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Avian influenza viruses (AIV) of H5N1 
and H9N2 subtypes have zoonotic and 
pandemic potential. 377 out of 633 human 
infections with H5N1 virus were fatal and 
human infections by H9N2 virus were 
infrequently reported to the World Health 
Organization.1,2 Some H9N2 viruses 
either possessed genes similar to the 
H5N1 virus3,4 or were claimed to donate 
gene segments to H5N1 virus.5 Both 
features were reported in the Pakistani 
H9N2 viruses that have been recorded to 
be genetically similar to H5N1 isolated in 
Hong Kong in 19976 and also pertained 
a gene segment encoding the non-struc-
tural proteins (NS) almost identical to 
the co-circulating H5N1.7,8 Therefore, it 
is important to compare biologically the 
impact of NS1 protein on replication and 
within-host cell dynamics of H5N1 and 
H9N2 viruses which have been recently 
studied by Munir and coworkers8 and 
published in this issue of Virulence.

NS1: Is it More Vulnerable  
to Reassert than Other AIV  

Gene Segments?

The genome of AIV contains eight gene 
segments; polymerase basic 2 (PB2, seg-
ment 1), hemagglutinin (HA, segment 
4), nucleoprotein (NP, segment 5) and 
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neuraminidase (NA, segment 6) encode 
only one protein, whereas the PB1 (seg-
ment 2), polymerase acidic (PA, segment 
3), the matrix (M, segment 7), and NS 
(segment 8) encode two proteins PB1 and 
PB1-F2, PA and PA-X, M1 and M2, and 
NS1 and NS2, respectively. Co-infection 
of the host cell with two or more AIV 
subtypes results in an exchange of gene 
segments designated as “reassortment” 
resulting in the emergence of novel 
viruses which may differ from their par-
ent viruses in their ability to replicate and 
transmit between animals and humans.9 
Reassortment is a well-known genetic 
trait of influenza viruses resulting in new 
viruses causing pandemics in 1918, 1957, 
1968, and 2009. In these events, the pan-
demic viruses contained genes from influ-
enza viruses of swine and/or avian origin.10

There are cumulative data on the reas-
sortment of NS gene segments between 
different AIV, particularly the H5N1 
subtype. In their recent study, Munir 
et al.8 raised this question again by report-
ing an H9N2 from backyard birds in 
Pakistan that carries the NS segment 
of H5N1 virus. Reassortment of the NS 
gene segment was observed within dif-
ferent clades of H5N1 in Hong Kong 
in 2000,11 Thailand in 2004–2008,12 
Nigeria in 2006–2007,13 and Vietnam in 

2010–2012.14 Intriguingly, three AIV sub-
types, namely H1N1, H5N1, and H5N3, 
isolated from wild mallards in Belgium in 
2008 had identical NS gene segments.15 
Similarly, A/turkey/Ontario/7732/1966 
(H5N9) acquired its NS gene from a 
contemporary H5N1 virus,16 and H6N2 
and H6N8 from ostrich in South Africa 
acquired their NS genes from an H9N2 
virus which was also closely related to 
contemporary H5N1 viruses in Asia.17,18 
Although rare, reassortment of NS from 
different H9N2 clades was also reported 
in China in 2002.19 Moreover, NS of 
avian origin was introduced into swine 
influenza H1N1, H1N2, and H3N220 
and equine H7N3 after 1973 as well as 
H3N8.21 Whether variations in the fre-
quency of reassortment exist in influenza 
genome segments, particularly NS of the 
H5N1 virus merits in-depth investigation.

NS: The Smallest Influenza Gene 
Segment with Multiple, Sometimes 
Overlapping, Functional Domains

The NS segment is the smallest AIV gene 
segment encompassing about 890 nucleo-
tides. The NS1 protein of AIV contains 
between 124 and 237 amino acids, but the 
vast majority specifies 230 amino acids.22 
In H5N1 viruses deletion within the NS1 
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cytoplasm at later stages of the viral repli-
cation cycle.30 In their publication, Munir 
et al.8 showed that both NS1 proteins they 
studied localized primarily in the nucleus 
24 h after transfection of human A549 
cells. It is worth mentioning that both 
NS1 proteins studied by Munir et al.8 
had an amino acid difference in position 
221 that was described as essential for the 
nuclear and nucleolus localization of the 
protein.31

NS1: Enhancement  
of Virus Replication

Enhancement of viral replication by NS1 
protein is usually achieved by direct acti-
vation of mRNA translation through 
interactions with, for example, eIF4GI 
and PABPII.32 Mutations or deletions in 
these domains significantly hampered 

domain (ED). The RBD is located within 
amino acids 1 to 73. It contains a nuclear 
localization signal (NLS1) and a poly(A)-
binding protein site (PABPI). Thus, it 
binds to different RNA species (e.g., viral 
RNA, viral mRNAs, poly[A] RNA and 
double stranded RNA). The ED within 
amino acids 74 to 230 has specific regions 
to interact with several host factors and 
proteins (Table 1) including the cleavage 
and polyadenylation specificity factor 30 
(CPSF30), eukaryotic translation initia-
tion factor 4GI (eIF4GI), PABPII, p58b-
subunit of phosphatidylinositol 3-kinase 
(P13K). In some viruses a second NLS 
and nucleolus localization signal (NoLS) 
exist.27-30

