartmentaliza-
tion, specific compartments allow physiological pro-
cesses to function independently and simultaneously, 
which makes cells respond to external stimuli with a low 
energy expenditure. The compartmentalization of the 
nucleus insulates transcription and translation processes, 
making PTM a common strategy in the eukaryotic cell 
[17]. Based on this principle, it is considered that the 
LLPS, which represents a form of compartmentalization, 
is related to PTM.

A comprehensive analysis of the aforementioned phe-
nomena and biological functions will allow the research-
ers to gain in-depth understanding about the relationship 
between LLPS and PTM.

The driving force and theory of LLPS
A brief description of the LLPS process is necessary for 
a deep understanding of the role of PTMs in phase sepa-
ration. In physics, phase separation occurs either when a 
molecule reaches the upper limit of dissolution or when 
the entropy of the solution remains at the maximum and 
repels the molecule from the solution system [18, 19]. A 
detailed explanation on the law of protein solubilization 
in solution can be found from the entropy perspective 

Fig. 1  Function of LLPS and forces that drive it. LLPS has been found to be involved in a variety of physiological processes, which can be 
divided according to their functions, including reaction vessel, enrichment, localization, buffering, inactivation, and sensing. Weak, transient, and 
short-ranged interactions, including electrostatic interactions, π-stacking, hydrophobic contacts, and cation-π interactions, are the basic driving 
forces of LLPS. Covalent or strong intermolecular interactions and secondary structures, including the hydrogen bond, β-sheet, oligomer, and 
multi-interaction region, also contribute to LLPS
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[20], in which the balanced solution tends to hold more 
protein particles to maintain a large entropy value in a 
stable case [21]. The aggregation of biological macromol-
ecules causes the number of particles in the solution to 
decrease below the equilibrium curve, and unless there 
is an additional energy input, the solution will be more 
inclined to reject them to the solution system to obtain 
a higher entropy value, thereby separating into interac-
tive small volume high concentration droplets and a large 
volume low concentration medium [22]. It worth noting 
that “aggregation” here means the reversible assemblies 
of biomacromolecules.

The driving force of phase separation is considered to 
be the weak interactions between amino acid groups and 
other macromolecules, including homologous proteins, 
non-homologous proteins, or nucleic acids. The weak 
interactions include π-stacking, electrostatic, cation-π, 
and hydrophobic contacts [6, 9, 23, 24]. Therefore, the 
specific types of amino acid side chains, such as non-
polar amino acids, charged amino acids, and aromatic 
amino acids, can promote phase separation [25, 26]. In 
the study of protein structure, the disordered regions 
with the variable and rapid interactions are rich in these 
amino acids, and many different conformations exist 
simultaneously. In previous studies, the short distance, 
transient, and weak interactions between amino acid 
side chains in intrinsically disordered regions (IDRs) 

was considered to be the driving force for phase separa-
tion [27].Notably, IDRs are only the primary structure 
and do not have secondary structure regions contribut-
ing to protein folding and aggregation [28, 29]. However, 
the interaction between macromolecules and the folding 
structure can regulate the phase separation by adjusting 
the distance and quantity relationship between macro-
molecules. The existing prediction programs for IDRs 
tend to ignore the isolated amino site, which might be 
important in driving phase separation, because of the 
use of the accumulation calculation method [30]. This 
might be the reason why some reported proteins can still 
undergo phase separation after the disordered region is 
truncated [31–33]. For example, in the SARS-CoV2019 
nucleic protein NP studies, mitochondrial antiviral sign-
aling protein, which is a crucial scaffold protein in the 
antiviral signaling pathway, was found to retain its ability 
to undergo LLPS after the deletion of IDR regions [32].

Thus far, three different theories have been proposed to 
explain LLPS, namely, the multivalency theory, sticker-
spacer theory, and polymer theory (Fig. 2) [20, 23, 34, 35]. 
The multivalency theory and the polymer theory provide 
different summaries of entropy and aggregation reasons 
[23, 36–38]. The total loss of - primarily translational 
- entropy upon phase separation is less if the interact-
ing modules are chained together into a linear multiva-
lent protein. For example, the LLPS of the proline rich 

Fig. 2  Theories on phase separation. Three different theories were proposed to explain LLPS. Multivalency theory indicates protein(s) or a peptide 
or a part of nucleotides has more than three valences to bind with other molecules, which can interact with others in more than two dimensions. 
Polymers and long-chain structures are ideal for the multivalency theory. Sticker-spacer theory is similar to the multivalency theory, except it 
focuses more on the ordered and interaction regions. Polymer theory is based on the hypothesis that the attraction between LLPS proteins is much 
stronger than its attraction with its surrounding environment. Therefore, the LLPS system can reach the lowest energy state because of the low 
enthalpy caused by polymerization
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motif (PRM4) and Src homology 3 (SH3) are strongly 
affected by the number of repeats and exhibit a positive 
correlation [23]. Notably, the multivalency theory is also 
used to explain the decrease in the liquid-gel transition 
threshold. Correspondingly, the sticker-spacer theory 
complements the multivalency theory, with more focus 
on the “order region” [34]. The polymer theory is used 
in explaining the gathering of biomolecules that driven 
by distinct interaction tendencies, which overcomes the 
decrease of entropy after polymerization [39].

