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Gastric cancer (GC) is one of the most commonmalignancies in the world, with morbidity and mortality ranking second among all
cancers. Accumulating evidences indicate that circular RNAs (circRNAs) are closely correlated with tumorigenesis. However, the
mechanisms of circRNAs still remain unclear. This study is aimed at determining hub genes and circRNAs and analyzing their
potential biological functions in GC. Expression profiles of mRNAs and circRNAs were downloaded from the Gene Expression
Omnibus (GEO) data sets of GC and paracancer tissues. Differentially expressed genes (DEGs) and differentially expressed
circRNAs (DE-circRNAs) were identified. The target miRNAs of DE-circRNAs and the bidirectional interaction between target
miRNAs and DEGs were predicted. Functional analysis was performed, and the protein-protein interaction (PPI) network and
the circRNA-miRNA-mRNA network were established. A total of 456 DEGs and 2 DE-circRNAs were identified with 3 mRNA
expression profiles and 2 circRNA expression profiles. GO analysis indicated that DEGs were mainly enriched in extracellular
matrix and cell adhesion, and KEGG confirmed that DEGs were mainly associated with focal adhesion, the PI3K-Akt signaling
pathway, extracellular matrix- (ECM)- receptor interaction, and gastric acid secretion. 15 hub DEGs (BGN, COL1A1, COL1A2,
FBN1, FN1, SPARC, SPP1, TIMP1, UBE2C, CCNB1, CD44, CXCL8, COL3A1, COL5A2, and THBS1) were identified from the
PPI network. Furthermore, the survival analysis indicate that GC patients with a high expression of the following 9 hub DEGs,
namely, BGN, COL1A1, COL1A2, FBN1, FN1, SPARC, SPP1, TIMP1, and UBE2C, had significantly worse overall survival. The
circRNA-miRNA-mRNA network was constructed based on 1 circRNA, 15 miRNAs, and 45 DEGs. In addition, the 45 DEGs
included 5 hub DEGs. These results suggested that hub DEGs and circRNAs could be implicated in the pathogenesis and
development of GC. Our findings provide novel evidence on the circRNA-miRNA-mRNA network and lay the foundation for
future research of circRNAs in GC.

1. Introduction

Gastric cancer (GC) is one of the most common malignan-
cies worldwide, with the morbidity and mortality of GC
ranking second among all cancers, especially in East Asia,
Eastern Europe, and South America [1]. Although much
progress has been made in the diagnosis and treatment of
GC, the 5-year overall survival rate remains poor (approxi-
mately 20-25%) [2]. Therefore, there is an urgent need to
study the mechanism underlying the occurrence and devel-
opment of GC in order to achieve early diagnosis, effective
treatment, and good prognosis for GC.

Bioinformatics analysis, including the use of microarray
expression data sets, protein/gene-protein/gene interaction
networks, and gene annotation, can be used to study cancer
progression and identify potential therapeutic targets for
development [3]. In addition, bioinformatics analysis
methods can overcome the inconsistent results in the litera-
ture as a result of different sample sizes or microarray plat-
forms in individual studies [4]. A large number of studies
have used bioinformatics analysis to predict biomarkers for
cancer treatments [5–8].

Circular RNA (circRNA) is a special type of endogenous
noncoding RNA formed by reverse splicing of exon or intron
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cyclization. circRNAs exhibit stability, conservation, abun-
dance, and expression-specific expression [9]. Recent studies
have found that circRNAs are associated with many types of
cancer, and several circRNAs have been identified as novel
cancer biomarkers [10]. circRNAs are members of the com-
peting endogenous RNA (ceRNA) family and act as regula-
tors of miRNA activity; they can competitively inhibit the
binding ability of miRNAs and their mRNA targets [11].
Although there are an increasing number of studies on cir-
cRNAs, the biological functions of most circRNAs remain
unclear. To this end, we constructed a circRNA-miRNA-
mRNA network as a means to further evaluate the roles of
dysregulated circRNAs and mRNAs in GC.

In this study, we identified 456 differentially expressed
genes (DEGs) between 119 human GC tissues and paracan-
cer tissues by analyzing three sets of mRNA expression pro-
files in a public Gene Expression Omnibus (GEO) data set.
Next, functional enrichment analysis and pathway enrich-
ment analysis were performed to explore the roles of these
DEGs. Then, a protein-protein interaction (PPI) network
was constructed and 15 hub DEGs and three important mod-
ules in the network were identified. To assess the prognostic
value of these hub DEGs, we also performed the Kaplan-
Meier analysis. In addition, two differentially expressed cir-
cRNAs (DE-circRNAs) between GC tissues and paracancer
tissues were identified by analyzing the two circRNA expres-
sion profiles. Finally, a circRNA-miRNA-mRNA network
was successfully constructed.

