
RESEARCH ARTICLE

Spatio-Temporal Metabolite Profiling of the
Barley Germination Process by MALDI MS
Imaging
Karin Gorzolka1¤, Jan Kölling2,3, TimW. Nattkemper2, Karsten Niehaus1*

1 Proteome and Metabolome Research, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld,
Germany, 2 Biodata Mining, Faculty of Technology, Center for Biotechnology (CeBiTec), Bielefeld,
Germany, 3 International Research Training Group "Computational Methods for the Analysis of the Diversity
and Dynamics of Genomes", Bielefeld University, Bielefeld, Germany

¤ Current address: Department of Stress and Developmental Biology, Leibniz Institute of Plant Biology, Halle
(Saale), Germany
* kniehaus@cebitec.uni-bielefeld.de

Abstract
MALDI mass spectrometry imaging was performed to localize metabolites during the first

seven days of the barley germination. Up to 100 mass signals were detected of which 85

signals were identified as 48 different metabolites with highly tissue-specific localizations.

Oligosaccharides were observed in the endosperm and in parts of the developed embryo.

Lipids in the endosperm co-localized in dependency on their fatty acid compositions with

changes in the distributions of diacyl phosphatidylcholines during germination. 26 poten-

tially antifungal hordatines were detected in the embryo with tissue-specific localizations of

their glycosylated, hydroxylated, and O-methylated derivates. In order to reveal spatio-tem-

poral patterns in local metabolite compositions, multiple MSI data sets from a time series

were analyzed in one batch. This requires a new preprocessing strategy to achieve compa-

rability between data sets as well as a new strategy for unsupervised clustering. The result-

ing spatial segmentation for each time point sample is visualized in an interactive cluster map

and enables simultaneous interactive exploration of all time points. Using this new analysis

approach and visualization tool germination-dependent developments of metabolite patterns

with single MS position accuracy were discovered. This is the first study that presents metab-

olite profiling of a cereals’ germination process over time byMALDI MSI with the identification

of a large number of peaks of agronomically and industrially important compounds such as

oligosaccharides, lipids and antifungal agents. Their detailed localization as well as the MS

cluster analyses for on-tissue metabolite profile mapping revealed important information for

the understanding of the germination process, which is of high scientific interest.

Introduction
Cereals are the basis of human nutrition. During the last 20,000 years of cultivation, crops
underwent constant improvements in yield and quality. Among cereals, barley ranks fourth for
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worldwide production with 144 million tons in 2013 [1]. Besides its role as cattle feed, barley is
of high cultural importance with 20% of the production being processed by malting, providing
the basis for beer as well as for non-alcoholic drinks. Due to its nutritional benefits, there is an
increasing interest in its use as functional food [2,3]. The germination rate and natural patho-
gen resistance are key factors for production yield and grain quality. Thus, the investigation
and the understanding of the molecular events of cereal germination and pathogen defense will
benefit agriculture and human nutrition.

Barley is a model organism for the investigation of the cereal germination process. The
mature barley seed is composed of different tissues with distinct functions during germination.
The dead endosperm serves for storage of starch, proteins, and other molecules to supply the
embryo with nutrients during early germination. The outer cell layers of the endosperm build
the aleurone layer. In contrast to the dead endosperm, the aleurone layer and the embryo are
viable, but dormant in the mature seed. This dormancy is broken by the uptake of water, which
induces the release of gibberellic acid (GA) from the embryo. GA promotes the production and
release of hydrolytic enzymes from the aleurone layer into the inner endosperm. Endosperm
components (mainly amylose, amylopectin, proteins, and cell wall components like arabinoxy-
lan and beta glucan) are hydrolyzed, e.g. to oligo- and monosaccharides, peptides, and amino
acids. A subset of these compounds is translocated through the scutellum to the embryo to pro-
vide energy and building blocks for its growth and respiration [4,5].

Several investigations addressed the understanding of the germination process covering
protein analyses [6], transcriptomics [7], and metabolite profiling [8]. Germination is a com-
plex scenario of molecular interactions between tissues, but also with functional compartmen-
talization. Common analytical methods include extraction steps with the loss of detailed
information about compound localizations and resulting in complex molecular patterns. These
problems were addressed by the dissection of seeds in main compartments (e.g. [6]) or using in
vitro cultivation of cells and tissues (e.g. of the aleurone layer [4]). However, the separation of
the dead inner endosperm, the aleurone layer, and embryo is a simplification of tissue com-
plexity and the distinction of subfractions is desirable to examine tissue functionality during
germination.

Mass spectrometry imaging (MSI) provides a platform for the detailed localization of
diverse molecular species such as metabolites, lipids, peptides, and proteins in a sample section
with spatial resolutions of micrometer scales [9–13]. MSI is well suited for targeted localization
approaches (e.g. drug imaging [14]) as well as for untargeted profiling of tissue sections. Sam-
ple preparation and instrumental equipment determine the range of detectable compounds,
with ionization methods (e.g. SIMS, DESI, LAESI, MALDI) and MS detectors (e.g. FT-ICR,
Orbitrap, TOF MS) as the main parameters. In MALDI MSI, the chemistry of the matrix is
relevant, as different matrices promote the ionization of molecules of certain chemical classes
[9–13].

The localization of compounds as provided by MALDI MSI links the metabolites to poten-
tial functionality. Therefore, MSI is frequently applied in clinical, especially in cancer research
to detect tissue- and disease-specific molecular patterns [15–18]. In comparison to the numer-
ous studies of clinical background, MSI of plants remains sparse [13]. In plant MSI, small mol-
ecules were the main targeted substances, investigating different plant species like Arabidopsis,
Medicago, wheat, soya, rice, and tobacco with tissues such as leaves, stems, roots, flowers or
fruits [12,13,19]. The identification of plant metabolites often focused on specific classes such
as phosphatidylcholines [20,21], cell wall constituents [22], anthocyanins [23] or other second-
ary metabolites as summarized in a comprehensive review by Bjarnholt et al. [12], Boughton
et al. [13] and Matros and Mock [19],. Novel metabolites were discovered using MALDI MSI
[15], demonstrating the benefit of localization information for metabolite identification. The
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analysis of ripe cereal grains by MSI is challenging, since the rigidity and friability of the seed
hamper the required sectioning and mounting. Wheat and barley were investigated during
maturation, either when grains were still unripe and soft [24] or after incubation of the ripe
seed in water [22]. Rice was the sole mature cereal that was investigated by MSI without prior
sample manipulation by incubation [20]. No other mature cereal and no cereal germination
process were investigated by MSI until today. Considering the convincing analytical perspec-
tives of MS imaging, its application on a cereal germination process would reveal a lot of novel
information on metabolite localizations, abundances and metabolic compartmentalization at a
glance. This needs novel protocols for seed sectioning, sample preparation and especially data
processing as introduced in the later sections. Barley was chosen, since it exhibits typical cereal
germination nature, contains typical germination-relevant metabolites such as sugars and lip-
ids, and represents an industrially and agriculturally relevant crop. Therefore, the results of
localization and the identifications of compounds in barley can be also expected for other cere-
als. Since the established analysis also provides a protocol for sectioning, sample preparation,
data acquisition and interpretation, MSI can be easily performed on various other crops,
diverse tissues or time scale analyses.

A joint analysis of spatial patterns across all time points was conducted. To achieve a com-
parative analysis of multiple full MSI data sets a protocol for data preprocessing and analysis
was applied as presented in this work to address the specific problems raised by the data gener-
ated in our study.