Phase separation is a highly dynamic process [40]. The 
original dispersed protein must undergo certain changes 
to achieve “aggregation” when cells release recruitment 
signals in a specific range and time. After the function is 
performed, the protein accepts a new signal and returns 
into solution without changing the existing intracel-
lular protein expression level. Rapid protein PTM can 
be an ideal way to regulate phase separation [35, 41]. 
To systematically understand the relationship between 
post-translational protein modifications and phase sepa-
ration, we summarized reports on protein phosphoryla-
tion and acetylation in phase separation and devote more 

attention to changes in physical properties caused by 
modifications in regulating phase separation. Based on 
these results, we predicted several previously unreported 
PTMs that may be involved in the regulation of phase 
separation (Table 1).

Effect of physical conditions on LLPS
Protein solubility is affected by the physical properties 
of the solution, particle size, and aggregation status of 
the biomolecules. The internal environment of the cell 
is generally maintained in a stable state, and a signifi-
cant transformation of its physical properties is often a 
manifestation of the cell stress. Cells benefit from this 
property while responding to external stimuli [63, 
64]. There are different properties that influence LLPS 
(Fig.  3), including temperature, pH, and ion changes 
as well as the changes in reactive oxygen species (ROS) 
and hydrogen bonds. It is conventional to test the LLPS 
of purified proteins in a series of temperature gradients. 
However, under normal circumstances, the tempera-
ture of the human body is relatively constant, and only 
tissues in direct contact with the environment are likely 

Table 1  Multivalency in phase separation

Year of publication Driving force or crucial amino acids PTMs Reference

2016 Covalent and non-covalent interaction between PRM and SH3 Phos. [23]

2016 Electrostatic interactions [42]

2016 (multi-valent) cation and (hydrophilic) protein [43]

2016 Hydrophobic interaction [44]

2017 SH3 proline-rich motif-induced hydrophobic interaction [45]

2017 Forces between aromatic amino acids, especially, tyrosine Phos. [46]

2018 Asparagine, phenylalanine, and tyrosine are important to phase separation [47]

2018 Proline-rich motif [48]

2018 Multivalent hydrophobic and polar interaction Ubiquitin binding [49]

2018 Electrostatic interactions [24]

2019 Phosphorylation and proline-rich motifs Phos. [50]

2019 Hydrogen bonding, π/sp2, and hydrophobic interactions [27]

2019 Phosphorylated threonine residues Phos. [51]

2020 Multivalent electrostatic interactions [52]

2020 Multivalent covalent interactions between long K48Ub chains and UBA domains [53]

2020 Multivalent contacts through arginine’s guanidinium ion [54]

2020 Five β-strands and π–π stacking [55]

2020 Multivalent electrostatic interactions and hydrophobic interactions [56]

2020 Tyrosine Phos. [57]

2020 Intermolecular electrostatic interactions [58]

2020 Nonspecific hydrophobic interactions as well as hydrogen bonds, salt bridges, and π–π 
and cation−π interactions

[59]

2021 Phosphorylation-induced cluster Phos. [60]

2021 Phosphorylation-induced interaction Phos. [61]

2021 Multiple SPOP-binding (SB) motifs [62]

2021 DD domain interaction Ace. [32]
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to experience temperature changes. In addition, the 
ways in which purified proteins are subjected to tem-
perature regulation is not similar. For example, the LLPS 
between poly(A)-binding protein and RNA-recognition 
motifs is enhanced at low temperatures owing to weak 
forces between them [65]. But early flowering 3, which 
is a constitutively expressed protein that regulates plant 
rhythm, tends to undergo LLPS at high temperatures 
because of the breakdown of protein-solution binding 

[9]. In addition, hydrophobic effect can also explain this 
behavior [66–68]. The second factor that influences LLPS 
is pH and ion changes [69–71]. The concentration of H+ 
mainly affects the ion-bond-induced LLPS by neutral-
izing the original positive and negative charges [72]. For 
instance, damage to the endoplasmic omental system 
owing to viral infestation leads to the outflow of zinc 
ions into the cytoplasm, promoting the phase separa-
tion of cyclic GMP-AMP synthetase [73]. This generally 

