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Abstract: An epidemiological model, which describes the transmission dynamics of SARS-CoV-2
under specific consideration of the incubation period including the population with subclinical
infections and being infective is presented. The COVID-19 epidemic in Greece was explored through
a Monte Carlo uncertainty analysis framework, and the optimal values for the parameters that
determined the transmission dynamics could be obtained before, during, and after the interventions
to control the epidemic. The dynamic change of the fraction of asymptomatic individuals was
shown. The analysis of the modelling results at the intra-annual climatic scale allowed for in
depth investigation of the transmission dynamics of SARS-CoV-2 and the significance and relative
importance of the model parameters. Moreover, the analysis at this scale incorporated the exploration
of the forecast horizon and its variability. Three discrete peaks were found in the transmission rates
throughout the investigated period (15 February–15 December 2020). Two of them corresponded to
the timing of the spring and autumn epidemic waves while the third one occurred in mid-summer,
implying that relaxation of social distancing and increased mobility may have a strong effect on
rekindling the epidemic dynamics offsetting positive effects from factors such as decreased household
crowding and increased environmental ultraviolet radiation. In addition, the epidemiological state
was found to constitute a significant indicator of the forecast reliability horizon, spanning from as low
as few days to more than four weeks. Embedding the model in an ensemble framework may extend
the predictability horizon. Therefore, it may contribute to the accuracy of health risk assessment and
inform public health decision making of more efficient control measures.

Keywords: asymptomatic infections; temperature; humidity; SARS-CoV-2; COVID-19; predictability;
transmission; epidemiological model

1. Introduction

Several questions surround the transmission dynamics of Severe Acute Respiratory
Syndrome-related Corona Virus 2 (SARS-CoV-2), which is the causative agent of Corona
Virus Disease 2019 (COVID-19). A characteristic of epidemiological importance for COVID-
19 is the existence of a state of subclinical infection during which an infected individual
does not show clinical symptoms but can spread the infection to other individuals [1].
The contribution of these, so called, asymptomatic individuals (subclinical infections) to
the transmission of SARS-CoV-2 has not been well understood. Recent virological and
epidemiological modelling studies indicate that a significant fraction of infected people are
asymptomatic with the potential of person-to-person transmission. Epidemiological evi-
dence emerged predominantly from household studies [2–5]. Virological studies showed
that infected people who recovered without developing symptoms had moderate or high
viral loads implying rather high infectiousness during subclinical infections [6–8]. Epidemi-
ological modelling studies estimated the serial interval (time between symptom onset in a
primary patient and symptom onset in the secondary patient) to be close to the incubation
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period that may indicate transmission before the development of symptoms [9,10]. Some
approaches provided an estimate of the ability of asymptomatic infections to transmit
the pathogen [11] and the fraction of asymptomatic infections to be in the range of about
one fifth and more than half among all infected persons observed [12–14]. These stud-
ies imply that the speed and extent of SARS-CoV-2 transmission cannot be accounted
for solely by transmission from infected persons with clinical symptoms. The epidemi-
ological significance of this population group needs to be addressed to understand to
what extent subclinical infections drive the epidemic and their relative importance com-
pared to individuals who develop clinical symptoms (illness). If this fraction of infected
persons is substantial, the case fatality risk for COVID-19 may be lower than currently
estimated [15]. Moreover, it also implies that control of the epidemic may be more difficult
since pathogen transmission from asymptomatic infected persons may be a non-negligible
source of transmission.

Any intervention strategy aimed at controlling the outbreak depends strongly on
the ability to identify infected persons which is difficult to identify with the absence of
symptoms [16]. This is particularly important for newly emerging pathogens (e.g., SARS-
CoV-2, pandemic influenza viruses) due to the lack or limited availability of effective
drugs or vaccines. Public health responses rely on early estimates of crucial epidemio-
logical characteristics, such as the case fatality risk and the transmissibility expressed as
the basic reproduction number, which is usually derived from epidemiological models
or statistically estimated from epidemiological data [17–19]. However, the existence of
subclinical infections leads to enormous challenges of estimating these quantities. The con-
sequences are uncertainty in epidemiological data and models, impairment of the public
health decision makers and difficulties in assessing the effectiveness of proposed interven-
tions. Asymptomatic infected individuals can have a critical impact on the effectiveness of
non-pharmaceutical interventions such as social distancing [20].

