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Abstract

Poor solute transport through the cartilage endplate (CEP) impairs disc nutrition and could

be a key factor that limits the success of intradiscal biologic therapies. Here we demonstrate

that treating the CEP with matrix metalloproteinase-8 (MMP-8) reduces the matrix constitu-

ents that impede solute uptake and thereby improves nutrient diffusion. Human CEP tissues

harvested from four fresh cadaveric lumbar spines (age range: 38–66 years old) were

treated with MMP-8. Treatment caused a dose-dependent reduction in sGAG, localized

reductions to the amount of collagen, and alterations to collagen structure. These matrix

modifications corresponded with 16–24% increases in the uptake of a small solute (376 Da).

Interestingly, the effects of MMP-8 treatment depended on the extent of non-enzymatic gly-

cation: treated CEPs with high concentrations of advanced glycation end products (AGEs)

exhibited the lowest uptake compared to treated CEPs with low concentrations of AGEs.

Moreover, AGE concentrations were donor-specific, and the donor tissues with the highest

AGE concentrations appeared to have lower uptake than would be expected based on the

initial amounts of collagen and sGAG. Finally, increasing solute uptake in the CEP improved

cell viability inside diffusion chambers, which supports the nutritional relevance of enhancing

the transport properties of the CEP. Taken together, our results provide new insights and in

vitro proof-of-concept for a treatment approach that could improve disc nutrition for biologic

therapy: specifically, matrix reduction by MMP-8 can enhance solute uptake and nutrient dif-

fusion through the CEP, and AGE concentration appears to be an important, patient-specific

factor that influences the efficacy of this approach.

Introduction

Low back pain is the most common and most costly musculoskeletal condition [1], and is sig-

nificantly associated with intervertebral disc degeneration [2]. Current medical interventions
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for disc degeneration are surgical in nature and are often unsuccessful, which motivates devel-

opment of noninvasive alternatives. Noninvasive treatments to regenerate the disc and allevi-

ate pain are largely experimental and focus on implanting new cells to produce matrix lost

during degeneration [3–5], or injecting growth factors [6], genes [7], or other small molecules

[8, 9] to stimulate matrix synthesis or reduce catabolism and inflammation. Importantly, all of

these biologic therapies require a rich nutrient supply to sustain higher cell numbers or meta-

bolic rates. However, the avascular and degenerated disc has a poor nutrient supply [10],

which may limit the utility of biologic therapies [11–13]. Development of treatment strategies

to improve disc nutrition may therefore expand the application and utility of biologic therapy

as well as inform alternative approaches for slowing or reversing degeneration.

Proper disc nutrition involves nutrient and metabolite exchange between the nucleus pul-

posus (NP) cells and vertebral capillaries, and several factors can impair the normal patterns of

solute exchange. For example, nutrients entering the disc and exiting metabolites must diffuse

through the cartilage endplates (CEP), and diffusion could be hindered by age- or degenera-

tion-related changes to the CEP matrix, including dehydration [14], mineralization [15–17],

and fibrosis [14, 17, 18]. In addition to altering the mechanical functionality of the CEP [19],

which is also physiologically important [20, 21], these matrix changes impact CEP biotransport

functionality too. Specifically, dehydration prevents solutes from diffusing freely within the

CEP; and increased deposition of proteoglycan, collagen, and mineral limits the amount of pore

space available to solutes [22, 23]. Indeed, we recently found that CEPs with higher amounts of

collagen, aggrecan, and mineral hindered nutrient diffusion, thereby impairing NP cell survival

and function [17]. This suggests that discs with deficient CEP transport properties may be poor

candidates for biologic therapies that increase nutrient demands; it also motivates strategies for

enhancing solute transport through the CEP to improve nutrition and cell survival.

Strategies for enhancing solute transport through the CEP are underexplored. Since solute-

hindering CEPs had higher amounts of collagen and aggrecan [17], one potential strategy

involves matrix modification to reduce collagen and aggrecan. To this end, several human and

bacterial enzymes have activity for these matrix constituents, including collagenases, aggreca-

nases, and gelatinases. Human matrix metalloproteinases (MMPs) are attractive candidates

since they are naturally expressed in the intervertebral disc [24, 25]. Among MMPs, MMP-8

has selectivity for type II collagen (the main collagen present in the CEP [26]) and aggrecan.

Thus, we sought to test the concept of matrix modification for enhancing CEP transport prop-

erties by enzymatic removal of matrix constituents using human MMP-8. Although MMP-8

has been used to enhance the transport properties of tumor tissues [27, 28], its effects on carti-

lage are unknown. We hypothesized that MMP-8 would liberate collagen and aggrecan from

the CEP matrix and enhance CEP transport properties.

Materials and methods

Instrumentation

Fluorescence or absorbance measurements were performed on a SpectraMax M5 microplate

reader (Molecular Devices, San Jose, CA) or on a FluoroLog-3 spectrofluorimeter (Horiba

Jobin Yvon, Kyoto, Japan) with data collection using SoftMaxPro (Molecular Devices) or

FluorEssence (Horiba Jobin Yvon), respectively. High-performance liquid chromatography

(HPLC) was performed on an 1100 HPLC from Agilent (Santa Clara, CA). Fourier transform

infrared spectroscopy (FTIR) imaging was performed on a Spotlight 400 imaging system from

Perkin Elmer (Waltham, MA). Cryo-sectioning was done using a Microm HM550 cryostat

(Thermo Fisher Scientific, Waltham, MA). Particle size measurements were carried out using

a Malvern Nano-ZS Dynamic Light Scattering Instrument (Malvern Panalytical,
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Westborough, MA). Fluorescence microscopy was performed using MZ FLIII and DMi8

microscopes (Leica Microsystems, Wetzlar, Germany).