Fig. 3  Environment stimulus in regulating LLPS. Phase separation can only occur in a relatively narrow region under ideal conditions, and PTMs may 
regulate LLPS by changing the thresholds of substrates. Salt ions in the environment can bind to the originally charged substrate via electrostatic 
interaction and inhibit LLPS by neutralizing electrostatic interaction. Similarly, the redox activity of cysteine is regulated by pH and therefore controls 
the formation of disulfide
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occurs in small areas at a micron level and is comparable 
to other categories of separation. Another factor is the 
changes in ROS and hydrogen bonds [9, 27]. In the regu-
lation of the plant flowering cycle, ROS was found to be 
associated with the LLPS for terminating flowers by regu-
lating the formation of disulfide bonds. Another factor 
that is easy to overlook is the size of the molecule [21, 22, 
74]. Aggregated molecules can lead to phase separation 
by lowering the entropy of the solution. The aggregation 
of biological macromolecules also strengthens the weak 
interaction between molecules [21]. When forming a 
polymer, amino acids, which were originally spatially far 
apart, are enriched and stacked in a small area [75]. For 
example, positively charged amino enrichment strongly 
attracts negatively charged groups, whereas the stacking 
of benzene rings promotes the formation of π bonds [76–
78]. It accounts for the occurrence of many diseases in 
the nervous system. For instance, α-synuclein (α-Syn) is a 
key protein in amyloid formation, which is directly linked 
to Parkinson’s disease pathogenesis [79]. The α-syn stack 
provides a platform for enhancing the interactions of the 
N-terminus and hydrophobic non-amyloid-β component 
domain [80].

The regulation of various PTMs on LLPS
Interactions are considered to be the main reason for 
LLPS regulation; covalent bonds, non-covalent bonds, 
electrostatic interactions, hydrophobic forces, and 
hydrophilic forces are reported to be affected by PTM. 
Therefore, the LLPS of proteins could be regulated by 
various PTMs, including phosphorylation, acetyla-
tion, poly (ADP-ribosyl)ation (PAR), ubiquitination and 
methylation. Early studies on LLPS mainly focused on 
the relationship between phase separation and phospho-
rylation modification which is widely reported in many 
proteins involved in different physical processes [81]. For 
instance, The protein fused in sarcoma (FUS), which is a 
well-researched protein in the field of LLPS, is phospho-
rylated at several sites, including pS26, pS42, pS61, pS84, 
and pS131 [82]. These modifications regulate the interac-
tion between FUS and DNA, and the N-terminal serine/
tyrosine-rich region is also considered to be a domain 
that influences LLPS. However, the basic principles vary 
from study to study [23, 46, 50, 51], and they are sum-
marized below.

Two sides of phosphorylation regulation of LLPS
Phosphorylation is an ideal method for the regulation of 
protein separation. Phosphorylation can occur rapidly 
and reversibly in various subcellular organelles, enabling 
an easy response to sudden stimulation changes through-
out the cell. The regulation of phosphorylation is bidirec-
tional [41] (Fig.  4) such that the addition of phosphate 

groups to uncharged amino acids results in negatively 
charged amino acids, which can enhance both electro-
static attraction and electrostatic repulsion. Therefore, 
phosphorylation can either enhance or inhibit phase 
separation. Interactions between proteins and nucleic 
acids are sensitive to charge changes. In the study of the 
Histone H1 (H1) phase separation, the phosphorylation 
modifications of three serines in the carboxyl domain of 
H1 protein inhibited their phase separation, and a 10% 
change in the surface charge of the protein in this process 
was sufficient to significantly affect the binding capacity 
of the protein to DNA as well as the cohesion of DNA 
and protein [83]. An earlier basic study on the role of 
phosphate peptide segments in phase separation revealed 
that phosphorylation at even one site can affect the elec-
trostatic interaction between peptides and the negatively 
charged RNA and thus affect phase separation [46]. Evo-
lutionary perspectives also support the idea that cells 
specifically regulate phase separation with phosphoryla-
tion modification. The conservative analysis of FUS pro-
tein sequences indicated that the phosphorylation sites 
associated with phase separation in mammalian FUS 
were selectively preserved during evolution [84]. How-
ever, there are often multiple phosphorylation sites on a 
single protein, which may have opposite functions. When 
the kinase content is abundant, non-specific phospho-
rylation modification inevitably affects phase separation. 
The study of fragile-X mental retardation protein (FMRP) 
and calcium-activated neutral proteinase 1 (CARPN1) 
phase separation demonstrates the use of phosphoryla-
tion modification by cells to regulate the separation of 
complexes from RNA. The phosphorylation of FMRP on 
serine, threonine, and tyrosine on CAPRIN1 affects the 
binding of SC1RNA, and de-adenylation activity owing 
to the phase separation facilitates cascade regulation [85].