Two fundamental approaches have been used to embed subclinical infections in
epidemiological models. The first divides the infectious population into two states im-
mediately following the onset of infectiousness, namely asymptomatic and symptomatic
persons [21–23]. This approach ignores or considers as negligible the latent period and the
preclinical infectious period, together representing the incubation period. A biologically
more plausible pathway for diseases such as influenza and in particular COVID-19 that has
a long incubation period is a model that allows for the latent period and preclinical state,
which is an asymptomatic infectious state preceding the onset of symptoms (Figure 1). This
approach has been used in the epidemiological modelling of influenza [24–28]. The latent
period is defined as the initial period after infection where an infected person is infected
but non-infectious yet. A mathematical elaboration of the similarities and differences of
the two models is presented in [28].
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Virus inactivation in the environment is of high relevance for the relative importance of
modes of transmission of respiratory viruses and epidemic control. The roles of temperature
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and humidity have been addressed in the past predominantly for influenza [29] and also
recently for SARS-CoV-2 [30]. This also applies to the role of environmental ultraviolet
radiation and low indoor humidity [29,31]. Many respiratory viruses such as influenza
occur during the winter months in the Northern and Southern Hemisphere suggesting
that the winter climatic conditions may play a role in the spread of respiratory virus
infections [32,33]. Seasonal determinants and host factors affected by seasonal factors
seem to be involved [34–37]. Changes in environmental factors (such as temperature,
absolute humidity, sunlight), viral factors and host immunity and behavioral factors,
household crowding indoors during cold weather leading to increased contact rates to
name a few, may be relevant, all acting and having an effect individually and most probably
in combination [38–40]. For epidemics occurring in the winter season, temperature and
humidity have been identified as potential drivers of seasonality of respiratory infectious
agents. It has been hypothesized that this might be the case for SARS-CoV-2 too [41–45].

In this paper, we extended a model previously developed by one of the authors
that explicitly incorporated subclinical infections to account for the contribution of this
population group to the transmission dynamics of respiratory pathogens such as influenza
and SARS-CoV-2 [24,28]. In the model, there are three classes of infected individuals; those
who are in the initial latent period are infected but not infectious; those who are infectious
and develop symptoms after a preclinical asymptomatic period, and those who remain
asymptomatic but infectious and recover without passing through the symptomatic state.
We explored the effects in the dynamics due to this distinction between asymptomatic
individuals and those with clinical symptoms. We quantified the fractions of the infectious
subpopulations and described their dynamic change with and without control measures
that were exemplified in the case of social distancing. The effects of the relative difference in
the transmission between these groups of infective individuals, and the recovery period in
the overall disease dynamics were shown. A clustering of the occurrence and the number of
COVID-19 human cases with respect to temperature and humidity was initially presented
to assess whether substantial impact of climate effects on virus transmission exists. Then,
applying a Monte Carlo uncertainty framework for error optimization in the model we
estimated the values of the epidemiological parameters and their relationship in the case
of the COVID-19 epidemic in Greece. Moreover, following the diagnostic evaluation, the
model was also applied in predictive mode to investigate the intra-annual variability of the
transmissivity and the predictability horizon.

2. Materials and Methods
2.1. The Model

Several studies have used epidemiological models to describe the transmission dy-
namics of SARS-CoV-2 within a susceptible population by also taking into account in-
terventions [10,20,46–48]. Some of these studies also consider asymptomatic individuals
being infectious [49–51]. Our approach differs by the way we modelled the states of the
infection process, the specific focus being on the relationship between the transmission
and recovery rates, and how they affect the dynamics using a Monte Carlo uncertainty
analysis framework for the estimation of the parameters that can be tailored for any out-
break individually. For instance, we did not adapt the model parameters to account for
the interventions arbitrarily, but we based the adaptation on the country specific best fit
analysis framework. Finally, we also looked at the potential effects of climatic factors such
as temperature and humidity.

The model consists of six distinct classes such that the total population is N(t) = S(t) +
E(t) + IA(t) + IS(t) + R(t) + D(t). S(t) denotes the number of susceptible individuals at time t,
E(t) is the number of exposed (infected but not infectious) individuals, IA(t) is the number
of asymptomatic infective individuals, IS(t) is the number of infected individuals with
symptoms, R(t) is the number of individuals who recovered and were removed, and D(t)
the number of fatalities during the outbreak. We assumed that the total population remains
constant during the outbreak. The assumption of a constant population is reasonable when
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the infection spreads fast through the population, as this is the case for the COVID-19
pandemic. Therefore, we did not include demographic effects such as births and natural
deaths in the model. The modelling approach also implies that the populations are homoge-
neously mixed. We also ignored high-risk groups. We explicitly included the characteristic
incubation period between infection and the appearance of clinical symptoms. This period
consists of the latency and the preclinical state (Figure 1). The pathogen is transmitted
to a susceptible person through person-to–person contact (via generation of respiratory
droplets containing infectious pathogens) with either an asymptomatic infected person or
an infected person who developed clinical symptoms (illness). Susceptible individuals (S),
once infected, enter the state of exposed individuals (E) harbouring a latent infection but
not being infectious. All exposed individuals enter the state of being asymptomatic and
having subclinical infections. Asymptomatic individuals (IA) are infectious and there are
two options. An individual may remain asymptomatic for the duration of the infection
and recover without ever developing clinical symptoms entering the recovery state (R).
Alternatively, an individual may remain asymptomatic (preclinical) for a period of time
before ultimately entering the clinical state and becoming an infected individual with
clinical symptoms (IS). For those becoming ill with clinical symptoms a fraction recovers
and some may die. We assumed that recovered individuals obtain immunity, and they are
removed from the infection process. Figure 2 shows the transitions between the different
states of the infection pathway. The equations of the model are written as follows:

dS(t)
dt

= −βA
IA(t)S(t)