The first problem to be solved is to choose an appropriate pre-processing protocol. In MSI,
even a single 2D data set can reach a size that is prohibitive to many types of analyses–if applied
naively–and spectra are known to have a high pixel-to-pixel variance caused by a multitude of
technical and chemical sources of noise and variation [25–27]. While the analysis of single 2D
MSI data sets is feasible with current commercial tools (e.g. SCiLS Lab (SCiLS GmbH, Ger-
many), flexImaging (Bruker)) and open resources [28,29] many publications are still neglecting
the importance of proper preprocessing or avoid in-depth statistical analysis, due to the diffi-
culty of defining clear criteria for an efficient preprocessing.

The comparative analysis of multiple MSI data sets, for example from a time series experi-
ment as considered in this work, poses additional challenges that require tailor-made process-
ing and analysis. MSI applications that could be categorized as comparative are: (A)
Identification of new, or search for known biomarkers, also called MSI profiling [30]; (B) 3D
MSI based on serial-sectioning of the same sample and subsequent 2D MSI of each section
[31,32]; (C) Comparative MSI of multiple MSI data sets of individual samples [33,34], which is
considered in this work. The goal of computationally assisted comparative MSI is to enable
exploration of complex relationships between spatial patterns and molecular composition
across samples from multiple individuals, for example from different time points of a biological
process. This requires a broader comparison than the targeted MSI profiling (see (A)) and has
to account for inherently more biological variability than present in a single 3D MSI data set
(see (B)). The major challenge is therefore to make all spectra of all data sets under consider-
ation comparable under the noisy conditions of MALDI MSI and additional batch effects
between samples [35]. This can be tackled by accounting for variability in exactm/z positions–
usually through re-calibration of them/z axis–and normalization of signal intensities. In
absence of established quality measures or ground truth for most kinds of samples, prior
knowledge on the analyzed data is essential to support and assess this automated processing.

The second problem is to find a way to analyze and visualize the data in a way that allows
for intuitive interpretation of both spatial patterns and single molecular profiles. Both tech-
niques for dimension reduction [36,37] as well as clustering algorithms [38,39] are commonly
applied to distill relevant information fromMSI data sets. The resulting lower dimensional
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embedding is frequently visualized in the context of optical images of the samples to enable
researchers to use their knowledge of sample morphology during interpretation. To this end,
the molecular composition is reduced to a color encoding clusters or regions described by spe-
cial patterns in molecular composition [36] and is mapped to the optical image.

We present an approach to both the automated processing as well as the interactive visual
exploration of the results in an open web tool. The usefulness of the approach is demonstrated
by the in-depth spectral analysis of a single data set as well as by the joint spatio-temporal anal-
ysis of eight individual data sets obtained during barley seed germination. This analytical pro-
tocol together with the recorded data sets provided a fundamental new view on metabolite
distributions during germination, as it allows a simultaneous analysis of temporal and spatial
molecular organization. With the identification of 85 out of in total 101 detected metabolite
signals, metabolite (co-)localizations as well as metabolite cluster results could be reasonably
interpreted, which is of high interest for crop agriculture.

Material and Methods

Mini malting and sample collection
100 g barley seeds (cv. Optic, provided by the Campden Brewery Research Institute (BRI),
Brewing Division, Nutfield, UK) were germinated in 1 l Schott flasks at 16°C in an air-condi-
tioned dark cabinet. Seeds underwent cycles of soaking and rest periods with 7 h soaking in
water, 17 h rest (after draining), 7 h soaking, 17 h rest (drained), 3 h soaking, 1 h draining, fol-
lowed by 5 days of germination. After the five days of germination period, seeds were dried for
7 h at 45°C and kilned at 65°C for 17 h. This procedure represents the industrial malting pro-
cess. During the soaking and germination period, samples were collected in 24 h steps, immedi-
ately frozen at −20°C on a plate, transferred in reaction tubes, and stored at −80°C.

Sample preparation and MALDI-TOF MSI
Samples of eight germination time points (Fig 1) were prepared and analyzed as described pre-
viously [15]. Briefly, seeds were embedded in ice and sectioned with 14 μm layer thickness at
−20°C with a cryostat (Leica CM 1850) according to Kawamotos film method [20]. After
immediate drying in a vacuum desiccator, samples on the film were mounted by electric con-
ductive tape on an indium tin oxide (ITO)-coated conductive glass slide (Bruker Daltonics,
Bremen, Germany), coated with matrix (30 mg/ml 2,5-dihydroxybenzoic acid (99%, Alfa
Aesar) in 50% (v/v) methanol/water and 0.2% trifluoroacetic acid (Sigma Aldrich)) using the
ImagePrep sprayer (Bruker Daltonics), and measured by MALDI-TOF/TOF (ultrafleXtreme,
Bruker Daltonics) and MALDI-FT-ICR (solariX, 15T, Bruker Daltonics) MSI. An overview on
the sample preparation is provided in S1 Fig.

MSI data acquisition and initial processing
The MALDI-TOF was calibrated on internal metabolites [15], the FT-ICR was calibrated on
DHB matrix clusters. Measurements were set up using the Bruker software FlexImaging 3.0
with a raster size of 100 μm. In MALDI-TOF MSI, the laser beam diameter was 50 μm, 300
laser shots were accumulated at each raster spot, laser power ranged from 44–47%. Signals
were recorded from m/z 0–3000 in positive reflector mode with ion suppression up to m/z 50
and a resolution of 1 GS/s. At least two different seeds (biological replicates) of each sampling
time point were analyzed by MALDI-TOFMS Imaging. In FT-ICR MSI, 200 laser shots
(50 μm laser focus) were accumulated at each raster spot (100 μm) with 70% laser power, sig-
nals were recorded from m/z 200–2000. Co-registration between each MSI data set and its
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optical image was done with FlexImaging, which also served for inspection of singlem/z inten-
sity images (normalized to TIC). Based on the co-registered optical images, the regions of inter-
est were outlined and semantic labels assigned (whole seed, endosperm, embryo, background).
Average mass spectra were exported from FlexImaging or generated by ClinProTools. Peak
picking was performed in FlexAnalysis (for single TOF MS) or in mMass for FT-ICR data [40].

Compound identifications by FT-ICR data and MS/MS
Compounds were tentatively identified by accurate mass match of obtained high resolution
FT-ICR m/z values to theMetlin database [41]. Identifications were confirmed using MALDI-
TOF MS/MS on matrix coated barley tissue sections or on methanolic extracts. For extracts,

Fig 1. The barley germination process: Seedling development and sampling time points. A) Time scheme of mini malting of theOptic barley at 16°C
for the collection of samples. Arrows indicate sampling time points with their sample name. 0d: raw barley, S: steeping, G: germination day, K: kilned malt (K
not used for MSI). W: water, A: air rest, K1: kilning at 45°C (7h), K2: kilning at 65°C (17 h). B) Growth of the barley seeds during malting. Barley (0d, T = 1),
steeped barley (S1d, T = 2), three of the five time points during germination (G1d, G3d, G5d (T = 4,6,8)) and final kilned malt (K1d) are shown as
representatives. Main seed organs and compartments are indicated at the raw barley seed.

doi:10.1371/journal.pone.0150208.g001
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2 mg to 40 mg of freeze-dried, milled tissue were extracted with 1 ml water by ribolysing
(3 x 45 s, 15 min pause, 6.5 m/s) using 500 mg ribobeads (0.5 mm diameter, Roth) for tissue
disruption. Samples were centrifuged 15 min at 14,000 rpm. 1 μl to 2 μl of the supernatant were
spotted on a ground steel target (Bruker Daltonics) with 1 μl 2,5-dihydroxybenzoic acid matrix
(30 mg/ml in 50% methanol, 0.2% TFA). Dextrin 20 (Serva) with a concentration of 1 mg/ml
was used as a reference sample for oligosaccharide analysis. The MALDI-TOF was calibrated
on peptide standards. MS/MS was performed on selected precursor ions with individual laser
settings using collision induced dissociation (CID) with argon as collision gas at a pressure of
2 x 106 mbar and a collision energy of 8 keV. The software functionsMass frontier (Thermo
scientific) and IsotopePattern (Bruker Daltonics) served for structure and formula elucidation
of metabolites.