We have summarized reports on the separation in the 
control of phosphorylation modification and identified 
three significant points. First, the number of reports 
on the phosphorylation of tyrosine is disproportion-
ately large [81]. No more than 1% of phosphorylation 
occurs on tyrosine in general; however, considering 
the reports on phase separation, nearly 40% of them 
are related to tyrosine. For example, the study focused 
on protein phase separation related to tyrosine phos-
phorylation and complex assembly on the membrane 
surface. KRAS and DHPE form condensates on lipid 
membranes independently; however, only in the pres-
ence of the activation of T cells (LAT)/growth-factor-
receptor-bound protein 2 (Grb2)/sevenless (SOS) can 
they undergo phase separation [86]. Notably, tyrosine 
phosphorylation influenced by temperature on the LAT 
also combines with Grb2/SOS to achieve phase separa-
tion (Fig. 5).
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Second, most published studies conclude that phos-
phorylation on tyrosine inhibits phase separation; for 
instance, In the study of neurodegenerative diseases, 

Tau phosphorylation on T231 and S235 inhibits tubulin 
phase separation and the formation of microtubule [87]. 
The authors suggest that it is a common mechanism in 

Fig. 4  Phosphorylation in LLPS. Phosphorylation and LLPS have similarities such that they are both reversible and rapid in response to stimuli. 
Electrostatic interactions of serine, threonine, and tyrosine increases after phosphorylation, but the pi-stacking force is severely damaged in 
phosphotyrosine. Considering that pi-stacking is more dominant in controlling LLPS, phosphorylation on tyrosine is commonly inhibitory

Fig. 5  Phosphorylation in LAT LLPS. Both phosphoserine and serine are basic parameters in IDR calculation. Activation and LLPS of LAT are related 
to phosphorylation-induced interactions among LAT, Gads, Grb2, and Sos1
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condensate-mediated cytoskeletal assembly. In another 
example, Fyn, a tyrosine kinase, can phosphorylate the 
granule protein heterogeneous nuclear ribonucleoprotein 
A2 (hnRNPA2) on its low complexity domain and inhibit 
its aggregation and phase separation. The authors also 
discovered hnRNA2’s antagonizing function on the dis-
ease-related mutant D290V in C. elegans neurodegenera-
tion [88]. It is reasonable to attribute this phenomenon 
to the phosphate inhibitory effect on the hydroxyphenyl 
group of the tyrosine side chain, which is more likely to 
interact with surrounding amino acids through electro-
static interactions with the positive charge, phenyl ring π 
bond stacking, and cationic π bond interaction [76, 78]. 
As for the explanation of negative regulation, tyrosine 
only relies on the electrostatic interaction of hydroxyl 
groups originally, but the addition of phosphate groups 
can significantly change these properties, by switching 
the original positive charge and blocking the stacking of 
the molecules. In addition, considering that the benzene 
ring plays a decisive role in LLPS, the effect of phospho-
rylation may predominately show its function by affect-
ing π-bond stacking. Studies on FUS lead to the same 
conclusion. The tyrosine residues across FUS contribute 
equally to LLPS with regard to their position and IDR 
regions, and although the interaction between PRM and 
SH3 is not influenced by FUS (27S), self-association is 
significantly damaged [36]. Targeting the regulatory role 
and function of FUS phosphorylation in physiological 
and pathological LLPS could lead to the development of 
new therapeutic strategies.

Another notable point is that many studies have 
focused on phosphorylation in regulating protein interac-
tions. In addition to relying on charge interactions, phos-
phorylation can also provide specific binding pockets for 
binding proteins. For example, in the PSD-95/SNAPAP/
Shank complex, phosphorylation of the SAPAP N-ter-
minal repeat mediates the PSD-95/SAPAP interaction, 
while multivalent interactions formed by postsynaptic 
density (PSD) scaffolding proteins lead to recombination 
PSD-like assemblies through phase separation, thereby 
promoting the formation of actin bundles [89, 90]. As 
another example, both Grb2 family proteins and PLCr1 
contain an SH2 domain that can bind to phosphoryl-
ated LAT lysine residues to form a multi-protein com-
plex, thereby regulating downstream signaling pathways 
[91]. From the initial stages of research on phase separa-
tion, several speculations about the influence of protein 
interaction on the phase separation were proposed [45]. 
Based on the polymer’s character, it is considered that 
multivalency drives phase separation. In this regard, the 
interaction between the PRM and SH3 is a good exam-
ple, where the covalent and non-covalent interactions 
between PRM and SH3 influence polymer reassembly 

[23]. The intensity of phase separation was determined by 
the number of phosphorylated nephrin motifs and SH2/3 
domains in the mixture. However, the principle of atomic 
interaction has not yet been explained. Subsequent stud-
ies stated that the proline-rich domain in SH3 supports 
the hydrophobic driving force [92]. In summary, phos-
phorylation regulates interactions by altering the positive 
charge, π bond stacking and provides binding pocket for 
partner proteins, then further affects LLPS. In addition to 
phosphorylation, acetylation has been reported to occur 
in multivalence-induced phase separation.