N
− βS

IS(t)S(t)
N

(1)

dE(t)
dt

= βA
IA(t)S(t)

N
+ βS

IS(t)S(t)
N

− αE(t) (2)

dIA(t)
dt

= αE(t)− (δ + γA)IA(t) (3)

dIS(t)
dt

= δIA(t)− γS IS(t) (4)

dR(t)
dt

= γA IA(t) + (1− fS)γS IS(t) (5)

dD(t)
dt

= fSγS IS(t) (6)
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Figure 2. Transition diagram of model populations. Susceptible (S) persons become infected after
exposure to respiratory droplets exhaled from asymptomatic infected persons (IA) or infected persons
with clinical symptoms (IS) with rates βA and βS. Exposed and infected persons (E) go through a
period of latency during which they are not infectious. Exposed persons become asymptomatic
infected and infectious (IA) with a rate α. Asymptomatic infected persons develop clinical symptoms
and become infected with symptoms (illness) with a rate δ or they recover (R) with a rate γA. Persons
with clinical symptoms can recover (R) with a rate (1 − fS) γS or die (D) with a rate fSγS.

The initial conditions of the model are: S(0) = S0; E(0) = 0; IA(0) = IA0; IS(0) = IS0;
R(0) = 0; D(0) = 0. One may start the epidemic with a few infected persons with clinical
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symptoms and/or asymptomatic individuals. The equation for the fatalities does not
contribute to the dynamics of the system. It simply counts the number of fatalities.

Transmission of infection occurs with a rate and results from contacts of susceptible
with infected persons. The transmission rate from an asymptomatic person to a susceptible
is presumed to be lower (βA) than that to an infected person who develops symptoms (βS).
The rationale behind this assumption is that as observed not every infection leads to illness.
In addition, there is probably a difference, though difficult to quantify, in transmissibility
between transmission from asymptomatic infected to susceptible persons and transmission
from symptomatic infected to susceptible persons. An infected person with clinical illness
sheds more virus that one with subclinical infection [52]. Moreover, a clinically ill person
has symptoms (e.g., coughing, rhinorrhea) that contribute to the generation of infectious
pathogen laden droplets of all sizes. On the other side, infected persons with clinical
symptoms may show reduced virus transmissibility if they are confined to bed due to
severity of illness. Therefore, the magnitude of difference between the two transmission
rates depends on factors such as age, severity of illness, social behavior, living conditions
in households (common rooms, share bedrooms) and others.

Transition from the exposed to the asymptomatic infected state occurs with a rate α
indicating that the period between infection and development of infectiousness is 1/α.
An asymptomatic infected individual moves from the asymptomatic infected state (IA)
to the symptomatic infected state (IS) with a rate δ denoting the period from onset of
infectiousness to onset of clinical symptoms and may remain asymptomatic (preclinical
infection) for a period of 1/δ before developing symptoms. Alternatively, an asymptomatic
individual may never develop symptoms and recover after a period 1/γA. Therefore, the
average time of an asymptomatic individual in state IA is 1/(δ + γA). The incubation period
is denoted as the period from infection to onset of symptoms (1/α) + (1/δ). Asymptomatic
infected persons are expected to recover faster than those who have developed clinical
symptoms. Symptomatic infected individuals are likely to have greater infectivity due to
higher virus loads higher viral shedding due the severity of their clinical conditions. Thus,
following the onset of symptoms, the recovery period for a person with symptoms is 1/γS.
Finally, the fraction of persons who developed severe illness and died is denoted with fs.

2.2. The Basic Reproduction Number

The basic reproduction number (R0) represents the average number of secondary
infections where an infected individual can cause in an entirely susceptible population.
R0 can be calculated using the disease-free equilibrium of the above system of ordinary
differential equations. It can be derived using the next generation matrix using the methods
described in [53]. In this case the R0 is the sum of the basic reproduction number for the
infections caused by an asymptomatic individual and that of an individual with symptoms.

R0 = RA + RS = βA
S0

N(δ + γA)
+ βS

S0δ

NγS(δ + γA)
(7)

For S0 ≈ N(0)

R0 = RA + RS =
βA

(δ + γA)
+

βSδ

γS(δ + γA)
(8)

Note that the basic reproduction number does not depend on the transition rate α
from the exposed to the asymptomatic state. The R0 is a threshold. If R0 > 1 then the
number of infective individuals first increases before decreasing to zero representing a
full-blown epidemic curve. If R0 < 1 then the number of infected individuals decreases
monotonically to zero.