2. Materials and Methods

2.1. Microarray Data Source. In order to identify DEGs, three
mRNA expression profiles (GSE13911, GSE79973, and
GSE118916) were downloaded from the NCBI GEO database
(https://www.ncbi.nlm.nih.gov/geo/), including 63 GC tis-
sues and 56 paracancer tissues. Similarly, two circRNA
expression profiles (GSE83521 and GSE93541) were down-
loaded to identify DE-circRNAs, including nine GC samples
and nine normal gastric samples. The detailed profiles are
shown in Supplementary Table 1.

2.2. Identification of DEGs and DE-circRNAs. The GEO2R
online analysis tool (https://www.ncbi.nlm.nih.gov/geo/
geo2r/) was used to select DEGs and DE-circRNAs. The
selection criteria were ∣logFC ∣ >1:0 and adj. p value < 0.05,
and the selected mRNAs and circRNAs were DEGs and
DE-circRNAs. Next, Venny 2.1.0 (https://bioinfogp.cnb.csic
.es/tools/venny/) was used to create a Venn diagram to find
the intersection [12]. Moreover, the resulting DEGs were
converted from a gene symbol to Entrez ID using the DAVID
database (https://david.ncifcrf.gov/summary.jsp) [13].

2.3. Gene Ontology Analysis and KEGG Analysis. Gene ontol-
ogy (GO) analysis is used to provide gene annotation terms
[14], while the KEGG database is used for pathway enrich-
ment analysis [15]. clusterProfiler V3.14.0 is an ontology-
based R software package for statistical analysis and visuali-
zation of functional clusters of genomes or gene clusters
[16]. In this study, the GO analysis and pathway enrichment

analysis of mRNA were performed using the clusterProfiler
package. In addition, a p value < 0.05 and a q value < 0.05
were chosen as the cutoff criteria for significant pathway
terms.

2.4. PPI Network and circRNA-miRNA-mRNA Network
Construction. The STRING database is a search tool for the
retrieval of interacting genes or proteins (https://string-db
.org), which can then be used to establish a PPI network
[17]. 456 DEGs were imported into the STRING database;
an interaction score > 0:4 [18] was used as the extraction cut-
off standard for the PPI pair. Then, Cytoscape_3.7.1 (https://
cytoscape.org) was used to visualize the PPI network [19].
The cytoHubba plug-in can be used to screen hub DEGs with
the node degree. The MCODE Plug-in was used to filter
important modules in the PPI network with a degree cutoff
≥ 2, node score cutoff = 0:2, K − core ≥ 2, and max:depth =
100 as the cutoff criteria [18]. In addition, the obtained
circRNA-miRNA pairs and miRNA-mRNA pairs were com-
bined to construct a circRNA-miRNA-mRNA network. The
network was also visualized with Cytoscape.

2.5. Verification of Gene Expression. UALCAN (http://ualcan
.path.uab.edu/) is a website for online analysis and mining of
TCGA databases; it includes 34 normal stomach tissues and
415 GC tissues [20]. In this study, this database was used to
verify the expression of hub DEGs in the PPI network. For
this, p < 0:05 was considered statistically significant.

2.6. Survival Analysis. The Kaplan-Meier plotter (https://
kmplot.com/analysis/) is an online database that evaluates
the prognostic value of biomarkers in breast cancer, ovarian
cancer, lung cancer, GC, and other cancers [21]. In this study,
the Kaplan-Meier plotter database was used to assess the
overall survival of hub DEGs among 1065 samples of GC.
The hazard ratio (HR) and corresponding 95% confidence
intervals were calculated. p < 0:05 was considered statistically
significant.

2.7. Prediction of circRNA and miRNA Targets. The Circular
RNA Interactome online tool (https://circinteractome.nia
.nih.gov/) was used to predict target miRNAs for DE-
circRNAs [22]. The mirDIP database (http://ophid.utoronto
.ca/mirDIP/index_confirm.jsp) was used to predict the bidi-
rectional relationship between target miRNAs and DEGs
[23]. Ten of the 30 software programs in the mirDIP database
were selected (DIANA, PITA, PicTar, RNAhybrid, RNA22,
TargetScan, miRDB, microrna.org, miRBase, and miRcode).
The criteria for selection were (1) three or more of the 10
software programs are included and (2) the top 5% of the
confidence class genes are considered possible target genes.
The circRNA-miRNA-mRNA network was then constructed
using the corresponding circRNAs, miRNAs, and mRNAs.