Higher level analysis and visualization of spatio-temporal patterns in
multiple MSI data sets
All of the following steps were implemented in python employing also established libraries for
scientific computing and data mining [42–45].

Initially, all spectra are binned (sum of signals in window) to the samem/z axis to facilitate
joint processing. The bin size of Δm/z = 0.1 was chosen to be smaller than relevantm/z toler-
ances in later steps, but larger than the minimal distance between any of them/z values in the
raw data to avoid imputed intensities.

Next, all data sets are combined into a single data frameM 2 R
m�n, where each of them

rows contains all intensity values for a single spectrum s and each of the n columns represents
the flattened intensity image i of a singlem/z bin. A spectrum s is hierarchically indexed with
the time point t 2 T of its original data set, a compartment region label r and spatial position
(x, y). Therefore, a single spectrum s can also be referred to as a signal pixel in a MS image of a
sample from time point t. For the data set presented in this paper we used T = {1, 2, . . ., 8} and
r = {whole seed, embryo, endosperm, background}. We will refer to the single MSI data set from
time point t asMt and withMt,r to its sub-set labeled with r.Mmz

t is the flattened intensity
image for a singlem/z bin andMmz

t;r accordingly the sub-image for region label r.

We will use the general termmolecular composition to refer to the composition of molecules
as represented by an analyzed spectrum s (or any aggregation of spectra, for exampleMt,Mr,
Mr,t,M). After peak picking the set of all peaks in smay be referred to as a peak profile. If the
molecules in question are metabolites, the termmetabolite (peak) profile is used, otherwise the
term (molecular) peak profile will be used.

The actual analysis is split into three steps: i. Preprocessing for each single data setMt, fol-
lowed by joint preprocessing of all data setsM; ii. Joint clustering ofM; iii. Interactive visual
exploration and interpretation of results. Please see the S2 and S3 Figs for an overview.

Preprocessing of MSI data sets
All data sets were square root transformed to account for heteroscedastic noise common in
MALDI MSI [25]. Power and log transformations are useful alternatives but for our data sets
square root transformation showed to be both effective and efficient. Subsequently all spectra
were re-calibrated, filtered to a set of relevant spectra and m/z bins and then normalized to the
median intensity of those peaks.

Since the calibration to internal metabolites was likely not perfect [25] an automated
approach to correct smallm/z shifts was employed. Such a step is commonly referred to as re-
calibration in the context of MS. In the absence of ground truth, we employed the following
qualitative heuristics:m/z shifts between two spectra st,r 2Mt,r and st;r0 2 Mt0;r0 are less likely
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and smaller if they are from the same data set (t = t’) and molecular composition should be
more similar if they share the same label (r = r0). The following pragmatic multi-pass approach
was used to re-calibrate all spectra s 2M:

First, all spectra are re-calibrated to better match their region in their data set:, i.e. s 2Mt,r

are shifted towards the median spectrum ofMt,r. Then, all spectra are re-calibrated to their
whole data data set signal distribution, i.e the spectra s 2Mt are shifted towards the median
spectrum ofMt. Last, all spectra are recalibrated according to the region-specific distribution,
i.e. the spectra of all time points s 2Mt,r (t 2 T) are shifted towards the all-time median spec-
trum ofMt,r (t 2 T). The shifts in each pass are linear shifts of them/z axis, which are computed
using Fast Fourier Transform (FFT)-based cross-correlation between the intensities of the
median-normalized spectra. Cross-correlation is influenced strongly by peak intensities,
which may result in false corrections caused by matching unrelated high intensity peaks.
The prior square root transformation together with the use of normalized spectra helps to
avoid this problem. Furthermore, a fixed cut-off is used to limit shifts to small corrections with
Δm/z< 0.5 Da.

After re-calibration, intensity images and spectra considered not relevant to the analysis at
hand are removed to reduce variability and the size of the data set. We refer to the spectra that
are retained for analysis as informative spectra (based on the informative peaks introduced in
Fonville [25] and adapt the preprocessing steps described in the same work as follows: All
intensity images that positively correlate with knownm/z values of the DHB matrix or the
adhesive tape are removed. After that, spectra outside of the regions of interest are removed.
For each of the remaining intensity images its randomness is assessed by computing the vari-
ance explained (VE) of the first component of the singular value decomposition (SVD) of the
image rows. Images with a VE below the mean VE of all images are filtered out [25]. The
remaining spectra andm/z bins are assumed to be informative regarding the biological vari-
ability in the regions of interest of the samples.

In the final preprocessing step all informative spectra are normalized to their median [25].
The resulting preprocessed data set is referred to as P.

Unsupervised Clustering and MSI Segmentation
To analyze the complex interactions captured by comparative MSI some form of quantization
of the n-dimensional feature space is required. Here, we consider eachm/z bin as a dimension
in this feature space and each spectrum (or signal pixel) is represented as a feature vector.
While it is possible to use the complete preprocessed data set P for cluster analysis, we selected
only a subset X� � X of the features by picking peaks based onm/z values of interest for this
study. The resulting feature vectors x 2 X� are referred to as peak profiles, since they represent
only a targeted subset of them/z bins of the informative spectra.

The Hierarchical Hyperbolic Self Organizing Map (H2SOM) was used for unsupervised
clustering because it is fast and enables straightforward selection of a color code to generate
meaningful cluster maps. It is based on Self Organizing Maps (SOM) but uses a regular lattice
described in the hyperbolic and not in the Euclidean space and is trained hierarchically using
beam search for faster computation [46]. During clustering the cosine distance was used to
determine (dis-)similarities between feature vectors.

Since all peak profiles from all data sets (i.e. x 2 X�
t ; (t 2 T)) are clustered together and the

number of peak profiles per data set X�
t can be different, the random sampling required for fit-

ting the data was weighted to avoid sampling bias. The weights were chosen so each data set
has the same probability of being sampled in any given step.
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Visualization for Interactive Exploration
The resulting segmentation of all data sets can be viewed and interactively explored using an
updated version of our previously published Web-based hyperbolic Image Data Explorer
(WHIDE) [46].

The central visualization is a segmentation map (also called cluster map) of the original
data. This segmentation map is overlaid on the bright field images of the analyzed data sets.
The color code of the segmentation map uses similar colors for areas with similar molecular
peak profiles. Therefore, the user can easily see which areas share a similar composition. Such
topology preserving color visualizations have also shown to be very useful in an early stage of
high dimensional bioimage analysis for instance in the design of an appropriate pre-processing
and signal normalization pipeline [47]. The whole process of visualization can be divided into
the following three steps:

In the learning and color coding step (see S2 Fig), the algorithm computes a grid of nodes in
the hyperbolic cluster space in which similar molecular peak profiles are represented by nodes
close to each other and dissimilar molecular peak profiles are represented by nodes far from
each other. This property can be achieved because the H2SOM, which is used to generate the
segmentation, is trained to preserve the topology of the feature space in the lattice projection.
Each node represents the typical molecular peak profile of one cluster in the data set.