Regulation of LLPS by acetylation of lysine and N‑terminal
Another well-reported PTM in LLPS is acetylation, 
which regulates phase separation by neutralizing origi-
nally charged amino acids. Significantly, these proteins 
could be either positively or negatively charged because 
positively charged amino acids, such as serine, can be 
modified at the N-terminal [93]. Although acetylation on 
lysine alone shows many similarities with phosphoryla-
tion as they are both rapid and reversible, have no limita-
tion on substrate, and are executed by a series of enzymes 
that are abundant in the cells, the difference is that the 
phosphate group confers amino acids with a negative 
charge, while the acetylation modification neutralizes the 
charged amino acid [94], and this difference accounts for 
the inhibitory effect of acetylation on phase separation. 
Another important point is that acetylation, similar to 
phosphorylation, affects phase separation by regulating 
the interaction between biological macromolecules; how-
ever, the underlying mechanisms are distinct.

α-Syn has long been discovered as a regulator of neu-
rodegenerative diseases, including amyotrophic lateral 
sclerosis, Parkinson’s disease, and Alzheimer’s disease 
[95, 96]. Under pathological conditions, SYN proteins 
spontaneously interact with each other and form amyloid 
fibrils facilitated by phase separation [46, 97]. N-terminal 
acetylation inhibits Syn’s phase separation by either dis-
rupting the interactions by stabilizing the helix structure 
or blocking long-distance N-C interactions. Therefore, 
acetylation may play a role in regulating electrostatic 
interactions. Competitive combinations also participate 
in phase-separation control. Another neurological disor-
der concerning the protein, Tau, is reported to be acety-
lated on K274, which facilitates metal binding with Zn2+, 
Al3+, Cu2+, and Fe3+ ions [98]. Meanwhile the authors 
also discovered that KQ-mutated Tau tends to undergo 
phase separation [99, 100], as reported in the study of 
P62 phase separation. P62 is an autophagy receptor that 
undergoes phase separation via dimerization through 
the UBA domain. The acetylation of K420 and K435 
enhances their binding affinity with ubiquitin and there-
fore blocks the interaction between UBAs (Fig. 6) [101].
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Notably, since glutamine has similar amino acid side 
chains to lysine, most gain-of-function assays in these 
reports are simulated by the KQ mutation. These acetyl 
mimetics cannot accurately phenocopy lysine. They tend 
to be either over- or less functional. The distribution of 
electrons differs between acetylated lysine and glutamine, 
as glutamine is an ancestral residue for lysine in evolu-
tion [102].

Acetylation-regulated LLPS has also been found in 
SARS-CoV2019 infection. After invading host cells, NPs 
dispersed in the cytoplasm interact with each other and 
RNA through the dimer domain, thereby forming LLPS. 
These droplets suppress the host immune response by 
engulfing and inactivating MAVS. Its LLPS is controlled 
by acetylation because the uncharged acetyl groups can 
neutralize the originally charged lysine 375 and impede 
NP-nucleoid interactions. The CREB-binding protein 
(CBP) is considered to acetylate NPs. Unlike the KQ 
mutations employed in the aforementioned studies, the 
utilization of unnatural amino acid systems defines the 
effects of acetylation. Furthermore, the retro-inverso D 
peptide was designed to block K375 and mimic acetyla-
tion-induced inactivation (Fig. 7) [32].

For the in-depth understanding of acetylation in the 
regulation of phase separation, we considered Tau as an 
example. The first study on Tau acetylation and phase 
separation was executed in  vitro in 2018, finding its 

inhibitory effect in impeding microtubule assembly [99]. 
Acetylation on K311/375, which lies on the amyloid core 
domain, catalyzed by P300 inhibits Tau aggregation and 
phase separation [100]. Although it inhibits over-aggre-
gation, the authors speculate that the loss of function in 
microtubule assembly predominantly causes pathology. 
The following year, another study on lysine’s important 
function in phase separation and stress granule forma-
tion reached the same conclusion. The authors found a 
reversible function of acetylation in Tau, which decreases 
the interaction with RNA. Another study on Tau acety-
lation in 2019 drew a different conclusion, stating that 
the acetylation of K274 (KQ mutation mimic) enhances 
aggregation and filament formation while blocking 
tubulin interaction. In a follow-up study, changes in the 
K274Q mutation was further investigated to enforce its 
binding ability to metal ions, thereby impeding DNA pro-
tection [98].