Materials

Terrific Broth (TB), and isopropyl β-D-1-thiogalactopyranoside (IPTG) were purchased from

VWR (Radnor, PA). Nickel Sepharose high performance resin prepacked in 5 mL HiTrap col-

umns (HisTrap FF) and a Superdex 75 size exclusion chromatography (SEC) column were

purchased from GEHealthcare (Piscataway, NJ). EDTA-free protease inhibitor solution was

purchased from BiMake (Houston, TX). Amicon spin filters were purchased from Millipore

(Billerica, MA). MMP-8 antibody (PA5-28246) and Pierce ECL Western Blotting Substrate

were purchased from Thermo Fisher. SDS and zymogram materials and buffers were pur-

chased from BioRad (Hercules, CA). Enzymatic activity was assayed using an EnzChek Gelati-

nase/Collagenase Assay Kit (E12055) purchased from Life Technologies (Carlsbad, CA). BL1

(DE3) competent cells, Gibson Assembly Mastermix, and T4 DNA ligase were purchased from

New England Biolabs (Ipswich, MA). Herculase II Fusion DNA polymerase was purchased

from Agilent. MMP-8 (30915305) cDNA was purchased from GE Dharmacon (Lafayette,

CO). AccQ-Tag derivatization kit (186003836) was purchased from Waters (Milford, MA). All

lipids were purchased from Avanti Polar Lipids (Alabaster, AL), and lipid fluorophore 1,10-

dioctadecyl-3,3,30,30- tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt (DiD;

60014) was purchased from Biotium (Fremont, CA). Barium fluoride windows for FTIR were

purchased from Edmund Optics (Barrington, NJ). Cell viability was assessed using the Invitro-

gen Cytotoxicity assay from Thermo Fisher Scientific. Cartilage endplates were acquired from

four fresh cadaveric lumbar spines obtained from donors with no history of musculoskeletal

disorders (UCSF Willed Body Program). All other reagents were purchased from Sigma–

Aldrich (St. Louis, MO).

Plasmid construction

Plasmids were cloned using standard techniques, including Gibson assembly with sequence

verification. MMP-8 (BC074989) plasmids were constructed using the primers in S1 Table.

MMP-8 cloning

Truncated MMP-8 (M100-G262) for periplasmic expression was cloned from MMP-8 cDNA

(BC074989) using primer set 1 by Gibson cloning (S1 Table). Primers were designed for in-

sertion of MMP-8 into a pET22B vector with a C-terminal poly-histidine tag [29]. All PCR

reactions were performed with Herculase II Fusion DNA polymerase. Following PCR, amplifi-

cation products were gel-purified and combined following the Gibson master mix protocol.

All plasmids were confirmed by DNA sequencing. After unsuccessful expression from the

periplasmic space, the PelB header was removed and a GGS spacer was placed between the

enzyme and the poly-histidine tag to allow for MMP-8 expression from inclusion bodies using

primer sets 2 and 3. Primers were phosphorylated to allow for self-ligation following PCR reac-

tions. All PCR reactions were performed with Herculase II Fusion DNA polymerase. Follow-

ing PCR amplification products were gel purified and ligated using T4 DNA ligase. All

plasmids were confirmed by DNA sequencing.

Protein expression and purification

pET22b-MMP-8-GGS-His6 were transformed into BL21-Codon Plus (DE3)-RIPL E. Coli cells

and grown overnight on ampicillin plates. A streak of colonies was transferred into terrific
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broth, grown overnight, and inoculated at 1% into a larger culture containing 100 mg/mL

ampicillin. Cultures were allowed to grow for 18 h with an induction using 0.5 mM IPTG at

A280 = 0.7–1.0. Cells were centrifuged at 10,000 xg for 30 min at 4˚C. The pellet was resus-

pended in lysis buffer (100 mM Tris, 5 mM CaCl2, 0.5 mM ZnOAc, 0.05% Brij-35, pH 7.5,

EDTA-free protease inhibitor) and lysed cells using four freeze–thaw cycles followed by tip

sonication at 12W for 3x10 s, alternating with ice to keep the suspension chilled. The solution

was pelleted by centrifugation at 30,000 xg for 30 min at 4˚C. The supernatant was removed,

and the insoluble pellet was resuspended in 20 mL of lysis buffer (with protease inhibitor) by

vigorously pipetting to a homogeneous suspension then pelleted by centrifugation at 30,000 xg
at 4˚C. The process was repeated once more to wash the pellet with 20 mL MilliQ water con-

taining protease inhibitor. The washed pellet containing the bacterial inclusion bodies was

resuspended at 4˚C using extraction buffer (20 mM Tris–HCl, 500 mM NaCl, 10% glycerol, 8

M urea, pH 8.0) and allowed to solubilize for 1–2 h at room temperature on an orbital shaker.

The extraction mixture was centrifuged at 30,000 xg for 30 min and the supernatant was fil-

tered through a 0.45 μm filter in preparation of Ni2+ affinity chromatography.

Protein purification and refolding

MMP-8 was purified using a modified column refolding protocol [30]. Four joined 5 mL

HisTrap FF columns charged with Ni2+ were equilibrated with extraction buffer containing 20

mM imidazole. The clarified supernatant was loaded equally onto each column then joined

and washed with extraction buffer for 10 column volumes (CV). Samples were taken through

a stepwise titration with 10 CV at 8 M, 6 M, 4 M, 2 M, 1 M, and 0 M Urea by combining

extraction buffer with refolding buffer (20 mM Tris–HCl pH 8.0, 500 mM NaCl, 10% glycerol,

0.5 mM oxidized glutathione, 5 mM reduced glutathione) at desired ratios. For example, 8 M

Urea = 100% extraction buffer and 6 M Urea = 75% extraction buffer, 25% refolding buffer.