This grid is projected from the hyperbolic space on a unit disk in Euclidean space with the
Poincaré disk model (see [46] for details). The resulting disk-shaped grid approximates the
properties of the original grid in hyperbolic space but can now be plotted in the user interface.

The hue-saturation-value (HSV) color system is used to assign colors to the nodes in the
grid. To visualize this, a hue-saturation disk is plotted as a background of the disk. Thereby
each node in the grid can be colored by the underlying color on the disk.

In the visualization step (see S3A Fig), the clustering of peak profiles is visualized as a cluster
map. The cluster map is shown in the user interface as an overlay on top of the original bright-
field images of the MSI data sets. The correspondence between clusters and pixels in the seg-
mentation map is indicated by color: Each pixel in the cluster map is colored using the color of
the corresponding grid node.

The resulting color code is a spectrum approximation, thereby offering more legible color
steps–and thereby visibility for smaller details in the segmentation map–than simpler
sequences like grayscale or two color sequences (e.g. red-blue) [48,49].

The combination of projection and color coding enables the interactive exploration (see S3B
Fig) of the segmentation map. Simply rotating the color disk across the cluster nodes also rotates
the color code of the segmentation map. This feature is very useful because the sensitivity for dif-
ferent color hues of human (and individual) vision varies. Only a low number of colors and
thereby clusters can be used if all of them need to be recognized as distinct [49]. Furthermore, the
user can change the focus on the grid with a fish-eye zoom to interactively navigate through the
color space and to tune into a color mapping. This can be used to highlight clusters of interest
and at the same time keeps smooth color transitions between similar clusters.

Results
The results of our study are presented as follows. After summarizing observations during the
preparation and experiments, we will present results of metabolite identifications by FT-ICR
high resolution mass spectrometry and Time Of Flight MS/MS. After that, we will address spa-
tio-temporal changes of oligosaccharides and antifungal metabolites. Third, we will finally
present the data analysis results computed with the presented clustering algorithm and visually
exploration using the WHIDE tool.
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Establishment of the seed sectioning procedure and sample preparation
During germination, the barley seeds exhibited typical developments with the softening of the
endosperm after moistening and the growth of the embryo shoot and its roots (Fig 1). Using
conventional cryosectioning and thaw mounting on the ITO slides, no intact sections could be
obtained, since the endosperm did not adhere to the slide and disruptions of the entire section
occurred frequently during sectioning. Adhesive film was used for the stabilization of the sec-
tion [20]. The adhesive film allowed the reduction of slice thickness to 14 μm, fast transport for
drying (>5 seconds), and fixation on the ITO slide (S1 Fig). However, kilned barley sections
(malt) were of insufficient quality for MSI due to very high friability.

MALDI MSI of barley seeds during germination
Metabolites were profiled by MALDI MSI in longitudinal and transversal orientations in
mature barley and at seven time points during germination (Fig 1, S4 Fig). The number of
detected compounds as well as signal intensities increased during germination from 50 m/z val-
ues (SN>5) at early germination (0d, S1d, G0d) up to 100 signals at later time points (G1d to
G5d). A number of signals derived from the adhesive film and were excluded from further
analyses. For the identification of metabolites, one representative sample (G2d) was analyzed
using high resolution Fourier-Transform Ion Cyclotron Resonance (FT-ICR) MS imaging at
Bruker Daltonics in Bremen, Germany. Database search (Metlin [41]) of the high resolution
FT-ICR MSI data revealed potential compound annotations and MALDI-TOFMS/MS of tis-
sue homogenates or of matrix-coated seed sections served for identification validation (S1A,
S1B and S1C Table). In summary, 85 peaks were identified as [M+H]+, [M+Na]+, and [M+K]+

ions of 48 metabolites according to reporting standards for metabolomics [50] (Table 1). The
identified metabolites were categorized in three classes, namely oligosaccharides, lipids, and
secondary metabolites (Table 1). For detailed information about FT-ICR data and identifica-
tions see S1 Supporting Information (FT-ICR and TOF mass spectra), S1 Table (A: peak anno-
tation and identification, B: FT-ICR peak list, C:Metlin search results), S2 Supporting
Information (lipids), S3 Supporting Information (oligosaccharides) or Gorzolka et al. [15] (sec-
ondary metabolites).

In the next section, the observations for oligosaccharides and antifungal secondary metabo-
lites will be summarized. Detailed information on the localization of lipids is given in S2 Sup-
porting Information. Briefly, lipids were detected in the endosperm with a distinction between
monoacyl phosphatidylcholines, which appeared in the endosperm, and diacyl phosphatidyl-
cholines, which demonstrated dynamic localization changes during germination at the aleu-
rone layer and in the endosperm.

Localization of oligosaccharides
Oligosaccharides with two to thirteen hexose units (degree of polymerization DP = 2–13) were
detected as sodium and potassium adducts. Fig 2 depicts the localizations of three oligosaccha-
rides in non-germinated and germinated barley, which is representative for early and late ger-
mination time points. A table of all time points is provided as S5 Fig. At early germination,
sodium and potassium adducts co-localized in the central endosperm. At later germination
time points, the potassium adducts were detected near the aleurone layer, the sodium adducts
exhibited highest intensities in the central endosperm regions. These distinct localizations of
adducts were observed and superimposed for all degrees of polymerization. The merge of both
adducts underlined their complementary localizations (S6 Fig). After the first day of germina-
tion, oligosaccharides were detected in the embryo with a localization in the embryo center
close to the scutellum in elongated shoots (S5 Fig).
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Table 1. Detected and identified compounds fromMS imaging of barley seeds.

Lipids Molecular formula Molecular weight [M+H]+ [M+Na]+ [M+K]+ Identification level

choline C5H13NO 103.11 104.11 126.09 n.d. 142.06 n.d. 3

phosphocholine C5H14NO4P 183.07 184.07 206.06 n.d. 222.03 n.d. 3

PC(16:0) C24H50NO7P 495.33 496.34 518.32 534.09 2

PC(18:2) C26H50NO7P 519.33 520.34 542.32 n.d. 558.30 n.d. 2

PC(32:0) C40H80NO8P 733.56 734.57 n.d. 756.55 * 772.53 n.d. 3

PC(34:3) C42H78NO8P 755.55 756.55 778.53 n.d. 794.51 n.d. 3

PC(34:2) C42H80NO8P 757.56 758.57 780.55 * 796.52 2

PC(34:1) C42H82NO8P 759.58 760.59 n.d. 782.57 798.54 n.d. 2

PC(36:5) C44H78NO8P 779.55 780.55 802.54 n.d. 818.30 n.d. 3

PC(36:4) C44H80NO8P 781.56 782.66 * 804.55 n.d. 820.53 2

TG(52:2) C55H102O6 858.77 859.77 n.d. 881.76 n.d. 897.73 3

PI(40:3) C49H89O13P 916.60 917.62 n.d. 939.60 n.d. 955.57 3 (> 1ppm)

PI(42:5) C51H89O13P 940.60 941.62 n.d. 963.60 979.57 3 (> 1ppm)