The acetylation of the N-terminal merits further dis-
cussion. The acetylation of lysine is highly conversed 
from prokaryotes to eukaryotes. In contrast, N-terminal 
acetylation is more unique in prokaryotes. N-Acetyla-
tion is found in 85% of mammalian proteins and 60% of 
yeast proteins, making it one of the most abundant pro-
tein modifications in the cells. In-vitro experiments pre-
dominantly using truncated or primary nuclear purified 
proteins are often employed for phase separation studies, 

Fig. 6  Acetylation in SYN and Tau phase separation. Naive SYN is misfolded and aggregated into oligomers, with the help of molecular chaperones. 
LLPS is crucial for the formation of amyloid fibrils formation and subsequent neurodegenerative diseases. N-terminal acetylation inhibits SYN from 
LLPS by neutralizing the positively charged N-terminal and stabilizing the Helix structure. Acetylation on K274 and K311/375 in Tau is also found to 
be inhibitory for its LLPS, either by enhancing ion binding affinity or hindering homo-interaction
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which makes N-acetylation likely to be artificially ignored 
[103]. Moreover, owing to the solution charge, purifying 
stable proteins through N-acetylation remains technically 
difficult [104]. In the study of FUS, a nuclear magnetic 
resonance spectroscopy assay shows that N-acetylation 
does not change the FUS disorder structure but sightly 
promotes phase separation. But the aggregation of FUS 
is intensively suppressed and therefore damages FUS 
liquid-gel transition [103]. The N-terminal is a key factor 
in changing its N-terminal charge and aggregation and 
therefore influences its LLPS.

Positive regulation of LLPS by poly (ADP‑ribosyl)ation
Poly (ADP-ribosyl)ation is a reversible and highly con-
served PTM in eukaryotes, prokaryotes, and even viruses 

[105]. It takes part in a series of biological processes, 
including immune responses as well as inflammation 
and DNA damage repairing with the help of ADP-ribo-
syltransferase (ART) superfamily [105]. It has the poten-
tial of controlling LLPS owing to the strong neutralizing 
effect of charged amino acids. ADP-ribose (ADPr) from 
NAD precursors can be covalently bound to the side 
chains of arginine, serine, and aspartic acid through 
ester linkages [106]. New ADPr iteratively connect to the 
ADPr units that are already modified on the substrate, 
forming a long chain of up to 200 repeats [107]. For mol-
ecules that can bind to ADPr, the long ADPr chain offers 
an ideal multivalent platform for LLPS [108, 109]. In the 
study of apoptosis signal-regulating kinase 3 (ASK3), 
PAR was shown to cause an osmotic stress through 

Fig. 7  Poly ADP-ribosylation promotes LLPS. ADP-ribose is able to interact with or modify on substrates. Mono ADP-ribose modification on 
PAR-binding motif impedes hnRNP LLPS by competitive interaction. On the contrary, poly (ADP-ribose) chain provides an ideal platform for 
multivalent interaction and promotes the LLPS of FUS
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promoting LLPS to maintain the cell volume. When cells 
are subjected to a hyperosmotic stress, ASK3 undergoes 
LLPS and achieve inactivation, which prove that PAR is 
crucial for maintaining the dynamics. Mechanistically, 
ASK3 interacts with PAR through two arginine residues 
on the PAR-binding motif (PBM), which weakens the 
interaction with itself [110]. Another study on FUS found 
that FUS is attracted to DNA lesions after arginine/gly-
cine-rich domains interact with PAR chains. In addition, 
the RGG2 domain is important for ADPr interaction and 
FUS LLPS in DNA repair [111].

The opposite regulation of ubiquitination and methylation 
for LLPS
The ubiquitination and methylation are also found to reg-
ulate LLPS [39, 112–116]. The multivalent binding poten-
tial of the ubiquitin molecule and the characteristics of 
long molecular chains make its LLPS unique [57]. In the 
emergency response of eukaryotic cells, molecules asso-
ciated with protein degradation are often observed to 
rapidly coalesce together, forming stress granules (SGs). 
By wrapping the corresponding proteins and nucleic 
acids, the normal physiological activities of the cells are 
suspended, and a protective effect is exerted. Ubiquitina-
tion is a form of regulation for the urgent response [117]. 
In the study of substrate-shuttling factor RAD23B, ubiq-
uitination is found to be crucial in the formation of pro-
teasome and LLPS [53]. In contrast to other functions of 
PTMs in changing the electronic characteristics or aggre-
gation form of substrate, the ubiquitin chain itself is con-
sidered to be essential in regulating proteolysis.

Methylation is a broad and reversible PTM that is com-
monly found on the carboxyl groups of glutamate and 
leucine or on the guanidinium ion of arginine, histidine, 
and lysine [39, 54]. Methylation can strongly neutralize 
the original electrical properties of proteins and hinder 
electrostatic action. Therefore, it strongly inhibits the 
LLPS of the substrate. In the study of RNA-binding pro-
teins, the cation–π interactions of RGG/RG-rich motifs 
were found to be important in regulating phase separa-
tion, and asymmetric di-methylation on arginine can 
weaken the driving force and phase separation of RBP, 
thereby increasing the granule dynamics of RNP [24, 
118].