2.3. The Monte Carlo Uncertainty Analysis and the Error Optimization

The parameter values we used in the model were based on estimates derived from
epidemiological studies in different countries in the world affected by COVID-19 [54]. For
each of the parameters we chose a range of possible values as these have been reported. The



Int. J. Environ. Res. Public Health 2021, 18, 1660 6 of 17

range represented prior distributions of the parameter values. We employed a Monte Carlo
(MC) uncertainty framework for error optimization to derive the posterior distributions of
the parameter values including their optimal values. This was implemented through the
minimization of the quantity NMSE(IS) + NMSE(D), where NMSE is the mean squared error
(MSE) normalized with the mean of the corresponding observations (i.e., infected or dead).
All parameters were optimized separately before, during and after the introduction of
intervention, in this case social distancing in form of a population-based lockdown. Table 1
summarizes the range of prior distribution of the parameter values. We applied the model
using the time series of cases as they were unfolded in Greece and as they were reported in
the official web site of the national public health authority [55]. We run the simulations
of the model with an initial population of susceptibles (S0 = 1 million people) and a
small number of infected persons with clinical symptoms (IS0 = 1). Two cycles of Monte
Carlo simulations were adopted. At the screening phase, we assumed the parameters
followed a uniform distribution. The model simulations were compared with observations
to identify the uncertainty range that minimized the error. At the implementation phase,
the parameters were sampled from a normal distribution centred at their mode identified
during the screening phase.

Table 1. Prior Distributions based on a uniform distribution U (min, max) during the screening phase and normal
distribution N (µ, σ) during the implementation phase. Transmission rate (βS) values refer to those before, during and after
the intervention (lockdown).

Screening Phase Implementation Phase

Parameter Description Min Max µ σ

α Latency rate (day−1) 0.3 5 0.5 0.03

βS Transmission rate between Is and S (day−1) 0.3 1.5

0.6 0.03

0.2 0.03

0.2 0.03

µ = βA/βS Transmission rate ratio (day−1) 0.2 1 0.35 0.037

γA Recovery rate from subclinical infection (day−1) 0.07 0.5 0.25 0.03

γS Recovery rate from clinical symptoms (day−1) 0.05 0.2 0.15 0.02

δ Transition rate at which IA becomes IS (day−1) 0.07 0.5 0.25 0.05

fS Deaths (%) 0.01 0.09 0.05 0.005

2.4. The Forecast Horizon

In public health decision making it is important to know the length of time into the
future for which the model projections are below a certain error. We define the forecast
horizon as the length of time into the future for which the divergence between the predicted
(modelled) and the observed time series (infected humans or deaths or both) yields a
NRMSE of 10%.

2.5. Clustering of COVID-19 Data

There have been indications that temperature and humidity may be associated with
the transmission dynamics of SARS-CoV-2 [41,44,56]. For the exploration of the potential
association of the SARS-CoV-2 transmission with climatic factors, we obtained all reported
worldwide COVID-19 cases from the European Centre for Disease Prevention and Control
(ECDC) (01/01/2020–07/05/2020) and the surface weather data for the same period at
each country from the global weather database hosted at the University of Wisconsin [57].
For each country we matched the COVID-19 events (occurrence of human cases) and
magnitudes (number of human cases) with the meteorological data of its capital, except for
China and Italy where Wuhan and Milan were used instead. We divided the global COVID-
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19 cases into 25 groups according to their respective daily temperature (T) and absolute
humidity (ρv) and calculated the percentage of events within each group. We standardized
the number of events within each cell with the number of weather records falling inside it
(Probability of Infection). Further, we converted the magnitudes into number of human
cases per million and estimated the median, to quantify the severity within each group.

3. Results

We performed initially 40,000 simulations using the time series of confirmed cases
in Greece. We used uniform distributions for the uncertain factors in the first 20,000 sim-
ulations to narrow their range. Then, we applied a normal distribution in the second
block of 20,000 simulations (MC1: 15/02/2020–31/05/2020). We started the simulations
10 days before the identification of the first case with clinical symptoms taking into account
the incubation period and some delay in registration and reporting. The lockdown was
introduced at day 37 (23/03/2020) and became ineffective at day 78 (04/05/2020). The sim-
ulations ended on day 105 (31/05/2020). We calibrated the model during the three phases
(before, during, and after the intervention) and interpreted the results. Then, we fixed the
parameters with minimal contribution to the model uncertainty to their nominal values
and performed another set of simulations up to Dec 2020 (MC2: 15/02/2020–15/12/2020).
The ambition was to investigate the existence of a significant climatic signal, diagnostically
evaluate the transmission dynamics in a temperate climate during the spring and autumn
waves, quantify the controlling factors and assess the variability in forecast uncertainty.