3. Result

3.1. DEG Analyses. Three sets of mRNA expression profiles
were obtained from the NCBI GEO database. Using the
GEO2R online tool, 3271, 1399, and 1802 DEGs were
extracted from the GSE13911, GSE79973, and GSE118916
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data sets, respectively (∣logFC ∣ >1:0 and adj. p value < 0.05).
The extracted results were intersected and 456 DEGs were
obtained, of which 167 were upregulated DEGs (Figure 1(a)
and Supplementary Table 2) and 289 were downregulated
DEGs (Figure 1(b) and Supplementary Table 2) in the GC
tissues compared with the paracancer tissues.

3.2. GO and KEGG Pathway Enrichment Analyses of DEGs.
The functions of the DEGs included three GO categories:
molecular function (MF), biological process (BP), and cellu-
lar component (CC). The top 10 enriched GO terms showed
that the DEGs were involved in an extracellular matrix, extra-
cellular structure organization, collagen-containing extracel-
lular matrix, extracellular matrix organization, extracellular
matrix structural constituent, cell-substrate adhesion, skele-
tal system development, endoplasmic reticulum lumen, api-
cal part of the cell, and regulation of body fluid levels
(Figure 2(a)). The KEGG analysis confirmed that the DEGs
were mainly associated with protein digestion and absorp-
tion, focal adhesion, the PI3K-Akt signaling pathway, extra-
cellular matrix- (ECM-) receptor interaction, gastric acid
secretion, and so on (Figure 2(b)).

3.3. PPI Network and Modular Analysis. 456 DEGs were
imported into the STRING database to explore the interrela-
tionships between the various genes. 456 DEGs were used to
establish the PPI network using the Cytoscape software. The
PPI network consisted of 369 nodes and 1570 edges
(Figure 3(a)). The cytoHubba plug-in in Cytoscape was used
to screen the top 15 genes with node degree indicating the
hub DEGs from the PPI network, including BGN, COL1A1,
COL1A2, FBN1, FN1, SPARC, SPP1, TIMP1, UBE2C,
CCNB1, CD44, CXCL8, COL3A1, COL5A2, and THBS1
(Figure 3(b) and Table 1). All were upregulated DEGs in
the microarray expression profiles, and the mRNA expres-
sion levels of these genes were also significantly upregulated
in GC tissues compared with normal stomach samples in

the UALCAN database (Supplementary Figure 2). Based on
the degree of importance, three key modules were then
screened from the PPI network using the MCODE plug-in
(Figures 3(c)–3(e)), and pathway enrichment analysis was
performed. The results showed that Module 1 was mainly
related to cell cycle, oocyte maturation, and platinum drug
resistance (Supplementary Figure 1). Module 2 was primarily
involved in the PI3K-Akt signaling pathway, ECM-receptor
interaction, and focal adhesion (Supplementary Figure 1),
while Module 3 was primarily involved in peroxisome, the
FoxO signaling pathway, and so on (Supplementary
Figure 1). In addition, the results indicated that 9 of the 15
hub DEGs (FN1, SPARC, FBN1, BGN, UBE2C, SPP1,
TIMP1, COL5A2, and CCNB1) in the PPI network were
distributed in the three modules, suggesting that these
genes may have important roles in GC.

3.4. Survival Analysis of Hub DEGs. The prognostic value of
the 15 hub DEGs was assessed using the Kaplan-Meier
plotter database. The results showed that nine hub DEGs
(BGN, COL1A1, COL1A2, FBN1, FN1, SPARC, SPP1,
TIMP1, and UBE2C) were associated with poor prognosis
in GC patients (p < 0:05) (Figures 4(a)–4(i)). Furthermore,
GC patients with high expression of CCNB1, CD44, or
CXCL8 had a significantly more favorable prognosis
(p < 0:05) (Figures 4(j)–4(l)). In addition, three hub DEGs
(COL3A1, COL5A2, and THBS1) had nonsignificant logrank
p values in GC patients (p > 0:05) (Figures 4(m)–4(o)).