Carbohydrates Molecular formula Molecular weight [M+H]+ [M+Na]+ [M+K]+

2 hexoses C12H22O11 342.12 343.12 n.d. 365.11 n.d. 381.08 2

3 hexoses C18H32O16 504.17 505.17 n.d. 527.16 543.13 1

4 hexoses C24H42O21 666.22 667.23 n.d. 689.21 705.18 1

5 hexoses C30H52O26 828.27 829.28 n.d. 851.26 867.24 1

6 hexoses C36H62O31 990.33 991.33 n.d. 1013.31 1029.29 1

7 hexoses C42H72O36 1152.38 1153.39 n.d. 1175.37 1191.34 1

8 hexoses C48H82O41 1314.43 1315.44 n.d. 1337.42 1353.40 1

9 hexoses C54H92O46 1476.49 1477.49 n.d. 1499.47 1515.45 1

10 hexoses C60H102O51 1638.54 1661.53 n.d. 1661.53 1677.51 1

11 hexoses C66H112O56 1800.59 1801.60 n.d. 1823.58 1839.56 1

12 hexoses C72H122O71 1962.64 1964.12 n.d. 1986.10 2001.74 1

13 hexoses C78H132O76 2124.70 2126.07 n.d. 2148.05 2163.91 1

Hydroxycinnamic acid amides /
hordatine precursors

Molecular formula Molecular weight [M+H]+ [M+Na]+ [M+K]+

p-coumaroylagmatine C14H20N4O2 276.16 277.17 299.15 n.d. 315.12 n.d. 2

coumaroyl-hydroxyagmatine C14H20N4O3 292.15 293.16 315.14 n.d. 331.12 n.d. 2

feruloylagmatine C15H22N4O3 306.17 307.18 329.16 n.d. 345.13 n.d. 2

feruloyl-hydroxyagmatine C15H22N4O4 322.16 323.17 345.15 n.d. 361.13 n.d. 2

Hordatines Molecular formula Molecular weight [M+H]+ [M+Na]+ [M+K]+

hordatine A C28H38N8O4 550.30 551.31 573.29 589.26 2

hydroxy-hordatine A C28H38N8O5 566.30 567.30 589.29 * 605.26 2

hordatine B C29H40N8O5 580.31 581.32 603.30 619.28 2

hydroxy-hordatine B C29H40N8O6 596.31 597.31 619.30 * 635.27 2

hordatine C C30H42N8O6 610.32 611.33 633.31 n.d. 649.29 n.d. 2

hydroxy-hordatine C C30H42N8O7 626.32 627.32 649.31 n.d. 665.28 n.d. 2

hordatine A + Hex C34H48N8O9 712.35 713.36 735.34 751.32 2

hydroxy-hordatine A + Hex C34H48N8O10 728.35 729.36 751.34 * 767.31 2

hordatine B + Hex C35H50N8O10 742.36 743.37 765.35 781.33 2

hydroxy-hordatine B + Hex C35H50N8O11 758.36 759.37 781.35 * 797.32 2

hordatine C + Hex C36H52N8O11 772.38 773.38 795.36 811.34 2

hydroxy-hordatine C + Hex C36H52N8O12 788.37 789.38 811.36 * 827.33 2

hordatine A + 2 Hex C40H58N8O14 874.41 875.41 897.40 913.37 2

hydroxy-hordatine A + 2 Hex C40H58N8O15 890.40 891.41 913.39 * 929.37 2

hordatine B + 2 Hex C41H60N8O15 904.42 905.43 927.41 943.38 2

hydroxy-hordatine A + 2 Hex C41H60N8O16 920.41 921.42 943.40 * 959.38 2

hordatine C + 2 Hex C42H62N8O16 934.43 935.44 957.42 973.39 2

(Continued)

MSI of Barley Germination

PLOS ONE | DOI:10.1371/journal.pone.0150208 March 3, 2016 10 / 25



Localization of antifungal secondary metabolites: hydroxycinnamic acid
amides and hordatines
In a previous study, 20 hordatines and hydroxycinnamic acid amides (HCAA) were identified
in barley [15]. Here, the time dependent localizations and signal intensity changes of horda-
tines and HCAAs during germination are investigated (Fig 3). HCAAs, which are antifungal
compounds as well as precursors for hordatines, were mainly detected in the roots of the seeds
except of coumaroylagmatine (CA), which also occurred in the barley shoot (Fig 3). During
germination, the signal intensities increased in longitudinal sections, whereas in transversal
sections, none of the HCAAs was detectable. In general, the signal intensities of the monomeric
HCAAs were low in comparison to their dimers (hordatines).

The hordatines of the same glycosylation state demonstrated co-localization patterns (S7
Fig). This is shown in Fig 3 for the hordatine B in its non-glycosylated, glycosylated, and malto-
sylated form. At early germination (0d, G0d, and G1d), hordatine signals were of very low
intensity and localized in the embryo with minor distinctions between the modified forms.
With the differentiation of embryo substructures, the hordatines segregated in their localiza-
tion. Non-glycosylated hordatines were detected in the inner shoot, with an accumulation at
the upper shoot regions at late germination (G5d). Glycosylated hordatines were present in the
outer shoot tissues as well as in the roots. This inverse distribution was even more apparent in
transversal sections and in the overlays (Fig 3). The disaccharide-modified compounds were
mainly detected in the roots without any significant changes during germination. These com-
pounds were low in the transversal sections, only the maltosylated hordatine B was detected,
which co-localized with the shoot surrounding glycosylated derivatives. The transversal sec-
tions indicated the presence of glycosylated hordatines under the husk, which was also
observed for non-glycosylated compounds at early germination (see S7 Fig).

During germination, the hordatine signal intensities increased constantly (Fig 3) and after
two days of germination, they were among the highest peaks of the overall mass spectrum.

Table 1. (Continued)

hydroxy-hordatine A + 2 Hex C42H62N8O17 950.42 951.43 973.41 * 989.39 2

Unknowns Molecular formula Molecular weight [M+H]+ [M+Na]+ [M+K]+

m/z 74.65 - - - - - 4

m/z 118.28 - - - - - 4

m/z 175.33 - - - - - 4

m/z 230.00 - - - - - 4

m/z 558.18 - - - - - 4

m/z 650.55 - - - - - 4

m/z 674.38 - - - - - 4

m/z 1006.58 - - - - - 4

m/z 2200.69 - - - - - 4

Bold m/z values: detected and used for cluster analyses, n.d.: not detected,

*: refused in cluster analyses due to nearly isobaric ions.

Lipids: PC: phosphatidylcholine; PE: phosphatidylethanolamine; PE-NMe: N-methyl-phosphatidylethanolamine; PI: phosphatidylinositol; TG: triglyceride.

Brackets: total number of C-atoms in the fatty acids with the number of double bonds.

Carbohydrates: degree of polymerization with the number of hexose residues.

Identification level: affirmation of identification in accordance to the minimum reporting standards [50]. 1) Identified [MS/MS of compound and standard

compound], 2) Annotated [MS/MS of compound, reference to literature], 3) Putative [no MS/MS available, database hit of high resolution FT-ICR data], 4)

Unknown.

doi:10.1371/journal.pone.0150208.t001
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Interestingly, the intensity proportions between the hordatine peaks changed with the glycosyl-
ation: Non-glycosylated compounds exhibit highest hordatine A signals, followed by B and C.
With one hexose residue attached, hordatine B was the highest peak, followed by A and C. If
maltosylated, hordatine C is of highest abundance, followed by B and A.