3.1. Environmental Clustering of COVID-19 Data

COVID-19 cases have been reported across a wide range of climatic conditions (Figure 3),
ranging from −10 ◦C to 38 ◦C for temperature and from 0.8 g m−3 to 25 g m−3 for absolute
humidity. For temperatures up to 25 ◦C, the absolute humidity reached its upper ceiling
(saturation value) given by the Clausius-Clapeyron equation. In addition, half of the
occurrence points were located close to the saturation curve for temperatures between
0 and 25 ◦C, suggesting that at this temperature range high relative humidity favors the
persistence of SARS-CoV-19 and thus the emergence of COVID-19 cases. Therefore, there
existed a tendency for more occurrences as the climate became cooler and more humid.
Although temperature and humidity may influence virus inactivation in the environment,
a causal mechanism has not been shown yet [58,59].
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Figure 3. Temperature and humidity conditions for all reported COVID-19 human cases worldwide (01/01/2020–
07/05/2020). In the same figure, univariate histograms of the scattered-data are plotted. The frequency of the joint
distribution is given in Table 2 [left]. Percentiles (1, 5, 10, 25, 50, 75, 90, 95, 99) of humidity as a function of temperature for
all reported COVID-19 human cases worldwide (01/01/2020–07/05/2020). The thickest line corresponds to the median. In
the same figure, the maximum possible value of humidity at each temperature, estimated from the Clausius-Clapeyron
equation, is plotted with the dotted line [right].
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Table 2. Probability of infection (estimated from event occurrence) and human cases per million (estimated from de-
tected cases) with respect to temperature and absolute humidity, based on reported COVID-19 human cases worldwide
(01/01/2020–07/05/2020). Shaded cells contain more than 5% of the data.

Probability of Infection (%) Cases per Million (Median)
ρv\TAVG −10–0 0–10 10–20 20–30 30–40 −10–0 0–10 10–20 20–30 30–40

0–5 17 38 72 10 24 3.6 11.7 10.8 0.6 0.8
5–10 32 50 51 70 3.1 5.0 1.7 2.3

10–15 52 35 77 2.3 1.2 0.9
15–20 29 25 58 1.4 0.6
20–25 28 37 1.1 1.8

The most frequent humidity zone spanned the area 5–10 g m−3 (37.4%), while for tem-
perature 71.3% of the reported cases were observed between 10 ◦C and 30 ◦C (Figure 3).
With respect to their joint probability, the zone

{
5 ≤ ρv

(
g m−3) ≤ 10, 10 ≤ T(◦C) ≤ 20}

had the highest frequency of COVID-19 cases which accounts for 22.8% of them. This
classification had similarities with the findings of [43] who reported temperature in the
range 5–11 ◦C and absolute humidity in the range 4–7 g m−3 at cities with substantial
transmission. This was not too different from our result, considering the uncertainty due
to the different datasets (point measurements in our study versus gridded reanalysis). This
result was also aligned with other studies, which indicated that a favorable area around
10 ◦C/5 g m−3 existed.

A series of measures was employed by different countries to reduce the contact rates
including mobility restrictions, mask usage, school and business closures. The public health
practices of governmental interventions such as quarantine and isolation of individuals and
the timing of initiation of a measure during the course of the epidemic varied substantially
across countries. These factors controlled largely the transmissibility of SARS-CoV-2.
Moreover, there are additional factors which may affect virus transmissibility such as
population density and weather conditions. The combined effect of all contributing factors
in the probability of infection occurrence and the number of human cases, at the early
stages of the epidemic, is presented in Table 2. The variability of the (median) number
of COVID-19 cases per million did not follow the same pattern with the probability of
infection. The precise quantification of the impact of each factor is beyond the scope of
this article. Assuming that weather conditions had a stronger effect than the intervention
measures given similar populations (density, age structure), the magnitude of the outbreak
would be comparable in countries with similar weather conditions, population density and
age structure (e.g., Greece, Spain). This was not observed. Furthermore, in our analysis
we reinitialized the simulations over a monthly time scale where the climatic signal was
considered constant, hence they were excluded. Based on this simplified concept, we did
not apply any climatic dependence in the transmission rates in our subsequent analysis.

3.2. Model Calibration for Greece: March-April-May 2020

Model Validation: The best-fit analysis filtered out the 0.5% of the 20,000 MC simula-
tions with the lower normalized mean square error (100 simulations). The single simulation
with the lowest error was the optimum. When we superimposed the time series of cases
with the best-fit analysis of the model for the infected persons with symptoms and the
fatalities we observed an excellent result in terms of accuracy and phasing (Figure 4).
In the same figure, the model uncertainty was also presented (box plot with IQR of the
simulations falling below the 0.5th percentile with respect to the error). The best-fit analysis
followed the cases as they occurred with slowly increasing uncertainty. Another model
prediction that could be validated was the effective reproduction number. Initially, the
basic reproduction number (R0) was around 2.7 and the subsequent effective reproduction
number fell below the critical value of one after the intervention. The reproduction number
remained below the critical value of one when the lockdown was lifted. Those numbers
were in agreement with the reproduction number officially reported from the COVID-19
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committee of Greece [60]. Overall, the experiment MC1 replicated the observed curves
(total cases, deaths) with small uncertainty and also demonstrated good accuracy and
phasing with the observed reproduction number curves.
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Figure 4. [Top row] Dynamic evolution of the ensemble of simulations (boxplot (light blue) with interquartile range
(deep blue part), which set the uncertainty limits of the forecast, together with the optimal simulation (solid line) and the
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R0. [Bottom row] Optimum transmission rates identified from the MC experiments (left panel). Dynamic evolution of the
corresponding fraction of the population who recovered (middle panel). Fraction of the asymptomatic infected persons (IA)
among all infected cases (right panel). See text for explanation.