Bound protein was eluted with refolding buffer containing 400 mM imidazole. Fractions were

analyzed by SDS-page, pooled, and then dialyzed against 20 mM Tris–HCl, 50 mM NaCl, 0.1

mM DTT before purification by size-exclusion chromatography.

Size-exclusion chromatography

Dialyzed samples were concentrated using Amicon 10 kDa MWCO spin filters before purifica-

tion by size exclusion chromatography. Briefly, a Dionex FPLC equipped with a Superdex 75

column was operated at a flow rate of 0.5 mL/min in 20 mM Tris–HCl, 50 mM NaCl, 0.1 mM

DTT and the eluate was monitored at 280 nm. Samples were analyzed by SDS-Page with like

fractions combined.

Enzyme activity

Enzyme activity was determined using the EnzChek Gelatinase/Collagenase Assay Kit follow-

ing manufacturer recommendations using the included gelatin fluorophore. Activity was cali-

brated using a known amount of Clostridium collagenase supplied with the kit. One unit is

defined as the amount of enzyme required to liberate 1 μmole of L-leucine equivalents from

collagen in 5 h at 37˚C.

Western blot

Western blot was performed on MMP-8 using standard techniques. Proteins were loaded on a

4–20% SDS-PAGE Gel and transferred onto a blotting membrane. The blotting membrane

was incubated with blocking buffer (20 mM Tris, 140 mM NaCl, 5% Milk, 0.1% Tween, 1%
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PMSF, pH 7.5), washed, and mixed overnight with 1:5000 Rabbit Anti-MMP-8 (Thermo

Fisher, PA5-28246) at 4˚C. The membrane was thoroughly washed before addition of the sec-

ondary antibody (1:10000 anti-rabbit HRP). Following incubation for 1 h, the membrane was

washed before addition of Pierce ECL Western Blotting Substrate. The membrane was then

imaged using a film development cassette.

Zymography

Gelatin zymography was performed following BioRad protocols. Protein sample was mixed

1:1 with zymogram loading buffer, then loaded onto a zymography gel and run in 1X Tris-Gly-

cine containing 0.1% SDS. After 90 min at 100 V the gel was extracted and washed thoroughly

with water before being placed in renaturation solution for 30 min. Gels were transferred into

Development Solution at 37˚C overnight and subsequently stained with Coomassie Brilliant-

Blue R-250 for 1 h at room temperature. Loss of gelatin was visualized by development with

destaining solution for 1 h until clear bands appeared.

Liposome formation

Fluorescently labeled liposomes were used to evaluate large-solute uptake and were made

using a thin-film method. Dry lipid films containing 1,2-distearoyl-sn-glycero-3-phosphocho-

line (DSPC),1,2-distearoyl-glycero-3phosphoethanolamine-N-(polyethyleneglycol)-2000

(DSPE-PEG2K), DiD at 55:40:05:0.02 mole ratio were rehydrated in 20 mM HEPES, 140 mM

NaCL, pH 7.4. Each sample was heated at 60˚C for 1 h and then sonicated at 60˚C for 10 min.

Liposomes were then extruded 11–13 times through a 100 nm polycarbonate membrane with

subsequent verification of the particle size using light scattering on a Malvern Zetasizer.

Cartilage endplate treatment

Intact human cartilage endplates were harvested from four fresh cadaveric lumbar spines (age

range: 38–66 years old; mean age: 56 ± 10 years) belonging to donors with no history of mus-

culoskeletal disorders or disc herniation (S2 Table). This study involving cadaveric tissues was

exempt from institutional approval. From each L4 and L5 disc, full-thickness CEP samples

including any calcified cartilage, were removed from the subchondral bone adjacent to the

nucleus pulposus with a razor blade. The CEPs derived from the L4 and L5 discs were treated

as independent samples because there was no pairwise association or agreement between the

transport properties of the L4 and L5 CEP tissues. From these CEPs, circular biopsies (4 mm

diameter) were prepared and bisected perpendicular to the CEP surface to create two semi-cir-

cular halves: one half for treatment and the other for site-matched control. CEP samples were

placed in 100 μL of collagenase reaction buffer (50 mM Tris-HCl, 150 mM NaCl, 5 mM CaCl2,

0.2 mM sodium azide, pH 7.6) with or without 0.2 U/mL, 2 U/mL, or 20 U/mL recombinant

MMP-8 (n = 8 site-matched half biopsies per group, comprised of 2 half biopsies per donor

from all 4 donors). Samples were placed on an orbital shaker and mixed overnight for 18 h at

37˚C. The digest supernatant was removed and stored for subsequent biochemical analysis.

CEP samples were washed 3X with PBS, blotted dry, and transferred to microcentrifuge tubes

containing 200 μL of 0.1 mg/mL sodium fluorescein (376 Da) or 2 mM liposomes. After equili-

brating overnight in the fluorescein solution, the CEP samples were extracted, blotted dry,

weighed, and dehydrated by lyophilization at 80˚C for 2 h. The dehydrated samples were re-

weighed and dissolved in 200 μL of 1 mg/mL papain at 60˚C overnight. Papain digests were

centrifuged at 2,000 xg for 20 min, and the supernatant was assayed for protein and fluoro-

phore contents.
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Solute uptake

Papain digests were diluted in PBS, and fluorophore concentration was determined by fluores-

cence emission (fluorescein: ex. 450 nm, em. 516 nm; DiD: ex. 644 nm, em. 663 nm). Fluores-

cence intensities were referenced to a standard curve of known concentrations. Percent uptake

was computed by dividing the mass of solute in the tissue by the total mass of solute added to

the equilibration solution. Since the sample preparation procedures resulted in biopsy halves

with inconsistent sizes, and since the mass of the biopsy half was positively correlated with per-

cent uptake, the percent uptake values were normalized to the mass of the CEP biopsy half.