The inspection of oligosaccharides, lipids and secondary metabolites revealed their highly tis-
sue-specific localization. Average mass spectra of the main compartments embryo, root, scutellum,
and endosperm underlined the different metabolic compositions and pointed to unique com-
pounds for each compartment (S8 Fig). High hordatine signals were characteristic for the embryo
tissues with differential proportions of hordatine A, B, and C in the shoot and root (S8 Fig) and
coumaroylagmatine and feruloylagmatine as root specific signals. The endosperm subdivision
revealed distinct distributions of phosphatidylcholines with higher abundances of monoacyl PCs in
the apical parts (S8 Fig, endosperm 2) and diacyl PCs near the scutellum (S8 Fig, endosperm 1).

MSI cluster analysis for the description of metabolite profiles during
germination
All mass spectra were preprocessed with the same methods given in materials and methods to
achieve comparability. The initial binning and the preprocessing reduced the size from
~83,000m/z values and ~28,000 spectra in the raw data to ~5,000m/z bins and ~20,000 spectra
in X. Based on the in-depth analysis of single data sets and peak identifications, 101m/z values
(see Table 1, black font) of interest were picked from X. Several bins were too close together to
be separated by the automatic preprocessing and only one of each peak pair (lowerm/z value)
was retained to avoid redundant features (as indicated with asterisks in Table 1). The resulting
data set X� (~20,000 peak profiles with intensities for 93m/z peaks) was clustered and visual-
ized to detect co-localizing metabolites and to relate emerging profiles to their corresponding
spatial segments on the tissue.

Fig 4 shows the result from the cluster analysis of a three days germinated barley seed. The
metabolic profiles were represented by distinct clusters, which show strong correlation to the

Fig 2. Localization of oligosaccharides in barley during germination. A) Cryo-sections of non-germinated (0d) and three day germinated (G3d) barley.
B) Average mass spectrum of all MS acquired from germinated barley with [M+Na]+ (red) and [M+K]+ (blue) ions of oligosaccharides. *DP: degree of
polymerization. C) Intensity heat maps of oligosaccharides with three, six, and nine hexoses in sodium [M+Na]+ and potassium [M+H]+ adducts in
ungerminated barley (0d) and after three days of germination (G3d). MS intensities were normalized to the TIC of each mass spectrum; the highest relative
intensity of all MS was set to 100%. The distributions of these compounds at all time points of the germination process are provided as S5 Fig.

doi:10.1371/journal.pone.0150208.g002
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seed compartments. In comparison to tissue profiling with average spectra from regions of
interests (see S8 Fig), this clustering revealed metabolic heterogeneity with more detail within
the tissues at single positions. The embryo area was classified in shoot inner layers (Fig 4, red),
shoot outer layers (Fig 4, pink), embryo center (Fig 4, blue) and two different root peak profiles
(violet) (Fig 4, peak profile clusters 1–4, for m/z identities refer to Table 1), which was mainly
based on hordatine and lipid signals. The embryo center, metabolite patterns were similar to
the scutellum with a mixture of hordatine and oligosaccharide signals. The endospermMS pat-
terns were differentiated by the proportional abundances of oligosaccharides and mono- and
diacyl phosphatidylcholines (yellow, green; profiles 5–7). These endosperm clusters were
arranged in a circuit gradient from the center towards the aleurone layer. The aleurone layer
itself was represented by a one or two MS thin line and exhibited an embryo-center like metab-
olite composition (Fig 4, blue).

Next, to resolve temporal developments and to map the metabolite profiles on the seed sec-
tions, all time points of the germination process were analyzed in one batch with one represen-
tative replicate each and a comprehensive overview on the results is given in Fig 5, starting
with a morphological overview on the samples in Fig 5A. The WHIDE visualization revealed
again a distinction of the embryo and the endosperm peak profiles (Fig 5B). Time-dependent
changes could be observed in the endosperm with an early germination metabolite profile
(orange in Fig 5B) with high abundances of mono- and diacyl PCs (m/z 496, 520, 758), which

Fig 3. Localization and signal intensities of hydroxycinnamic acid derivatives and hordatines in germinating barley. Top: Localization of p-
coumaroylagmatine (CA) as representative for hydroxycinnamic acid amides and hordatine B as representative for hordatines that co-localized to hordatine
B when occurring in the samemodification state. Intensity maps depict the non-glycosylated (m/z 581), glycosylated (m/z 743), and disaccharide-modified
form (m/z 905) at three time points during germination (0d: non-germinated barley, G3d: three days germinated, G5d: five days germination) in longitudinal
and transversal section plane. Hordatines were not detected in cross sections in non-germinated barley. The last panel shows an overlay of the three
modification forms. Ion intensities were normalized to the TIC, the highest relative intensity was set to 100%. Middle panel: Average mass spectra from
annotated embryo measurement regions (right) in non-germinated (green), three days (blue) and five days (red) germinated barley. Bottom: Mass spectrum
with indicated peaks of hydroxycinnamic acid amides as hordatine precursors (m/z 250–350) and of hordatine A, B, C, and D (D not detected, grey font),
hydroxylated hordatines (-OH), and hexose-modified derivates (Hex / 2 Hex) atm/z 550–1000. CA: coumaroylagmatine, FA: feruloylagmatine, CA-OH /
FA-OH: hydroxylated CA and FA.

doi:10.1371/journal.pone.0150208.g003
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changed to a later germination pattern (green in Fig 5B) with the same main masses but dis-
tinct proportional abundances. Higher contents of the choline fragment (m/z 104) and of oligo-
saccharides caused the generation of additional endosperm profiles (red–pink in Fig 5B) near

Fig 4. Unsupervised spatial segmentation of 93m/z intensities obtained fromMALDI MSI of a three days germinated barley seed (G3d). A: Image
scan with outlines for the labeled seed compartments. B: Cluster map with the main compartments of the seed, transferred from A. C: Cluster distance wheel
with 32 clusters set for this analysis; the 7 peak profile clusters presented in D are indicated with boxes. D: Mass lists of representative clusters; the bar size is
indicative for the signal intensities;m/z identifications are provided in Table 1. See https://ani.cebitec.uni-bielefeld.de/barleymsi for an interactive version of
the results in the WHIDE tool.

doi:10.1371/journal.pone.0150208.g004
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the scutellum and the aleurone layer. The embryo clusters (blue and pink in Fig 5B) revealed a
tissue-specific split after the differentiation of embryo morphology with light blue at the shoot
tip, dark blue at the lower parts and the roots and pink at the embryo center. The most promi-
nentm/z were glycosylated hordatines (m/z 713, 743) with cluster differentiations by the pres-
ence of oligosaccharides at the embryo-scutellum interface (Fig 5B, pink).