Transmission: We assumed a difference in transmission rate between asymptomatic
infected persons and persons with clinical symptoms [9]. The posterior distribution after
the best-fit analysis for the transmission rate between an asymptomatic and a susceptible
(βA) had an optimal value of 0.24/day. The corresponding value of the transmission rate
between an infected symptomatic and a susceptible (βS) was 0.61/day and thus 2.5 times
higher than that between asymptomatic infected individuals and susceptibles in the optimal
case. After the intervention measures, the transmission rate of an infected symptomatic
dropped to 0.16/day, i.e., close to the level of βA prior to the intervention. The transmission
rate between asymptomatics and susceptibles dropped to 0.07/day. The relation βS/βA
remained similar during the intervention. When the lockdown was lifted, βS and βA
dropped further to 0.15/day and 0.05/day. See also Table 3.

Incubation period and asymptomatic infections: The incubation period has been esti-
mated to have a mean value of 5.8 days (95% CI 5.0–6.7) [61]. Before the implementation of
social distancing (lockdown), susceptible individuals became exposed and stayed in the
latent phase of being infected and not infectious for 1.9 days (IQR 1.9–2.1). Asymptomatic
infected individuals before they progressed to the symptomatic state remained asymp-
tomatic for 3.6 days (IQR 3.6–4.1) and had an incubation period of 5.5 days (IQR 5.5–6.1).
During the intervention asymptomatic individuals before progressing to the symptomatic
state had an incubation period of 6 days (IQR 5.6–6.4) which dropped to 5.8 days (IQR
5.7–6.5) in the epoch after the lockdown. (Table 3).
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Table 3. Posterior distributions of the optimum model parameters (1/day). The numbers in paren-
thesis denote the interquartile range (IQR) of the 0.5th percentile. Values before, during and after the
intervention (MC1: 15/02/2020–31/05/2020). The values in the last column are used in the MC2
runs (15/02/2020–15/12/2020).

Parameter

MC1

MC2Before
Intervention

During
Intervention

After
Intervention

α 0.52 (0.48 0.52) 0.50 (0.48 0.52) 0.47 (0.47 0.50) 0.52

βS 0.61 (0.59 0.62) 0.16 (0.16 0.19) 0.15 (0.14 0.20)

βA 0.24 (0.22 0.24) 0.07 (0.07 0.08) 0.05 (0.05 0.07) βS/3

γA 0.23 (0.22 0.26) 0.22 (0.22 0.26) 0.26 (0.24 0.27) 0.24

γS 0.15 (0.13 0.15) 0.15 (0.14 0.16) 0.15 (0.15 0.16) 0.15

δ 0.28 (0.24 0.28) 0.25 (0.23 0.27) 0.27 (0.23 0.27) 0.25

fS (%) 0.041 (0.041 0.046) 0.057 (0.055 0.058) 0.059 (0.056 0.060) 0.03

Recovery: Asymptomatic infected persons were assumed to have a higher recovery
rate than persons with clinical symptoms and thus a shorter recovery period. Asymp-
tomatic infected individuals remained asymptomatic for the duration of their infectiousness
and recovered after 4.4 days (IQR 3.8–4.5), 4.5 days (IQR 3.8–4.5), 3.8 days (IQR 3.7–4.2) be-
fore, during and after the intervention respectively. For asymptomatic infected individuals
who remained asymptomatic (preclinical) before developing symptoms the corresponding
values were 3.6 days (IQR 3.6–4.2), 4 days (IQR 3.7–4.3), 3.7 days (IQR 3.7–4.3). Symp-
tomatic infected persons had an optimal recovery rate of 0.15/day which corresponds to a
duration of recovery of 6.7 days (IQR 6.7–7.7) after onset of symptoms with very similar
values during and after the intervention. The proportion of deaths was 4.1% (IQR 4.1–4.6)
before the lockdown and 5.7% (5.5–5.8) during the lockdown with similar proportion after
the lockdown 5.9% (IQR 5.6–6.0). See also Table 3.

Dynamics: Figure 5 shows the dynamics of the different populations, susceptible per-
sons, asymptomatic infected persons, symptomatic infected persons, those who recovered,
and the fatalities including the interventions, which were introduced on day 37 in our
simulation of the COVID-19 epidemic in Greece and were gradually removed from day
79 onwards. Susceptibles declined gently after the lockdown. Exposed reached a maximal
value at the day of the intervention (day 37) and then dramatically declined, reaching
asymptotically lower values after 90 days. Asymptomatic infected (IA) and individuals
with clinical symptoms (IS) reached a maximal value that was interrupted by the intro-
duction of the interventions leading to a permanent decrease of their population with a
short time delay between IA and IS. The intervention period changed the curvature of the
recovered (R) and the fatalities (D) populations.