Paired t-tests were used to compare solute uptake between site-matched control and treated

halves; p< 0.05 (2-tailed) was considered statistically significant.

Proteoglycan content

Sulfated glycosaminoglycan (sGAG) content was measured using a dimethylmethylene blue

assay [31]. Percent sGAG released from the CEP was computed by dividing the sGAG in the

reaction digests by the initial sGAG, which was determined by summing the sGAG from both

the reaction and papain digests. Fixed charge density was estimated assuming two moles of

charge per mole of sGAG and a molecular weight of 502.5 g/mole sGAG [32]. Data were ana-

lyzed by one-way ANOVA with Tukey’s post-hoc tests; p< 0.05 (2-tailed) was considered sta-

tistically significant.

Collagen content

Collagen content was determined by quantifying hydroxyproline from neutralized hydroly-

sates. Aliquots of papain digest and reaction digest were hydrolyzed in 6 N HCL for 18 h at

110˚C. Acid hydrolysates were neutralized with sodium hydroxide and derivatized using

Waters AccQ-Tag Derivatization kit following manufacturer directions. Samples were ana-

lyzed by HPLC on a C8 column with a gradient of 0–15% of MeOH with 0.1% TFA in H2O

with 0.1% TFA. Hydroxyproline concentration was determined by calculating the peak area

compared to a standard curve. Collagen content was calculated from the amount of hydroxy-

proline, assuming the latter accounts for 13.5% of the total collagen. The initial collagen con-

tent of the samples was determined by summing the collagen in the tissue post-treatment with

the collagen in the reaction digests. A t-test was used to compare solute uptake between sam-

ples with the highest versus lowest collagen concentrations, and one-way ANOVA with

Tukey’s post-hoc tests was used to test for donor differences. p< 0.05 (2-tailed) was consid-

ered statistically significant.

Advanced glycation end products

The total concentration of advanced glycation end products (AGEs) was determined using a

fluorimetric assay. Fluorescence readings of the neutralized lysates (ex. 370 nm, em. 440 nm)

were referenced to a quinine sulfate standard [33] and then normalized to collagen content. Ini-

tial AGE content was computed by summing the AGEs remaining in the tissue with AGEs in

the reaction digest. A t-test was used to compare solute uptake values between samples with the

highest versus lowest AGE concentrations, and one-way ANOVA with Tukey’s post-hoc tests

was used to test for donor differences. p< 0.05 (2-tailed) was considered statistically significant.

FTIR imaging

Following overnight treatment, CEP samples were flash-frozen in Optimal Cutting Tempera-

ture (OCT) compound. Next, 7 μm-thick cryo-sections were placed on barium fluoride
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windows and imaged using an FTIR microscope. Images were acquired in transmittance

mode with a 4 cm-1 spectral resolution and a 6.25 μm pixel size. Spatial maps of collagen

(1595–1710 cm-1 Amide I peak area), aggrecan (960–1185 cm-1 carbohydrate peak area), and

collagen order (ratio of collagen’s 1338 cm-1 CH2 side chain vibration peak area to collagen’s

1480–1590 cm-1 Amide II peak area) were acquired in 0.8 mm x 0.2 mm regions of interest

(one ROI/section). The 1338 cm-1:Amide II ratio is sensitive to enzyme-induced degradation

of the structural order of the collagen triple helix [34]. Spectral indices at normalized depths

from the NP/CEP interface were calculated in control and treated CEPs (n = 3 CEPs/group,

three adjacent sections/CEP). Calculations were performed in IDL 8.6 (Harris Geospatial Solu-

tions, Broomfield, CO).

To describe the spatial fluctuations in CEP composition, we used regression models of the

FTIR indices as a function of normalized depth from the NP/CEP interface, a continuous inde-

pendent variable. For each of the indices, a polynomial model for normalized depth was fitted

with random intercepts and slopes [35]: Amide I peak area, a 3rd-degree polynomial; carbohy-

drate peak area, a 2nd-degree polynomial model; and 1338 cm-1:Amide II ratio, a 4th-degree

polynomial. We tested whether overall trajectories differed by treatment status via a post-esti-

mation test using a contrast statement (F-test). Analyses were performed using SAS v 9.4;

p< 0.05 (2-tailed) was considered statistically significant.

Nucleus pulposus cell isolation

Nucleus pulposus (NP) cells were isolated from coccygeal discs obtained from steers (24–28

months old) collected at slaughter from a local abattoir (Marin Sun Farms, Petaluma, CA).

The nucleus pulposus was removed from each disc, washed with sterile PBS containing 2%

penicillin-streptomycin, and cut into approximately 0.125 cm3-sized pieces. The dissected tis-

sue was digested inside 50 mL conical tubes containing standard cell growth medium supple-

mented with 0.8 mg/mL collagenase P (cat. no. 11 213 857 001). The standard growth medium

was comprised of low-glucose Dulbecco’s modified Eagle’s medium (DMEM), 1% non-essen-

tial amino acids (Thermo Fisher), 5% fetal bovine serum (HyClone; Thermo Fisher Scientific),

2% penicillin-streptomycin, and 1.5% osmolarity salts (5 M NaCl and 0.4 M KCl). Samples

were digested for 8 h at 37˚C under constant agitation, run through 40 μm filters, and then

centrifuged at 200 xg for 6 min. Supernatant was removed, and the pelleted NP cells were re-

suspended in growth medium and expanded to passage 2 in 21%/5% O2/CO2 conditions. For

the diffusion chamber experiments, the expanded NP cells were suspended in growth medium

and mixed with low gelling temperature agarose (type VII, A4018) to give a final concentration

of 1% agarose and 4 million cells/mL, which is the average nucleus pulposus cell density in the

adult disc [36].