One special feature of the H2SOM algorithm is the hierarchical structure in the cluster
result, so the clusters (i.e. peak profile prototypes) are organized in four levels with an increas-
ing number of clusters: 1 (root node), 7 (first layer), 21 (second layer) and 56 (third layer).
Each parent cluster is connected to subclusters in the subsequent level. This allows a visualiza-
tion of the patterns on different levels of cluster granularity which relates to resolving higher
(i.e. visualizing the colors of all clusters) or lower levels (i.e. visualizing the colors only of the
seven parent first layer clusters) of detail in the peak profiles (Fig 5E). The visualization of the
finer subclusters in the third layer revealed some substructures within the embryo, but mostly
introduced no further information that was not already present in the second layer. Altogether,
the seven clusters in the first layer already represented the main features and are therefore
referred to asmain (peak profile) clusters. In Fig 4, we restricted the coloring to these main

Fig 5. Unsupervised spatial segmentation of eight independent MALDI MSI analyses covering the first days of barley germination usingWHIDE. A:
Image scans with outlines of labeled seed compartments. B: Cluster analysis of all mass spectra of the whole grain areas. C: Cluster analysis of all mass
spectra of the embryo areas as annotated in A. D: Cluster analysis of all mass spectra of the endosperm as annotated in A. E: Effect of the cluster granularity
(7, 21, 56 clusters) on mapping results, exemplarily shown for four days germinated barley (G4d) from analysis B. The visualized cluster, granularity was set
to 7 in A, B, and C to assign clear cluster profiles (right panels). 93m/z values were selected for spatial segmentation in all analyses. Their contribution to the
distinct clusters is indicated by the bar size in the right panels; form/z identification see Table 1. For an interactive exploration of the results in WHIDE see
https://ani.cebitec.uni-bielefeld.de/barleymsi.

doi:10.1371/journal.pone.0150208.g005
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clusters to increase the color contrast in the segmentation map and thereby enhance the per-
ception of spatial patterns for the most expressed peak profiles.

The variations in the globally expressed metabolite profiles are small in comparison to the
variance between the embryo and endosperm regions. Two separate cluster analyses were per-
formed for all embryo peak profiles (Fig 5C) and all endosperm peak profiles (Fig 5D) to focus
on the variability within each compartment. This resulted in a much more detailed view on the
tissue specific metabolic profiles and their localizations, since the clusters of these compart-
ments are now shown with more color contrast, making the inner compartment variation visu-
ally accessible.

In the embryos, only two of the seven main clusters were present at early germination stages
(0d–G0d). These profiles correspond to patterns observed in developed roots. The discriminat-
ing features are proportions of hordatines (m/z 551, 581, 713, 743, 773, 905, 935), coumaroy-
lagmatine (m/z 277) and feruloylagmatine (m/z 293) and the low abundance of the choline
head group (m/z 104). After root penetration through the hull (G0d, G1d), further clusters
(orange, yellow in Fig 5C) arose and a metabolic segregation between roots, center, and shoot
became apparent. After G2d, the growing embryo provided a constant differentiation into the
seven main clusters, which were in agreement with morphological and developmental stages.
The shoot tip contained higher levels of non-glycosylated hordatines (mainly hordatine A and
B, blue in Fig 5C), the mid shoot part segregated by lower hordatine A and B levels, but higher
choline fragment contents (m/z 104, purple in Fig 5C). Near the scutellum (orange in Fig 5C),
the hordatine proportions changed towards glycosylated derivates with higher contents of hor-
datine B (m/z 743) and C (m/z 773) than in the upper shoot, which were also the main features
for the roots (green in Fig 5C) segregation.

In the endosperm, a constant pattern segregation was observed during the whole germina-
tion process, which was the distinction between the central endosperm with high contents of
monoacyl phosphatidylcholines (m/z 496,m/z 520) and endosperm areas near the scutellum
and the aleurone layer (green and yellow), which exhibited higher proportional abundances of
the choline head group (m/z 104) and a distinct pattern of oligosaccharides. In the endosperm
center, a time dependent cluster development could be observed with early germination pat-
terns (0d–G1d, blue in Fig 5D) and late germination patterns (G2d–G5d, purple and pink in
Fig 5D). This switch was mainly due to the increasing lipid proportion at later germination
states, which could even be subdivided in concentric circles around the inner endosperm
(G3d–G5d, blue / pink / orange / yellow; Fig 5D).

Discussion
Within this study, the cereal germination process was analyzed by MALDI MSI over time. A
novel, easy and inexpensive method was developed, that allowed sectioning, mounting, and
processing of the hard and friable cereal seeds. The protocol is certainly applicable to numerous
other hard or crumbly tissues; therefore, it expands the range of potential analytical targets for
MSI. DHB was a suitable matrix for metabolite profiling of barley phospholipids, carbohy-
drates [9], and a broad range of secondary metabolites. Following our sectioning protocol and
quality measures, localizations as well as proportional signal intensities were highly
reproducible.

More than 80 signals could be identified by high-resolution FT-mass spectrometry in com-
bination with MALDI-TOF MS/MS. This is a comprehensive list, especially in MSI of plants,
where most previously published studies focused on specific metabolite classes [9,12,13,19].
However, in comparison to chromatography-based analyses, this list appears restricted: While
GC-MS [8] and LC-MS based metabolomics provide information on several hundreds of
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metabolites at a glance, MS Imaging approaches suffer from sensitivity and distinction capaci-
ties between isobaric compounds (e.g. many lipids). In addition, the on-tissue extraction of
ions is highly influence by the properties of the tissue itself: Ion abundances influence the
adduct formation (see sodium and potassium adduct localization of oligosaccharides), ion sup-
pression due to high abundant co-localized metabolites or metabolites might be bound to tissue
structures. These tissue and ionization effects might also explain the astonishing observation,
that lipids were mainly detected in the endosperm of barley but not in the embryo, although
the embryo exhibits even higher proportional lipid contents (embryo ~20% lipids, bran-endo-
sperm: ~ 3–7% lipid content [51,52]). A) Mainly charged phospholipids were detected, but
nearly no unpolar lipids due to their poor ionization; therefore, a broad part of the lipidome is
not covered in this analysis. B) The lipids in the embryo and aleurone layer are organized in oil-
bodies that are accompanied by oleasome proteins [53], whereas in the endosperm, they are
either starch associated or non-starch lipids [54]. These associated biological matrices might
influence the lipid ionization and detection. C) The embryo exhibits high contents of charged
secondary metabolites (hordatines), which might cause ion suppression of lipids. The use of
different MS detectors, ionization methods and sample preparation methods (e.g. in MAL-
DI-MS the matrix and solvent) would certainly complement each other and broaden the spec-
trum of detected compounds (see [11–13] for more details) to enable a more comprehensive
view on the metabolism.

MS/MS was not suitable for the absolute identification of all chemical structures. For oligo-
saccharides, starch (α-1,4 or α-1,6 linkage) and cellulose (β-1,4 linkage) are both targets of
endosperm degradation [5]. The MS/MS analysis of the resulting oligomers would reveal hex-
ose fragments in all cases, therefore, those compounds could not be distinguished using
MALDI MS. However, all hexose oligomers are indicators for ongoing endosperm hydrolysis.
For lipids, mainly phosphatidylcholines were detected and could be annotated by the occur-
rence of the phospho-choline head group in the MS/MS. The exact fatty acid composition
could not be assigned due to a) the MALDI-TOFMS/MS sensitivity and b) the co-occurrence
of isobaric lipids of different fatty acid structures. Linoleic acid is the most abundant fatty acid
in the barley seed [5] and it is highly likely that most identified PCs contained this double-
unsaturated fatty acid. It is astonishing that the number of lipids found in the embryo is rela-
tively low. The localization of lipids could be biased by the poor ionization of triglycerides. The
higher number of lipids localized to the endosperm could be an effect of the metabolic turnover
of triglycerides that are transported to the embryo. For hordatines, UHPLC-MS/MS provided
very accurate and reliable identifications [15], which were independently validated by another
study [55].