3.5. DE-circRNA Analyses. The expression profiles of the two
sets of circRNAs were obtained from the GEO database,
including nine GC samples and nine normal gastric samples.
Using the GEO2R online tool, 78 and 311 DE-circRNAs were
extracted from the GSE83521 and GSE93541 data sets,
respectively (∣logFC ∣ >1:0 and adj. p value < 0.05). The
extracted results were intersected, and two DE-circRNAs
were obtained, of which, one DE-circRNA (hsa_circ_
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Figure 1: The identification of DEGs in the three data sets (GSE13911, GSE79973, and GSE118916). (a) Upregulated DEGs. (b)
Downregulated DEGs. Different color regions represented different data sets. Overlapping areas are commonly DEGs. The cutoff criteria: ∣
logFC ∣ >1:0 and adj. p value < 0.05. DEGs: differentially expressed genes.
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0001013) was upregulated and one DE-circRNA (hsa_circ_
0021087) was downregulated in both the expression profiles
(Figure 5).

3.6. Construction of the circRNA-miRNA-mRNA Network. To
better understand the role of DE-circRNAs in GC, a
circRNA-miRNA-mRNA network was established. Using
the Circular RNA Interactome online tool, there were 108
target miRNAs for hsa_circ_0001013 and 11 target miRNAs
for hsa_circ_0021087. We selected the bidirectional search
function in the mirDIP database and then entered 167 upreg-
ulated DEGs and 108 miRNAs that were targeted by upregu-
lated hsa_circ_0001013. Ten classic databases were selected
to predict the bidirectional relationship between miRNAs
and upregulated DEGs. The same method was used to pre-
dict the targeting relationship between 289 downregulated
DEGs and 11 target miRNAs of downregulated hsa_circ_
0021087. The results showed that 15 miRNAs targeted 45
upregulated DEGs and also interacted with hsa_circ_
0001013 (Supplementary Table 3), while no miRNAs
simultaneously targeted the downregulated DEGs and hsa_
circ_0021087. The circRNA-miRNA-mRNA network of

hsa_circ_0001013 was visualized using the Cytoscape
software (Figure 6). The hsa_circ_0001013 network
included 15 miRNAs and 45 DEGs, forming 57 pairs of
circRNA/miRNA/mRNA axes. For instance, hsa_circ_
0001013 is the ceRNA of miR-182-5p targeting FBN1, FN1,
THBS1, AJUBA, ASPN, CAMK2N1, COL5A1, ZAK, PDPN,
PLPPR4, PRRX1, THBS2, and WISP1. Furthermore, hsa_
circ_0001013 is the ceRNA of hsa-miR-145-5p targeting
FN1, FGD6, MEST, PTPN12, and TPM4. In addition, the 45
DEGs included the five hub DEGs of the PPI network:
THBS1, FN1, FBN1, SPARC, and COL1A2. These RNA
interactions may provide new insight into the mechanism
underlying GC.

3.7. GO and KEGG Pathway Enrichment Analyses in
circRNA-miRNA-mRNA Network. To date, the functions of
hsa_circ_0001013 have not been reported. Therefore, a func-
tional forecast of hsa_circ_0001013 was performed according
to the mRNA annotations in the hsa_circ_0001013-related
ceRNA network. GO analysis indicated that the function pre-
diction of the circRNA-miRNA-mRNA network was mainly
related to ECM and adhesion (Figure 7(a)). The KEGG
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Figure 2: GO analysis and KEGG analysis of DEGs in GC. (a) The top 25 enriched GO terms of BP category, CC category, and MF category.
(b) The significant enriched KEGG pathways.
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Figure 3: Continued.
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analysis showed that the network was mainly enriched by the
following terms: the PI3K-Akt signaling pathway, ECM-
receptor interaction, focal adhesion, and human papilloma-
virus infection (Figure 7(b)).

4. Discussion

The tumorigenesis and development of GC is a relatively
complex process because of the involvement of aberrations
in gene expression regulatory networks. Traditionally, gene
expression regulation analyses mainly focused on protein-

coding genes (mRNAs), until the discovery of disease-
related noncoding RNAs, including circRNAs. Still, little is
known about the regulatory mechanisms of circRNAs in
GC. To address this gap in understanding, this study used
microarray data and performed bioinformatics analysis to
identify disease-associated hub DEGs and the circRNA-
miRNA-mRNA network.