Diffusion chambers

To determine if MMP-8 treatment improves nutrient diffusion through the CEP, we used dif-

fusion chambers [17], which mimic the nutrient environment of the disc in vivo. Briefly, NP

cells cultured inside the chamber obtain nutrients that diffuse through full-thickness CEP tis-

sues at the open sides of the chamber (S1 Fig). By imposing culture conditions with identical

chamber cell density (dictates nutrient demand), we determined how differences in transport

properties between untreated versus treated CEPs affected NP cell viability. The design of the

diffusion chambers was modified from a previous study [37]. Each chamber was comprised of

two parallel glass slides (25 x 75 mm) separated by 170 μm-tall impermeable spacers. After

overnight treatment, OCT-embedded CEP samples were cryo-sectioned perpendicular to the

CEP surface (180 μm section width). CEP sections were then washed for 90 min with sterile
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PBS containing antibiotics: 0.012% penicillin, 0.02% streptomycin, and 0.01% gentamicin.

Next, two coronally adjacent sections from each CEP were placed with the deep layer of the

CEP at the open sides of the chambers (n = 12 sections per group, with 4 each from donors

1–3). Next, the NP cell-agarose mixture was pipetted into the center of the chambers, the

chambers were placed in 100 mm-diameter dishes with 25 mL of growth medium, and the

dishes were incubated for 72 h at 37˚C. Owing to the mismatch between the CEP section thick-

ness and the height of the spacers, the CEPs were exposed to a small compressive strain during

incubation.

Cell viability

Cell viability in the diffusion chambers at the end of the incubation period was assessed using

a cytotoxicity assay. After removing the chambers from the incubator, the agarose gels were

rinsed with 600 μL of PBS, covered with 200 μL of PBS containing 1 μL/mL calcein-AM and

4 μL/mL ethidium homodimer-1, and incubated for 30 min at 37˚C. After incubation, the

stained gels were rinsed with 400 μL PBS and imaged using fluorescence microscopy. Low

magnification images (MZ FLIII; 1x objective) of each half of the gel were acquired for semi-

quantitative analysis of viable distance using the ruler tool in ImageJ (NIH, USA). For quanti-

tative analysis of viable cell percentages across the chambers, higher magnification images

(DMi8; 5x Plan Apo objective) were acquired using the automated stage controls for scanning,

imaging, and tiling. Viable cell percentages were calculated using the cell counting tool in Ima-

geJ. Viable distance was defined using the 90% viability criterion and was averaged at five loca-

tions per chamber (2 chambers per donor for donors 1–3). Semi-quantitative estimates of

viable distance were within 10% of measurements derived from the high magnification analy-

sis. Paired t-tests were used to compare viable distance between chambers with control and

treated CEP tissues from the same endplate; p< 0.05 (2-tailed) was considered statistically

significant.

Results

MMP-8 purification & activity

Active truncated (M100-G262) MMP-8 was recombinantly expressed from E. coli. Recombi-

nant protein mass of approximately 19 kDa was confirmed by Western blot (Fig 1A), and

purity was confirmed by Coomassie gel (S2 Fig). To determine if the enzyme was active against

matrix components, activity was first evaluated by gelatin zymography, which revealed gelatin

removal at the expected 19 kDa (Fig 1A). In addition, dose-dependent activity over a 24 h

period was measured using a gelatin fluorophore, where fluorescence increased with cleavage

(Fig 1B).

MMP-8 activity on CEP matrix composition

MMP-8 liberated matrix from human CEP tissues. MMP-8 displayed a dose-dependent reduc-

tion in total sGAG from the CEP (Fig 2A), with the highest dose releasing over 20% of sGAG.

These reductions in sGAG coincided with a decrease in computed fixed-charge density (S3

Fig). FTIR imaging of CEP sections corroborated the bulk reductions in sGAG, with sections

from treated samples showing significantly lower carbohydrate peak area (Fig 2B). MMP-8

treatment also reduced the amount and structural order of the collagen. Specifically, FTIR

imaging revealed that treated samples had lower Amide I peak area, particularly in the deeper

zones of the CEP (Fig 2C). To determine if enzymatic treatment had any broader effects on the

collagenous matrix, we measured the 1338 cm-1: Amide II peak ratio, which is a measure of
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collagen structural order that is sensitive to collagenase activity [34]. MMP-8 treated samples

had significantly lower ratios overall, indicating decreased structural order of the triple helix

and increased denaturation (Fig 2D). Bulk measures of total collagen by hydroxyproline

and total AGE concentration by fluorescence assay were insensitive to MMP-8 treatment

(p> 0.05).