The potential of LLPS in treating 
neurodegenerative diseases and cancer
Biopolymer condensates can be converted into various 
material states. This is important for realizing unique 
functions, such as biochemical reaction centers, signal-
ing centers, and supporting structures [119]. Abnormal 
phase separation and transition are related to various 
human diseases, including neurodegenerative diseases 
(Fig. 8) and cancer [117]. Protein aggregation is a char-
acteristic of neurodegenerative diseases. However, 
the mechanisms underlying this pathogenic aggrega-
tion remain unclear. In recent years, neurodegenera-
tive diseases have been found to aggregate pathological 
proteins with the ability to facilitate LLPS under physi-
ological conditions. However, these proteins are likely 
to cause toxicity because of changes in their behavior in 
neurodegenerative disease-related variants and states 

Fig. 8  Factors in regulating LLPS-induced neurodegenerative diseases. Neurodegenerative disease such as amyotrophic lateral sclerosis, Parkinson’s 
disease, and Alzheimer’s disease are reported to be controlled by LLPS. Different circumstances are important in regulating this process. The PTM, 
specifically speaking, the phosphorylation of FUS enhances its LLPS. Chaperon such as HSP70 promotes the misfolding and subsequent LLPS of 
α-synuclein. Aging leads to a decrease in ATP levels, which reduces the reversibility of cellular LLPS



Page 12 of 17Li et al. Molecular Biomedicine            (2022) 3:13 

[120]. Therefore, therapeutic approaches to combat 
abnormal LLPS may alleviate the toxicity and aggre-
gation prevalent in neurodegenerative diseases. There 
are several ways to treat neurodegenerative diseases by 
altering the LLPS.

Molecular chaperones, such as heat shock proteins 
and nuclear proteins, are involved in the protein fold-
ing, protein degradation, translation of nascent peptides, 
and return of misfolded proteins to their original form. 
Proteases help to maintain stability through a variety 
of mechanisms [121]. In some special cases, molecular 
chaperones may possess a protein depolymerase activity 
that can restore natively folded proteins from aggregated 
states. Furthermore, harnessing the power of molecular 
chaperones may be a promising therapeutic strategy, as 
neurodegenerative diseases are associated with an inabil-
ity to maintain a protein balance [122, 123]. On the one 
hand, researchers have reversed the pathological aggre-
gation of neurodegenerative disease-related proteins, 
such as TDP-43, FUS, and α-synuclein, through genetic 
engineering methods, such as enhancing the activity of 
Hsp104 depolymerase [98, 124]. Another recently dis-
covered human protein-depolymerase system, with a 
three-part motif (TRIM) protein composition, enhanced 
TRIM11 depolymerase activity in conjunction with sumo 
ligase activity to degrade abnormal proteins and existing 
deposition, including amyloid fibrils [125]. On the other 
hand, inducible chaperone expression is stimulated by 
small-molecule drugs that penetrate the brain to induce 
the transcription of specific chaperones [126]. Several 
drugs that enhance chaperone expression have been 
developed, and some of them are in clinical trials for the 
treatment of ALS, including arimoclomal, a co-inducer 
of Hsp70 and Hsp90, and colchicine, which generally 
induces HspB8 expression, thereby slowing the deteriora-
tion of ALS [127, 128].

Recent studies have shown that nuclear protein abnor-
malities are associated with the mislocalization, and 
accumulation of proteins related to neurodegenerative 
diseases. In addition to the classical functions of nuclear 
import and export, nuclear proteins act as chaperones to 
prevent misfolding, accumulation, and irreversible LLPS. 
For example, nucleoprotein-β2 (Kapβ2) can prevent and 
reverse FUS, hnRNPA1, hnRNPA2, TAF15, EWSR1, etc. 
phase separation [118, 129, 130]. In terms of ATP levels, 
aging leads to a decrease in ATP levels, which reduces the 
reversibility of cellular LLPS by reducing the dynamics of 
stress granules [131, 132]. This loss of reversibility signifi-
cantly increases the risk of developing neurodegenerative 
diseases. However, increasing intracellular ATP levels, 
such as chemically hydrophilicity, can directly inhibit 
phase separation and protein aggregation, thereby com-
bating neurodegenerative diseases [133].