This study obtained 456 DEGs based on three microarray
profiles, including 167 upregulated genes and 289 downregu-
lated genes. GO analysis showed that the 456 DEGs were
mainly related to ECM, extracellular tissue, and collagen-
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Figure 3: PPI network and modular analysis of DEGs. (a) The PPI network contains 369 nodes and 1570 edges; red represents upregulated
DEGs, and blue represents downregulated DEGs. (b) The hub DEGs (degree: top 15) identified by the cytoHubba plug-in. The darker the
color in the node, the higher the degree of interaction. (c) Module 1 contains 25 DEGs. (d) Module 2 contains 23 DEGs. (e) Module 3
contains 7 DEGs. The color of each node represents DEGs (red represents upregulated DEGs, and blue represents downregulated DEGs).
PPI: protein-protein interaction.

Table 1: 15 hub DEGs in the PPI networks.

Gene symbol Official full name Degree Expression in GC

FN1 Fibronectin 1 64 Upregulation

COL1A1 Collagen type I alpha 1 chain 45 Upregulation

COL1A2 Collagen type I alpha 2 chain 42 Upregulation

COL3A1 Collagen type III alpha 1 chain 41 Upregulation

CD44 CD44 molecule (Indian blood group) 40 Upregulation

SPARC Secreted protein acidic and cysteine rich 36 Upregulation

FBN1 Fibrillin 1 36 Upregulation

BGN Biglycan 36 Upregulation

UBE2C Ubiquitin-conjugating enzyme E2 C 35 Upregulation

SPP1 Secreted phosphoprotein 1 35 Upregulation

TIMP1 TIMP metallopeptidase inhibitor 1 35 Upregulation

THBS1 Thrombospondin 1 34 Upregulation

COL5A2 Collagen type I alpha 2 chain 32 Upregulation

CXCL8 C-X-C motif chemokine ligand 8 31 Upregulation

CCNB1 Cyclin B1 31 Upregulation
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Figure 4: Continued.
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Figure 4: Continued.
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containing ECM. Similarly, the results of KEGG analysis
showed that the upregulated DEGs were not only enriched
in protein digestion and absorption and the PI3K-Akt signal-
ing pathway, but were also involved in focal adhesion and
ECM-receptor interaction. The most significant pathway
for downregulated DEGs was the metabolism of xenobiotics
by cytochrome P450 (CYP3A5, CYP2C9, CYP2S1, ADH1A,
ADH1C, ADH7, AKR1C1, AKR7A3, SULT2A1, UGT2B15,
ALDH3A1, and GSTA1). Cytochrome P450 (CYP) is present
in extrahepatic tissues and plays a key role in target tissue
metabolic activation of xenobiotic compounds, the detoxifi-
cation of toxic compounds following CYP-catalyzed bio-
transformation, and activation of inert xenobiotics,
including drugs, to become toxicants [24]. A recent study

found that low expression of ADH1A, ADH1C, and ADH7
was significantly associated with the increased risk of mortal-
ity for GC patients receiving 5-fluorouracil- (5-FU-) based
adjuvant chemotherapy [25]. However, how the deficient
CYP enzymes contribute to oncogenicity in the development
of GC is not yet clear. It is worth noting that both GO anal-
ysis and KEGG analysis revealed relationships with ECM.
ECM is a key regulator of cell behavior and phenotype; it
activates or suppresses distinct sets of intracellular signaling
pathways to modulate downstream cellular decisions, such
as focal adhesions and collagen remodeling [26]. In many
different types of cancer, ECM is highly dysregulated and
the loss of tissue ECM homeostasis and integrity is seen as
a hallmark of cancer and the typical transitional events in
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Figure 4: Survival analysis of the top 15 hub genes by the Kaplan-Meier plotter database in GC patient samples. (a–i) Survival analysis of
BGN (a), COL1A1 (b), COL1A2 (c), FBN1 (d), FN1 (e), SPARC (f), SPP1 (g), TIMP1 (h), and UBE2C (i) by the Kaplan-Meier plotter
database in GC patients. The results show that the survival of GC patients with high expressions of these DEGs was significantly worse
(p < 0:01). (j–l) Survival analysis of CCNB1 (j), CD44 (k), and CXCL8 (l) by the Kaplan-Meier plotter database in GC patients. The data
show that the survival of GC patients with high expressions of CCNB1, CD44, and CXCL8 were significantly better (p < 0:05). (m–o)
Survival analysis of COL3A1 (m), COL5A2 (n), and THBS1 (o) by the Kaplan-Meier plotter database in GC patients. The result shows
that COL3A1, COL5A2, and THBS1 were not associated with excessive survival in GC patients (p > 0:05).
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progression and metastasis [27]. Our data showed that GC
progression was powerfully influenced by ECM and ECM-
related events. Thus, remodeling of ECM in GC patients
should be considered a potential therapeutic target.