Fig 1. Purification and characterization of MMP-8. MMP-8 was purified using a column refolding protocol. (A)

Enzyme mass was confirmed by Western blot (left) and gelatin zymography (right). (B) Purified protein displayed

dose-dependent activity for fluorescently labeled gelatin.

https://doi.org/10.1371/journal.pone.0215218.g001

Fig 2. MMP-8 treatment liberates extracellular matrix components from the CEP. CEP samples were treated for 18

h with MMP-8. (A) Treatment caused the dose-dependent removal of sGAG, evaluated by DMMB assay. Bars show

mean ± SEM. One-way ANOVA (p< 0.0001) with Tukey’s post-hoc test, a p< 0.001, b p< 0.01. n = 8 CEPs per

group, comprising two each from donors 1–4. (B)-(D) Representative FTIR absorption maps and spatial plots of the

mean difference in absorption between control and MMP-8-treated CEP tissues for (B) carbohydrate peak area (960–

1185 cm-1, estimate of aggrecan content), (C) Amide I peak area (1595–1710 cm-1, estimate of collagen content), and

(D) 1338 cm-1: Amide II peak ratio (estimate of collagen structural order). Tissues for FTIR imaging were treated with

20 U/mL MMP-8. Spatial plots show the mean difference in average absorption (purple, with 95% confidence intervals

from n = 3 CEPs/group and 3 sections/CEP) as a function of normalized depth from the NP/CEP interface between

control vs. MMP-8-treated CEPs (control minus treated;> zero suggested higher absorption in the control CEPs).

Solid black lines indicate overall difference, i.e. for all depths pooled, and dotted black lines indicate no difference. p-

values in purple indicate statistical significance of the difference between control and treated CEPs as a function of

depth, and p-values in black indicate statistical significance of the overall difference. Overall, compared to the control

CEPs, the treated CEPs had lower carbohydrate peak area (B), Amide I peak area (C), and collagen order (D).

https://doi.org/10.1371/journal.pone.0215218.g002
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MMP-8 activity on solute uptake in the CEP

To resolve if the matrix modifications caused by MMP-8 treatment enhanced the transport

properties of the CEP, we measured the uptake of sodium fluorescein (376 Da). MMP-8 treat-

ment significantly increased fluorescein uptake (Fig 3): site-matched samples showed average

increases in uptake (mean ± SEM) of 16 ± 6%, 19 ± 8%, and 24 ± 4% with 0.2 U/mL, 2 U/mL,

and 20 U/mL MMP-8, respectively. Treatment with 0.2 U/mL MMP-8 also increased the uptake

of large liposomal nanoparticles (~800 kDa, 100 nm diameter) by 561% (S4 Fig). Owing to the

large size of the liposomes, the total percent uptake of liposomes was much lower than sodium

fluorescein, which may partly explain the greater percent increase with MMP-8 treatment.

Determinants of solute uptake with MMP-8 treatment

To understand the factors that influence solute uptake following MMP-8 treatment, we inves-

tigated the roles of collagen quantity and quality. Separating the MMP-8-treated samples into

equal-sized groups with low versus high collagen contents hinted that samples with higher col-

lagen contents pre-treatment had lower fluorescein uptake (Fig 4A), although the difference

was not statistically significant (p = 0.26). Instead, uptake post-treatment was more strongly

related to the degree of non-enzymatic glycation: the treated CEP samples with the lowest

Fig 3. MMP-8 improves sodium fluorescein uptake in CEP tissues. CEP samples treated for 18 h with 0.2 (left), 2

(middle) or 20 (right) U/mL of MMP-8 show increased percent uptake of sodium fluorescein. Each pair represents

site-matched matched biopsy halves. n = 8 CEP samples per group, comprising two each from donors 1–4.

https://doi.org/10.1371/journal.pone.0215218.g003

Fig 4. Collagen cross-linking restricts sodium fluorescein uptake in treated CEP tissues. (A) Treated samples

across all doses exhibited similar uptake regardless of collagen content (high:>700 μg/mg dry weight; t-test, p = 0.26).

(B) Treated samples across all doses exhibited lower uptake in the samples with high AGE concentration (high:>0.75

ng quinine fl/μg collagen; t-test, p = 0.03). Each symbol represents a biopsy half from either the L4 or L5 disc of one of

four donor spines studied.

https://doi.org/10.1371/journal.pone.0215218.g004
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AGE concentrations pre-treatment had 20% greater fluorescein uptake on average (p = 0.03)

compared to treated samples with the highest AGE concentrations pre-treatment (Fig 4B).

AGE concentrations affected fluorescein uptake in the untreated CEP tissues too: CEP tissues

with high AGE concentrations had 19% lower uptake on average (p = 0.0003, S5 Fig). More-

over, AGE concentrations and treatment effects were donor-specific. CEP tissues from donor

4, and to a lesser extent donor 1, had higher AGE concentrations compared to the others (Fig

5A), and the elevated AGE concentrations in the CEP tissues from those donors coincided

with lower uptake (Fig 5B). This was true despite donor 4 having similar sGAG (Fig 5C) and

less collagen (Fig 5D) initially, which would be expected to associate with greater uptake [22].

MMP-8 activity on nutrient transport in the CEP

To determine the biologic relevance of matrix modification with MMP-8 treatment, we tested

the CEP tissues from donors 1–3 in diffusion chambers containing bovine NP cells. A single

dose of 2 U/mL was chosen because this dose showed the greatest reduction in matrix with the

smallest loss in fixed charge density. MMP-8 treatment at 2 U/mL significantly increased the

viable distance in the diffusion chambers by an average 13% (range: 4–28%; Fig 6), indicating

improved nutrient diffusion through the CEP between the culture medium outside the cham-

bers and the NP cells inside the chambers.