Asymptomatic fraction-Recovery: Besides the predictions that can be validated, there
were at least two important model estimates, which, however, due to lack of appropriate
data, could not be validated. The fraction of the infected asymptomatic individuals within
the total population of infected individuals was estimated at 52% at the beginning of
the epidemic and dropped to 33% one month after the intervention (lockdown). The
first estimate for the asymptomatic fraction is in line with recent estimates about the
attribution of at least 50% of COVID-19 infections to individuals that show no symptoms
for a certain period but progress to onset of symptoms or they never show symptoms until
they recover [62]. Whether the asymptomatic fraction declines during interventions would
need observational confirmation though. The fraction of the population that had recovered
at day 90 was estimated to be only 0.055% (Figure 4).
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3.3. The Variation of Transmissibility: From March to December 2020

The results of the previous section suggest that we may fix all parameters except the
transmission rate between a symptomatic and a susceptible individual (βS). Therefore, we
kept all factors but βS fixed and performed another cycle of Monte Carlo simulations where
we sought the intra-annual variability of the optimal βS. We split the period 15/02/2020–
15/12/2020 into temporal windows of equal size and calibrated the model within each
period following a slightly different approach than before for reasons explained hereafter.
The COVID-19 tests performed weekly varied from 7000 in March-April to 65,000 in
July–August to 130,000 in September–October 2020. After August, the total number of
weekly tests included a portion of rapid tests having lower sensitivity and specificity than
polymerase chain reaction (PCR) tests. Moreover, the sampling gradually included an
increasing number of random tests. To get over with those uncertainties as we do not know
the number of asymptomatic individuals detected daily nor the implemented sampling
strategy, the calibration for the whole period was based on the number of deaths, which
were not affected by the abovementioned uncertainties.

The modelled and observed curves of the deaths almost coincided (Figure 6). For the
infected cases, the agreement was also good considering that they were not used at all
in the calibration process. Moreover, the underestimation in the most recent period may
be attributed to the increased number of tests performed. In addition, the polynomially
fitted reproduction number profile replicated exactly the observed reproduction number
in Greece, which was below one between mid-April and last week of July and fell below
one again in the second week of December. This is aligned with the variation of βS
which exhibits three discrete peaks: two related with the timing of the spring and autumn
epidemic waves and another one in between.
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Figure 6. Dynamic evolution of the simulation with optimal transmission rate (βS) at each time block. [top row] modelled
number of symptomatic infected persons (IS) (blue, left panel) and deaths (blue, right panel) together with the observed
number of positive cases (red circles) and the observed number of deaths (red circles). [bottom row] Modelled R0 (blue, left
panel) and βS (blue, right panel) together with the polynomial fit (right). See text for explanation.

The precise replication of the time evolution of deaths, which was not affected by the
tests performed, and especially the replication of the observed reproduction number curve
constitute a robust indicator for the model fit and the estimated βS which we analyzed next
in predictive mode.

3.4. The Variation of Predictability: From March to December 2020

The results in Sections 3.2 and 3.3 provided diagnostic estimates of the transmission
rates, yielding constant values over a fixed time frame spanning few weeks. We investigated
the daily variability of the transmission rates in predictive mode and their relation to
the forecast horizon. We used moving windows of size 25 days (3.5 weeks) and we
estimated the βS that optimized the error, as performed before. Then, using the optimal
βS, we continued the simulation for 30 days beyond the last day of the window (TE) and
we searched for the day after TE when the NRMSE exceeded 0.1 (i.e., the forecast error
becomes 10%).

The diurnal variation of the βS, closely replicated the coarse pattern seen earlier using
non-moving temporal windows (Figure 7), implying the internal dynamics were invariant
under different model configurations. Three peaks were evident in βS occurring with
decreasing magnitude; apart from the spring (strongest: 0.71/day) and autumn (weakest:
0.38/day) signals, there existed an intermediate peak at the beginning of July (0.58/day).
The transmission rate initially decreased gradually following the intervention measures
and reached a plateau. The abrupt increase in the βS at the beginning of July was probably
related to the relaxation of social distancing measures such as the maximum number of
participants in social events and the opening of the touristic season, which occurred few
weeks earlier. The change was also evident at the curve of the new cases. The forecast
horizon depended on the βS magnitude and its day-to-day variability. Large and variable
βS resulted in smaller forecast horizons. The same held true for the upslope portion of the
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epidemic curve, where the fastest changes were linked to the least predictability. In the
case of the Greek data, the implemented error tolerance resulted in a minimum forecast
horizon of roughly one week, observed twice during the periods of the steepest change in
the epidemic curve (March, November). At the opposite end, the forecast horizon exceeded
four weeks during the period April–July when the variability was smoother. Therefore, the
current epidemiological state is a significant indicator of the length of time into the future
over which the forecasts are reliable [63].
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The predictability horizon for models with sensitive dependence on initial conditions
can be extended with ensemble methods, typically employed in weather prediction [64]
and weather-dependent coupled-systems [65], to provide skillful forecasts in the region
between divergent solutions and error saturation. The existence of accurate data is among
the requirements of the framework.