To explore the molecular mechanism of GC, a GC-
related PPI network was constructed and 15 hub DEGs were
identified. These hub DEGs were all overexpressed in GC tis-
sues. The Kaplan-Meier plotter was used to evaluate the
effects of the 15 hub genes on the survival of GC patients.
The results showed that overexpression of BGN, COL1A1,
COL1A2, FBN1, FN1, SPARC, SPP1, TIMP1, and UBE2C
led to poor prognosis in GC. As the main components of
ECM, SPARC (acid-secreted and cysteine-rich secreted pro-
tein), BGN (biglycan), FBN1 (fibrillin 1), SPP1 (secreted

phosphoprotein 1), fibronectin (FN1), and collagen play
important roles in cell proliferation, differentiation, migra-
tion, and metastasis in GC [28]. Typically, two COL1A1
chains pair with one COL1A2 chain to form a triple helix
of type I collagen [29]. Studies have shown that COL1A1
and COL1A2 are more highly expressed in GC tissues than
in normal tissues, and both are related to the invasion and
proliferation of GC cells [30, 31]. Type I collagen is required
for collagen in bones, but it is also involved in ECM synthesis
and in the promotion of changes to cell shape. The SPARC
protein product has been associated with a variety of cancers,
including GC [32]; it may affect GC metastasis by regulating
the tumor microenvironment [33]. FBN1 is an extracellular
matrix glycoprotein that can be used as a structural
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component of calcium-bound microfibers. The expression of
FBN1 is upregulated in GC tissues and cells; the silence of
FBN1 can inhibit the proliferative, migratory, and invasive
abilities of GC cells [34]. As a high molecular weight glyco-
protein, recent evidence has shown that FN1 is associated
with a variety of cancers, and it is also involved in the inva-
sion and migration of GC [35]. BGN (biglycan) is a member
of the leucine-rich small proteoglycan family; it can enhance
the invasion, migration, and formation of endometrial cancer
cells [36], and it can promote the invasion of GC cells by acti-
vating the FAK signaling pathway [37]. The protein encoded
by SPP1, also known as osteopontin, facilitates the combina-
tion of mineralized bone matrix and osteoclasts and is over-
expressed in a variety of cancers, including breast cancer,
lung cancer, pancreatic cancer, and GC [38]. Overexpression
of SPP1 leads to poor GC prognosis, and positive osteopontin
has an important role in the prediction of blood-borne
metastasis [39]. UBE2C encodes a member of the E2
ubiquitin-binding enzyme family, which is involved in the
ubiquitin-proteasome system and plays important roles in
cell mitotic withdrawal and cell cycle progression. Knocking
down UBE2C can inhibit the occurrence and development
of GC through the Wnt/β-catenin and PI3K/Akt signaling
pathways [40]. UBE2C is also related to poor GC prognosis

[41]. TIMP1, a member of the TIMP gene family, is a natural
inhibitor of matrix metalloproteinase. TIMP1 plays impor-
tant roles in cell proliferation, tumorigenesis, angiogenesis,
and antiapoptosis [42]. It has been reported that TIMP1
can be overexpressed in human GC by relying on the NF-
κB pathway and has the ability to regulate the proliferation
of GC cells [43].