Discussion

These results show that MMP-8 treatment improves the uptake of a small solute into cadaveric

human CEP tissues (p = 0.0004 to 0.06). This increase in uptake was mainly driven by a greater

Fig 5. CEP donors exhibit varying levels of ECM components and transport properties. (A) Comparison of initial

AGE content between donors. Donor 1 and donor 4 had CEP tissues with elevated AGE concentrations (One-way

ANOVA, p = 0.03). (B) Fluorescein uptake was lowest in CEP tissues from donor 4, which had the highest AGE

concentrations (One-way ANOVA, p = 0.04). (C) Initial sGAG content was similar in CEP tissues from all donors

(One-way ANOVA, p = 0.05). (D) Initial collagen content was lowest in donor 4 (One-way ANOVA, p = 0.02). Each

symbol represents a biopsy half; all samples pooled (treated and untreated). Tukey’s post-hoc test, ap< 0.001,
bp< 0.01, cp< 0.05.

https://doi.org/10.1371/journal.pone.0215218.g005
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amount of pore space available to the solutes. For example, MMP-8 treatment led to dose-

dependent reductions in sGAG in the CEP by up to 20%, which coincided with increases in

the uptake of fluorescein by 16–24%. MMP-8 treatment also caused localized reductions to the

amount of collagen and alterations to collagen structural order. Importantly, the effects of

MMP-8 treatment depended significantly on the extent of non-enzymatic cross-linking of the

CEP matrix: overall, treated CEP tissues with the lowest AGE concentrations showed 20%

greater fluorescein uptake following treatment compared to treated tissues with the highest

AGE concentrations. Moreover, AGE concentrations in the CEP were donor-specific, and the

donor with CEP tissues having the highest AGE concentrations showed the lowest solute

uptake, despite having a similar amount of sGAG initially and the lowest amount of collagen

compared to the other donors. Finally, increasing solute uptake improved cell viability inside

diffusion chambers, which supports the biologic relevance of enhancing the transport proper-

ties of the CEP and indicates increased nutrient diffusion. Poor nutrient diffusion through the

CEP impairs disc nutrition [12, 17] and may limit the efficacy of regenerative therapy [13, 17].

Yet, we are aware of no treatment approaches for improving diffusion. Taken together, our

results provide new insights and in vitro proof-of-concept into a treatment approach that

could potentially improve nutrition for biologic therapy: specifically, matrix reduction by

MMP-8 can enhance solute uptake and nutrient diffusion through the CEP, and AGE concen-

tration appears to be an important, patient-specific factor that influences the efficacy of this

approach.

Our results indicate that MMP-8 treatment may reverse some of the age- or degeneration-

related factors that could hinder nutrient transport. For example, in our prior study we

reported that CEPs that hindered nutrient diffusion had multiple compositional deficits con-

sistent with fibrotic changes, including higher amounts of collagen and aggrecan, more min-

eral, and fewer mature cross-links [17]. Other groups have reported similar relationships

between solute transport and the amounts of various matrix constituents, including collagen,

aggrecan, and mineral [16, 22, 23, 36]. It is not presently clear which of these deficits is most

important, or if reversing only some of the deficits is sufficient. Notwithstanding, MMP-8

treatment reduced the amounts of collagen and aggrecan and improved nutrient diffusion.

Together, the available data suggest that fibrotic changes play a significant role in poor disc

nutrition and that MMP-8 treatment has mechanistic effects.

Fig 6. MMP-8 improves nutrient diffusion in CEP tissues. (A) Diffusion chambers containing CEP samples treated

for 18 h with 2 U/mL of MMP-8 showed increased viable distance, indicating greater glucose availability. Mean

difference: 0.74 mm; 95% CI: 0.23, 1.25, p = 0.01 (B) Representative photomicrographs of the diffusion chamber

showing the transition between live (green) and dead cells (red). Distance was measured from the open side of the

chamber. Chambers were cultured for 72 h with 4 million NP cells/mL.

https://doi.org/10.1371/journal.pone.0215218.g006
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Examination of the effects of MMP-8 treatment revealed a tradeoff between liberating

matrix to increase pore space versus maintaining CEP swelling pressure. Cartilage swelling is a

balance between the negative fixed charge density of the proteoglycans and tensile stresses in

the collagen network, which resist tissue swelling [38]. Here, MMP-8 treatment induced dam-

age to the collagen network and increased uptake, despite the loss in sGAG. This is consistent

with results following collagenase treatment of articular cartilage [39]. However, raising the

MMP-8 dose released increasing amounts of sGAG from the CEP, but the corresponding

improvements in solute uptake did not scale with sGAG release (Figs 2 and 3). This suggests

that although collagen damage in combination with some loss of sGAG improves solute

uptake, removal of too much sGAG is counterproductive since it lowers fixed charge density

(S2 Fig) and swelling pressure.

Removal of too much matrix from the CEP or inducing excessive collagen damage could

also have biomechanical consequences. For example, the collagen network helps resist tissue

deformation [19, 40], and proteoglycans in the CEP are believed to help prevent the loss of

proteoglycan aggregates from the nucleus pulposus [22]. Additional work is required to deter-

mine if appreciable improvements in solute transport can be achieved without compromising

CEP biomechanical function.

An important finding of this study is that solute uptake in both treated and untreated CEPs

was lowest in tissues with high AGE concentrations (Fig 4, S5 Fig). AGEs are formed through

non-enzymatic glycation of the free amino groups of proteins by reducing sugars, and AGE

accumulation in low-turnover proteins of the disc increases with ageing [41] and is accelerated

by metabolic disease [42–44] and with AGE-rich diets [45]. High AGE concentrations could

negatively impact solute uptake in several ways. First, AGEs decrease water content by lower-

ing the hydrophilic charge of the GAGs [46], which could reduce the volume of water available

for solute diffusion. Second, increased inter- and intra-molecular crosslinks may hinder the

release of degraded protein fragments, which could limit solute penetration. Although a larger

sample size with greater variation in AGEs is needed to elucidate their role, these factors could

explain why solute uptake in CEPs with high AGE concentrations appeared to be lower than

expected based on the amounts of collagen and sGAG alone.