4. Discussion

Aim of this study was the exploration of the transmission dynamics of SARS-CoV-2 in
a temperate climate and its potential predictability. The role of asymptomatic infections
and the potential effects of climatic factors in the epidemiology of COVID-19 were also
investigated. We used an epidemiological model that explicitly included the dynamics of
the asymptomatic infected population and allowed for a quantification of its relation to the
population of infected person showing clinical symptoms among other aspects. Using a
Monte Carlo uncertainty framework, we applied the model in the case of the COVID-19
epidemic in Greece including the imposed public health interventions of social distancing,
diagnostically evaluated the model parameters and quantified the controlling factors.
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Taking into account the range of climatic conditions in terms of temperature and
humidity where COVID-19 cases occurred, we identified the temperature and humidity
ranges in which COVID-19 cases may appear with increased probability and with increased
number of cases. The inconsistency between the two maps indicate that climatic factors
may not be of dominant importance for COVID-19 transmission.

The analysis of the modelling results at the intra-annual scale allowed for in depth
investigation of several scenarios that included the transmission dynamics during the
15 Feb. and 15 Dec. 2020 and the importance of the model parameters. Moreover, the
analysis at this scale permitted the exploration of the forecast horizon and its variability.
Out of the seven model parameters, all but the transmission rates could be fixed throughout
the investigated period. Three discrete peaks were found in the transmission rates. Two of
them corresponded to the timing of the epidemic waves (spring and autumn respectively)
while the third one occurred in mid-summer, implying that relaxation of social distancing
and increased mobility may substantially influence the epidemic dynamics during summer
and lead to a resurgence of infections offsetting positive effects from factors such as
decreased household crowding indoors and environmental ultraviolet radiation. Notably,
although transmission rates in autumn were estimated to be lower than in spring the
epidemic dynamics were much stronger in autumn probably due to the advanced spread
of the infection in the population.

The transmission rate from a symptomatic infected person to a susceptible compared
to that of an asymptomatic infected person was substantially higher. Changes in the
transmission rate followed the pattern of the introduction and relaxation of public health
interventions. Magnitude and variability of the transmission rates determined the length
of the forecast horizon. Moreover, the actual epidemiological activity was critical for the
predictive reliability of the forecast horizon in time. In our case this period spanned from
as low as few days (less than one week) to more than four weeks. Transmission strongly
depends on viral load and viral shedding. In some studies of COVID-19 patients viral
loads in the upper respiratory tract were found to be similar between symptomatic infected
and asymptomatic infected persons indicating a higher than expected transmissibility
for the asymptomatic population group. It seems, however, that clinical symptoms of
infected persons such as increased viral shedding due to more frequent expiratory events
like sneezing, coughing makes a difference in transmissibility. In general, the population
group specific transmissibility has been an open question and has to be further explored in
clinical and experimental studies.

The differences in recovery rates between asymptomatic infected and symptomatic
infected persons have been observed and confirmed in our numerical results. Moreover, we
provided optimal values for the incubation period and the residence time in the preclinical
and clinical states.

The fraction of asymptomatic cases before and after the epidemic control interventions
could be quantified and contributes to the understanding of the changes over time of
this critical subpopulation. The attribution of a large part of infections to exposure to
asymptomatic infected individuals, which have rather lower transmissibility compared
to infected individuals with clinical symptoms and their contribution to the transmission
dynamics has to be better assessed. SARS-CoV-2 transmission from subclinically infected
persons is critical for public health decision making. There are some indications that
pathogen transmission from this group of persons may be substantial implying that the
incidence of asymptomatic compared with symptomatic SARS-CoV-2 infections needs to
be determined. Serological studies, surveillance, and testing can help in the identification
of the extent of the infections attributable to asymptomatic infected individuals.

The limitations of our modelling results related to the case study were predominantly
the underlying assumptions we made and the accuracy of the official data to which we
applied the approach. For instance, the fraction of fatalities we found was consistent with
observations. However, as in every epidemic the estimation of the true case fatality risk
during the outbreak is extremely difficult due to a substantial number of unreported cases
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among other reasons such as delays in diagnosis and reporting, and observations probably
overestimate the true case fatality rate [17]. The observed patterns of climatic conditions
in temperate regions for respiratory viruses’ activity such as influenza and SARS-CoV-2
have been under investigation and attribution to specific environmental factors has been
very difficult. Well-designed observational and experimental studies are needed to identify
causality and minimize confounding. Moreover, immunological aspects such as changes
in population immunity and virus transmissibility during the course of an epidemic and
between seasons have to be better understood [40]. Pathogen and host specific effects
related to virus survival and immunity respectively were also not considered here.

5. Conclusions

The approach presented here may be a useful tool for the study of the potential role
of specific epidemiological sub-populations on the transmission dynamics of respiratory
infectious diseases such as COVID-19. The model is expandable and can provide insightful
quantification of the corresponding effects pointing to the relative importance of other
factors that may influence contact rates, virus inactivation and immunity and thus affect
pathogen transmission. The model can be embedded in an ensemble framework to extend
the predictability horizon, provided accurate and/or representative observations are avail-
able. The temporal lengthening of the early warning information should be of relevance for
the design of targeted public health responses, especially in the low-predictability epochs
before outbreaks.
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