The current results revealed that overexpression of
CCNB1, CD44, and CXCL8 was associated with significantly
improved prognosis of GC patients. Studies have confirmed
that CD44 is a nonkinase transmembrane glycoprotein that
can promote tumor cell proliferation and invasion [44].
CD44 is also the most specific biomarker for the detection
and isolation of oncogenic and chemoresistive cancer stem
cells in noncardiac GC [45]. CXCL8 is an important member
of the CXC chemokine family and plays an important role in
the proliferation, migration, and activation of inflammatory
systems in tumor cells [46]. CCNB1 (encoding cyclin B1)
plays a vital role in cell mitosis. Overexpression of CCNB1
contributes to the proliferation of colorectal cancer cells
[47], promotes the proliferation, migration, and invasion of
bladder cancer [48], and also leads to poor prognosis of
hepatocellular carcinoma [49]. CCNB1 can promote the
proliferation and metastasis of GC by participating in the
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Figure 7: GO analysis and KEGG analysis of circRNA-miRNA-mRNA networks in GC. (a) GO analysis of the 45 DEGs in the circRNA-
miRNA-mRNA networks. (b) KEGG pathway enrichment analysis of the 45 DEGs in the networks.
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composition of the heterogeneous ribonucleoprotein-
CCNB1/CENPF axis [50]. The overexpression of CCNB1,
CD44, and CXCL8 in this study significantly improved the
quality of life of GC patients. Therefore, the biological signif-
icance of these three genes in GC needs to be determined in
further research. Taken together, these findings indicate that
these nine hub DEGs are closely related to the prognosis of
GC patients. As such, they may be potential prognostic indi-
cators in GC.

Recent studies have found that circRNAs are associated
with many types of cancer, and circRNAs have been pro-
posed as novel cancer biomarkers [10]. The biological func-
tion of circRNAs is a “miRNA sponge”; circRNAs can
competitively inhibit the binding ability of miRNAs and their
mRNA targets [11]. There are an increasing number of stud-
ies on the role of circRNAs in GC, but the biological func-
tions of most circRNAs remain unclear. In this study, we
identified one upregulated DE-circRNA (hsa_circ_0001013)
and constructed a circRNA-miRNA-mRNA network to esti-
mate the function of hsa_circ_0001013 in GC. The results
showed that hsa_circ_0001013 might play pivotal regulating
roles in the gene expression of ECM and adhesion, and it also
appears to be involved in the PI3K-Akt signaling pathway
and ECM-receptor interaction in GC. Although there is cur-
rently no relevant research on the function of hsa_circ_
0001013, the network revealed some important information.
For instance, it was found that miR-182-5p, as a suppressed
miRNA, improves migration and invasion of GC [51]. In
our data, hsa_circ_0001013 was found to regulate the expres-
sion of FBN1, FN1, THBS1, and so on, through competing
miRNA response elements (MREs) of miRNA-182-5p, which
results in adhesion and metastasis in GC. In addition to miR-
182-5p, studies have also shown that miR-758-3p and miR-
145-5p are also downregulated in GC tissues and play impor-
tant roles in promoting the migration and invasion of GC
cells [52, 53]. In our circRNA-miRNA-mRNA network, the
hsa_circ_0001013/miR-145-5p/FN1 axis and the hsa_circ_
0001013/miR-758-3p/FBN1 axis may also affect the develop-
ment of GC. These data indicate that circRNA plays a key
role in GC. It is worth noting that miR-1197, miR-323-3p,
miR-507, and miR-330-5p have not been studied in GC,
but studies have shown that they play key roles in other
tumors. For example, downregulated miR-1197 can inhibit
the progression of human non-small-cell lung cancer by
upregulating HOXC11 [54]. Further, miR-323-3p can inhibit
the apoptosis of human lung cancer cells and inhibit the inva-
sion and metastasis of pancreatic ductal adenocarcinoma
cells [55, 56]. Moreover, miR-507 participates in the hsa_
circ_0005394/miR-507/E2F3 axis and affects the process of
hepatocellular carcinoma [57]. miR-330-5p can affect the
expression of ELK1 and thus affect the proliferation, migra-
tion, and invasion of colon cancer cells [58]. It can also affect
the expression of KLK4 to change the development process of
ovarian cancer [59]. The relationships in the circRNA-
miRNA-mRNA network require further exploration. None-
theless, this pioneering network might provide a novel
understanding of GC. Further research on the associated
functions of hsa_circ_0001013 is being carried out in our
laboratory.

5. Conclusions

In summary, through bioinformatics analysis, we identified
15 hub DEGs, of which, nine hub DEGs were associated with
poor prognosis of GC patients, including BGN, COL1A1,
COL1A2, FBN1, FN1, SPARC, SPP1, TIMP1, and UBE2C.
In addition, two DE-circRNAs were identified. In order to
identify the regulatory mechanism of circRNAs in GC, we
constructed a related circRNA-miRNA-mRNA regulatory
network of hsa_circ_0001013. Although these results need
to be further verified, these hub DEGs and previously unre-
ported hsa_circ_0001013 may play crucial roles in GC and
may provide new ideas for the diagnosis, prognosis, and ther-
apeutic targeting of GC.
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