Related, our finding that solute uptake was lower in treated CEPs with high AGE concentra-

tions is also consistent with known effects of AGEs on proteolysis. Specifically, AGEs can

directly impair the matrix-digesting activity of MMPs by altering the structure of the protein

and thereby interfering with enzyme-matrix interactions [47–49]. Altogether, these results

suggest that application of matrix-modifying enzymes to improve nutrient transport may

require tuning to patient-specific factors such as matrix cross-linking.

Although we focused on MMP-8, it is important to note that other enzymes with activity

for CEP matrix constituents may achieve similar effects. It is also possible that a combination

of matrix-modifying enzymes may allow for optimal removal of inhibitory matrix constituents

while maintaining tissue integrity. These issues will be essential for future in vivo studies.

Regardless of the specific enzyme selected, special considerations will be required when using

native forms of the enzyme with post-translational modifications that can affect enzymatic

activity and regulation.

This study had several limitations. First, we evaluated the effects of MMP-8 in diffusive con-

ditions that occurred under a free-swelling environment, while static or dynamic compressive

loading of the CEP could increase transport via forced solute convection [50]. The role of sol-

ute convection in disc nutrition is unclear, but we expect the present data to be representative

of the relative effects of MMP-8.

A second limitation is that we treated CEP tissues in vitro, and treating CEP tissues in vivo
warrants several considerations. Specifically, CEP tissues were denuded of cells, and studying
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CEP tissues with viable chondrocytes may be important in accounting for local nutrient gradi-

ents over time, or to address long-term changes in CEP matrix turnover. However, we pres-

ently sought to take a snapshot of the compositional characteristics of the CEP, and from that,

identify how variations in those characteristics and their response to MMP-8 treatment

impacts nutrient diffusion. In this context, we believe the lack of viable chondrocytes, which

are estimated to be between 6- and 10-fold fewer in number compared to NP cells [36, 51], is

unlikely to change overall conclusions about the effects of MMP-8 on nutrient diffusion.

A related consideration is the effects of MMP-8 treatment on cellular signaling. For exam-

ple, MMP-8 expression has been shown to induce the expression of pro-inflammatory factors

by breast cancer cells [52]. Also, the biologic effects of matrix fragments following proteolysis,

which could activate toll-like receptors [53], may also be important. Having now established

that matrix modification can enhance the transport properties of the CEP by enzymatic

removal of matrix constituents in vitro, our current results motivate future studies to explore

these biologic effects of MMP-8 treatment and matrix modification in vivo. In support, in vivo
studies utilizing collagenases to increase tissue permeability showed minimal toxicity and off-

target digestion at doses that increased solute uptake [54]. From a practical standpoint, tar-

geted delivery of MMP-8 to the CEP could be achieved via injection under fluoroscopic guid-

ance, and engineering approaches such as linking the enzyme to bulky nanoparticles could be

used to control unwanted migration within the disc and to limit off-target activity.

Poor solute transport through the CEP impairs disc nutrition and could be a key factor that

limits the success of intradiscal biologic therapies, which by design, increase nutrient demands.

Thus, enhancing nutrient supply may be required to expand the application and utility of

these emerging therapies, as well as inform alternative approaches for slowing or reversing

degeneration. One strategy for enhancing nutrient supply involves targeted removal of pro-

teins that impede solute transport in the CEP. Our current results showed that removal of CEP

matrix constituents with MMP-8 increases solute uptake and nutrient diffusion in vitro. This

effect was sensitive to AGE concentration, which limited solute uptake and susceptibility to

MMP-8 activity. Taken together, these findings suggest that matrix reduction can enhance sol-

ute uptake and nutrient diffusion through the CEP, and that AGE concentration appears to be

an important, patient-specific factor that influences the efficacy of this approach.

Supporting information

S1 Fig. Schematic of diffusion chamber for assessing the effects of MMP-8 on nutrient

transport. The diffusion chambers consist of glass slides separated by impermeable spacers.

Nucleus pulposus cells embedded in agarose gel obtain nutrients from their culture medium

outside the chambers via diffusion through full-thickness human CEP sections. Following

incubation, gels were stained to assess the viable distance from the open sides of the chamber.

(TIF)

S2 Fig. MMP-8 Coomassie blue gel. MMP-8 fractions following size-exclusion chromatogra-

phy.

(TIF)

S3 Fig. MMP-8 treatment reduces CEP fixed charge density. CEP samples were treated for

18 h with MMP-8. Treatment-related loss of sGAG corresponded to decreases in calculated

fixed charge density. Error bars represent ±SEM. One-way ANOVA with Tukey’s post-hoc

test (p< 0.0001), ap< 0.001, bp< 0.01. n = 8 CEP samples per group, comprising two each

from donors 1–4.

(TIF)
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S4 Fig. MMP-8 improves liposome uptake in CEP tissues. CEP samples treated for 18 h with

0.2 U/mL of MMP-8 show increased uptake of large liposomal nanoparticles. Each pair repre-

sents site-matched matched biopsy halves. n = 5 CEP samples per group, comprising one each

from donors 2–4 and two from donor 1.

(TIF)

S5 Fig. Collagen cross-linking restricts sodium fluorescein uptake in untreated CEP tis-

sues. Untreated samples with high AGE concentration (>0.75 ng/μg collagen) exhibit

restricted sodium fluorescein uptake. Each symbol represents a biopsy half from one of four

donors. t-test, ap = 0.0003.

(TIF)

S1 Table. MMP-8 primer sets used for plasmid construction.

(DOCX)

S2 Table. CEP donor spine characteristics.

(DOCX)
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