There are several cases of neurodegenerative disease-
related proteins, whose LLPS levels and aggregation state 
may be altered by PTMs. Charge changes induced by 
complementing the phosphorylation of proteins facilitate 
LLPS driven by charge-charge interactions [42]. This may 
also hinder LLPS because of charge repulsion and steric 
hindrance caused by different positions of the phosphate 
group [63]. The phosphorylation of serine/threonine 
residues in TIA1 and Tau promotes LLPS [70, 134]. Con-
versely, the phosphorylation of the prion-like domain 
(PrLD) of FUS reduces LLPS [135]. Specifically, the phos-
phorylation of FUS PrLD introduces static charges that 
inhibit multivalent interactions driving LLPS, which 
is a process that reduces the risk of neurodegenerative 
disease [41, 136, 137]. Similarly, the phosphorylation of 
TDP-43 PrLD inhibits the number of aggregates in cells 
[138], and its phase separation is also regulated by PTMs 
in the N-terminal domain, where the phosphorylation 
of Ser48 at the N-terminus inhibits LLPS [37]. In addi-
tion, poly (ADP-ribosyl)ation is an important PTM that 
regulates stress particle dynamics. The inhibition of poly 
(ADP-ribose) polymerase can reduce the phase separa-
tion level of cytoplasmic TDP-43 and related neurotox-
icity, thereby reducing ALS in NSC-34 cells, rat primary 
spinal cord neurons, and fruit fly models [124, 139, 140]. 
Changes in methylation sites can also regulate LLPS and 
the toxicity of FUS or DPRs [118, 141, 142]; for exam-
ple, PRMT reduced FUS LLPS levels in  vitro by adding 
methyl groups to arginine residues [118, 143]. Notably, 
specific concentrations of global methyltransferase inhib-
itors can reduce the aggregation of FUS mutants in cells 
[144]. In summary, these findings suggest that specific 
PTM upregulation or downregulation through genetic 
or pharmacological interventions may be an attractive 
strategy for the treatment of abnormal LLPS. Therefore, 
PTMs of ALS-related proteins should be explored further 
to identify potential therapeutic targets.

LLPS in the field of cancer research, especially in thera-
peutic strategies, has rarely been studied. Chemotherapy 
is an effective treatment for cancer, but the mechanisms 
by which drug resistance develops are not fully under-
stood. Recent studies have shown that the selective sepa-
ration of chemicals or the concentration of therapeutic 
drugs in condensate may affect the drug concentration 
and activity. By altering the properties of the condensate, 
the activity of the drug can be modulated, which could 
aid research on cancer treatment and drug resistance. 
For example, in ER+ breast cancer, the physicochemi-
cal properties of tamoxifen, which is independent of the 
agent target, facilitate its accumulation in MED1 conden-
sates, preventing Erα incorporation into the condensates, 
and to a certain extent, induce MED1 condensate exclu-
sion to inhibit cancer progression. However, the large 
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condensates formed by the overexpression of MED1 
diluted the concentration of tamoxifen, leading to the 
development of drug resistance. Conversely, the deregu-
lation of MED1 increases drug concentrations in aggre-
gates, restoring chemosensitivity to tamoxifen in breast 
cancer cells [145].

Conclusions and perspectives
In the past decade, research on LLPS has led to many 
unexpected and fruitful outcomes. Advancements from 
the initial observation of micron-level droplets to the 
organelle-like hypothesis to the later intermolecular 
interaction forces, our understanding of LLPS has grad-
ually moved from macro to microlevels. However, as 
understanding deepened, more questions emerged. For 
example, how do different stimuli coordinate to regulate 
LLPS? Will there be an impact between the LLPS of dif-
ferent proteins? How can the study of LLPS be applied to 
address this disease?

Research on the relationship between PTMs and 
LLPS is essential. Although the regulatory role of PTMs 
in LLPS has been reported, comprehensive research 
remains limited, and more LLPS-related PTMs need to 
be investigated. Based on evolutionary relevance and 
existing literature reports, we summarized the theo-
retical rationale for the relationship between PTMs and 
LLPS and aimed to provide a systemic idea for future 
researchers. Thus far, PTMs, including phosphoryla-
tion, ubiquitination, acetylation, and methylation, have 
been reported to regulate LLPS; however, based on 
the evolutionary relationship between PTM and LLPS 
described above, we believe that several PTM types are 
yet to be discovered. Several reviews have made similar 
assumptions about this conjecture on different theoreti-
cal bases, particularly for membrane proteins owing to 
their two-dimensional distribution, easy aggregation, and 
wide range of modifications. The reason for the delay in 
reporting may be because of the limitations of the detec-
tion methods or technical conditions. O-glycosylation 
is a common PTM that links glycosyl with the hydroxyl 
groups on the amino acid side chain [146]. The hydroxyl 
groups that can be used for bonding are mainly alco-
hol hydroxyl groups of serine and threonine, hydroxyl 
groups of hydroxyl lysine, and phenolic hydroxyl groups 
of tyrosine. N-glycosylation is pre-synthesized and then 
transferred to the acceptor peptide as a whole, but O-gly-
cosylation is usually transferred to the corresponding 
residues one by one [147]. The process of joining glycosyl 
molecules is complicated, as all the 10 monosaccharides 
can be modified in a linear sequence. Both elongated 
glycosylation chains and amino sites on the substrate 
provide platforms for multivalent binding. However, the 

strong electronic neutralization effect of O-glycosylation 
may block potential LLPS.

Research on LLPS is still in its infancy stage, and the 
regulation of LLPS by PTM will undoubtedly be a focus 
of future research. Drugs for PTM have benefited many 
patients, and it is expected that PTM-related research 
will facilitate the clinical applications of LLPS in near 
future.
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