As a non-structural protein, NS1 is 
not present in virions but it is abundant 
in the nucleus of influenza virus-infected 
cells early during infection and also in the 

protein was observed between aa positions 
80–84 and frequently in the tail region, 
mostly residues 225 to 230.23 On the other 
hand, NS1 of H9N2 contains almost 
230 amino acids24 with rare insertion or 
deletion. Two genetic alleles (groups) of 
NS1 of more than 30% diversity were 
described. Allele A represents viruses 
of avian and mammalian origins, and 
allele B mainly avian origin viruses.21,22,25 
Generally, allele A is more common than 
allele B.25,26 Identity between the NS1 pro-
teins of H9N2 and H5N1 subtypes was 
more than 88%.24 In their study, Munir 
et al.8 reported almost identical NS1 genes 
of H9N2 and H5N1 viruses each with a 
total length of 225 amino acids due to 
deletion of the 80TMASV84 motif.

Structurally, the NS1 protein is com-
posed of two functional domains, an RNA 
binding domain (RBD) and an effector 

Table 1. Molecular anatomy of influenza virus NS1 protein

Position Structure References

1–73 rNa binding domain 27

74–230/237 Effector domain 27

35–38 Nuclear localization signal 1 (NLS1) 85

35, 38, and 41 Nuclear localization signal 1 (NLS1) 86

38 and 41 rNa binding motifs 87

38 and 41 rNa helicase binding sites of the retinoic acid-inducible gene i (riG-i) 62

1–81 Poly(a) binding protein i (PaBPi) binding domain 27

81–113 Eukaryotic translation initiation factor 4Gi (eiF4Gi) binding domain 30

89 and 93 p85b binding domain 66 and 88

103 and 106 Cleavage and polyadenylation-specific factor 30-kda subunit (CPSF30) binding domain 36

159 and 162 p85b binding domain 64

186 Cleavage and polyadenylation-specific factor 30-kda subunit (CPSF30) binding domain 27

191–195 Cleavage and polyadenylation-specific factor 30-kda subunit (CPSF30) binding domain 37

73–237 Staufen protein binding domain 27

123–127 Protein kinase r (PKr) binding domain 52

138–147 Nuclear export signal (NES) 86

148, 152, and153 Nuclear export signal (NES) 31

164–167 a putative SH3 binding motif 64

207–212 Phosphatidylinositol 3-kinase (P13K) binding domain 65

212–215 a putative SH3 binding motif 64

218–232 Poly(a) binding protein ii (PaBPii) binding domain 62

219, 220, 231, and 232 Nuclear localization signal 2 (NLS2) 86

221 Nuclear localization signal 2 (NLS2) 31

221 Nucleolus localization signal (NoLS) 31

219, 220, 224, 229, 231, and 232 Nucleolus localization signal (NoLS) 86

227–230 Postsynaptic density protein 95, Drosophila disc large tumor suppressor, and zonula occludens 1 
protein (PdZ) binding domain

45
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NS1: A Multifaceted Regulatory 
Protein

The NS1 protein interacts with viral and 
cellular proteins. Preferential interac-
tion of NS with the viral ribonucleopro-
tein complex,51 polymerase,52 NP, and/
or M proteins53 is required for regulation 
of influenza virus replication. Also, asso-
ciations of polymerase and NS1 muta-
tions or NS1 and HA mutations play an 
essential role in pathogenicity of H5N1 
in mammals.54,55 Therefore, the compat-
ibility of NS1 to support replication of 
two different viruses, H9N2 belonging 
to the G1-lineage and H5N1 belonging 
to Z-genotype clade 2.2, as reported by 
Munir and colleagues,8 emphasizes the 
role of NS to generate diverse influenza 
viruses/variants with efficient replication 
in nature.

On the other hand, the main role of 
NS1 is to antagonize IFN which is accom-
plished through two pathways (reviewed 
in details in refs. 27 and 28). One mode is 
via binding different RNAs, particularly 
double stranded RNA, and subsequent 
inhibition of the pre-transcription pathway 
for activation of IFN due to inactivation 
of cellular sensors such as protein kinase 
R “PKR”56, retinoic-acid inducible gene I 
“RIG-I”57-59 and 2'-5' oligoadenylate syn-
thetase-RNase “2'-5' OAS”60. The second 
mode is via interaction with a variety of 
IFN-induced cellular proteins/factors by 
specific, sometimes overlapping, regions 
(Table 1). Post-transcriptional inhibi-
tion of IFN production occurs via bind-
ing of the NS1 with CPSF30 and PABPII 
required for maturation and export of 
host mRNAs encoding antiviral proteins, 
including IFN mRNAs.58 Moreover, NS1 
protein blocks induction of IFN by inac-
tivation of TNF-α induced nuclear factor 
kappa B (NFκB), dsRNA-induced activa-
tor protein 1 (AP1), and the transcription 
factor IRF-3,41,61,62 and regulates the IFN-
inducible genes (e.g., Myxovirus-resistance 
protein, interleukin-6).27,28 Also, NS1 
protein enhances the translation of viral 
mRNA through interaction with eIF4GI 
and PABPI.63 It also binds a number of 
PDZ proteins.45 Furthermore, activation 
of the PI3K/Akt-pathway, including bind-
ing to SH3 and/or p85b, by NS1 protein 

transduction pathways, was considered a 
species-specific virulence marker.43-45 The 
studies conducted by Munir and cowork-
ers7,8 indicated that the NS1 of the two 
Pakistani H5N1 and H9N2 viruses had 
infrequent “ESKV” C-terminal PDZ 
motif with no clear effect on the patho-
genicity after intravenous injection of 
6-week-old chickens. Recently, highly 
pathogenic (HP) AIV H5N1 encoding 
NS1-ESKV in conjunction with NS1-
F138Y caused local infection in mice 
respiratory tract, with mutations in both 
sites increasing virulence and resulting in 
systemic infection.46

NS1: A Host Range Determinant

Although species-specificity of the NS1 
gene segment was reported earlier, the 
NS gene may not play an important role 
for host range restriction.21 There was no 
association between a gull-specific NS1 
lineage and HA gene which may indicate 
compatibility of gull-specific NS with 
HA of different AIV. In contrast, host 
restricted genetic signatures were reported 
frequently from the NS1 genes of H13 
and H16 AIV subtypes.47 HPAIV H7N1 
containing NS1 from HPAIV H5N1 rep-
licated at lower level in tracheal organ 
culture of chickens and turkeys,35 and 
changed the replication dynamic and the 
host cell responses in mammalian cells38 
assuming host-specific variations. Among 
other proteins, concurrent mutations in 
the NS1 of an H9N2 were observed dur-
ing adaptation to mice.48 Moreover, AIVs 
that harbor allele B replicate poorly in the 
respiratory epithelial cells of primates25,26 
and efficiently on duck cells; conversely, 
the A allele is advantageous for replication 
in cells from chickens and turkeys origin.49 
Human influenza viruses, except the pan-
demic H1N1 viruses in 1918–1919 and 
2009, mostly encode NS1 proteins with 
T215 but AIV, including H5N1 viruses, 
encode P215.50 The PDZ domain 227–
230 motif as described above also repre-
sents a species-specific genetic marker.43 In 
the current study, Munir and co-authors8 
found that both NS1s, belonging to the A 
allele, supported growth of the viruses on 
chicken embryo fibroblasts (CEF) as well 
as on A549 cells.

replication of influenza viruses, both in 
vitro and in vivo33-35 due to an increased 
interferon (IFN) response and rapid elimi-
nation of the virus. Mutations at residues 
103 and 106 of NS1 increased virus repli-
cation in tissue culture,33,36 and deletion of 
amino acids 191 to 195 reduced the ability 
of the virus to antagonize IFN produc-
tion in chicken embryo fibroblast cells.37 
Introduction of NS1 from an H5N1 into 
H7N1 altered host range and tissue tro-
pism, increased suppression of the host 
immune response and influenced virus 
replication in cell culture.35,38,39 In con-
trast, NS1 reassortant viruses of H5N1 
subtypes did not result in alteration of 
replication, tropism or pathogenicity of 
the viruses in experimentally infected 
ducks.40 Munir and coworkers8 showed in 
their study that both NS1 proteins, due to 
their high genetic relatedness, did not dif-
ferentially affect transfection of H5N1 or 
H9N2 in different cell cultures.

NS1: A Virulence Marker

Virulence of influenza viruses is a multi-
genic trait, where mutations in more than 
one gene may be required to modulate 
severity of the disease in a host. NS1, in 
addition to other genes, was identified as 
a virulence determinant of the Spanish 
pandemic H1N1 from 1918–1919.41,42 
H5N1 virus that had a D92E mutation 
or a deletion of residues 80–84 exhibited 
high virulence in chickens and mice.23 
Mutations at residues 103 and 106 prob-
ably destabilize the CPSF30 binding 
pocket of NS1, and in an H5N1 or H1N1 
enhanced virulence and altered brain-lung 
tropism in mouse model.33,36 Deletion of 
amino acids 191 to 195, corresponding 
to the CPSF30 binding domain, attenu-
ated swine-origin H5N1 virus in chick-
ens.37 Introduction of NS1 from an H5N1 
into H7N1 increased virulence in mice 
and chicken embryos.35,38,39 Moreover, 
a sequence motif at the C-terminal end 
of NS1, “ESEV” or “EPEV” in AIV or 
“RSKV” or “RSEV”, in human H5N1 
influenza viruses, in addition to interac-
tion with PDZ-domain (postsynaptic 
density protein 95, Drosophila disc large 
tumor suppressor, and zonula occludens 
1 protein) involved in cellular signal 
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