Oligosaccharides were detected with different localizations of sodium and potassium
adducts, but with uniform distributions after merging the two mass values. This emphasized
the need for the annotation of paired peaks that derived from the same compound, which
severely challenges quantification. In other MALDI MSI approaches, differential adduct forma-
tion was addressed by adding sodium or potassium salts to the matrix solution to force ion for-
mation of only one adduct peak [54] or by washing the tissue with hydrophilic solvents
[56,57]. Tissue washing was refused in this study, as hydrophilic solvents would have caused
metabolite diffusion and high amylase activity [58]. MS signal intensities were not suitable for
absolute quantification, which is still a challenge in MALDI MSI [59]. The use of labeled exter-
nal standards might be beneficial to address the quantification of oligosaccharides.

Despite the need for further optimization for quantitative conclusions, the presented data
demonstrate that MALDI MSI is suitable to monitor ongoing endosperm degradation. The
hydrolysis of endosperm cell walls, starch, and storage proteins is essential to provide energy
and building blocks for the growth of the embryo. This hydrolysis starts in proximity to the
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embryo and progresses during germination to the center and the distal parts of the endosperm
[5]. Interestingly, this degradation pattern was reflected by the potassium adducts of oligosac-
charides and even more pronounced in cluster analyses with circular cluster arrangements in
the endosperm, which indicated the gradual change of metabolite patterns from the aleurone
layer towards the inner endosperm. Increased potassium contents seemed to accompany
increased amylolytic, proteolytic or otherwise hydrolytic enzyme activity. In the embryo, oligo-
saccharides increased near the scutellum during germination. The translocated saccharides
from the endosperm might have been polymerized again in the embryo to build cell walls, as
proposed for germinated rice embryos [60].

Mono- and diacyl phosphatidylcholines exhibited distinct localizations. Monoacyl PCs were
detected in the endosperm throughout the malting process without significant changes. In con-
trast, diacyl PCs were detected in the scutellum and in the husk or aleurone layer in ungermi-
nated barley, which corresponded to observations in ungerminated rice seeds [20]. During
germination, diacyl PCs occurred in the endosperm near the scutellum and the aleurone layer,
which covered the distribution of the oligosaccharide potassium adducts; thus, also the diacyl
PCs displayed the progression of endosperm degradation. The diacyl PCs might have already
been present in the endosperm cell membranes at early germination time points, but undetect-
able or not extractable. The hydrolysis of the starch, structural proteins, and the cell walls dur-
ing germination may have uncovered the cell membranes and therefore enhanced the
extraction, ionization, and detection of the diacyl PCs, whereas the detection of monoacyl PCs
was not significantly affected.

Hordatines provided very tissue-specific localizations, which corresponded to their glycosyl-
ation. Hordatine A and B derive from the dimerization of coumaroylagmatine and feruloylag-
matine [61], exhibit antifungal properties [62] and can be glycosylated [63]. The other
hordatine derivatives are dimers of hydroxycinnamic acids in diverse combinations [15] and
might exhibit similar biological functionalities. Regarding their potential role in pathogen
defense, their localizations and glycosylations are of high importance for agriculture. During
germination, the overall hordatine signals increased, which was consistent with quantitative
analyses [64]. The functionality of hordatine A, B, C, and D might be various, which is implied
by the different distributions between roots and the shoot: Hordatine A is higher in the shoot,
hordatine B higher in the roots, which might reflect specific intrinsic (e.g. developmental) or
extrinsic (e.g. stress-induced) reactions of the two organs. In addition, the intensity patterns of
the glycosylated hordatines did not reflect the intensity patterns of the non-glycosylated horda-
tines as visible in the metabolite clusters analyses. Therefore, glycosylation appears to be a con-
trolled, tissue specific process. Roots face a different environment during germination with
direct contact to pathogens, herbivores and abiotic conditions such as drought stress, whereas
the shoot is protected by the hull. The differential functionality of the hordatines A, B, C and D
might be additionally changed or fine-tuned by glycosylation to meet those differences. The
glycosylated hordatines split in their localization after the first and second day of germination
in consistency with the macroscopic development of the embryo organs. Here, maltosylated
hordatines (especially the B form) might be essential in the root for optimal growth and patho-
gen protection. In the shoot, the outer (older) leaves exhibited more glycosylated compounds
than the younger inner leaves, so the expression and activity of glycosyltransferases might
depend on the age of the tissue or might be induced by the tension and friction of the leaves
during growth under the husk. Therefore, glycosylation might be either environmentally con-
trolled as well as a genetically fixed pattern. More functional information is needed for a bio-
logical discussion of these observations, but the very specific localizations and tissue-specific
hordatine compositions highly imply differences in their biological roles and functionalities.
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In contrast to the barley-specific hordatines, hydroxycinnamic acid amides are widespread
in plants and functionally characterized (e.g. in Arabidopsis [65] and potato [66]). Amongst
many other functions (mainly in plant development), HCAAs play an important role in patho-
gen defense [67,68]. In barley, they increased upon jasmonate and abscisic acid (ABA) treat-
ment [69] and coumaroyl-hydroxyagmatine accumulated in barley leaves upon infection with
Erysiphe graminis f. sp. hordei [70]. Three of the four detected HCAAs were mainly localized in
the roots, which suggested their specific functionality in the root tissues. As discussed for hor-
datines, the HCAAs might provide specified protection of the young rootlets against infection,
might also fortify and stabilize the cell walls for soil penetration and might support drought
resistance. Although HCAAs are the precursors of hordatines, their localization was distinct.
Considering their wide range of functionalities [71], their distributions are determined by
many other factors despite hordatine biosynthesis.

Analysis of the barley germination process using MSI cluster analysis
This study presented comparative cluster analysis of several independent MSI experiments. The
specialized preprocessing improved spectral alignment and normalization and allowed to assign
metabolite profiles to small tissue structures such as the aleurone layer (Fig 5), which was advan-
tageous over tissue profiling (S8 Fig), where small structures might be lost due to spectra averag-
ing. Using the WHIDE web tool, time-dependent metabolic developments over all sampled
stages of germination could be simultaneously visualized, for the time enabling a comparative
visual exploration. This revealed the molecular heterogeneity of macroscopically uniform tissue
like the endosperm. Furthermore, the clusters displayed biologically highly relevant features such
as the endosperm hydrolysis and embryo axis subdivision. On-tissue cluster mapping reduced
the multidimensional dataset and allowed to extract co-localizing features like hordatines and oli-
gosaccharides. WHIDE provides an easy read-out of the characteristicm/z values (as illustrated
in Fig 4D) and intuitive evaluation of similarities (as illustrated in Fig 4C).

The embryo and the endosperm fulfill very different physiological functions during germi-
nation, which was reflected by the large metabolic distance between their respective cluster
groups. Only small changes within these two feature groups could be resolved, when the whole
area of seeds was analyzed. Consequently, single seed organs were clustered separately to zoom
into time-dependent changes. This provided a detailed annotation of time- and tissue depen-
dent metabolite clusters of the growing embryo.

In the last germination states (G2d–G5d), highly reproducible tissue-specific subclusters
were generated, mainly based on the proportions of hordatines in their non-glycosylated, glycosy-
lated, and maltosylated forms, hordatine A, B, and C intensities, as well as the occurrence of oligo-
saccharides and lipid fragments. The functions of these compounds and their single localizations
were already discussed before. Here, the special metabolite combination (patterns) provided tissue
signatures, which were not represented by singlem/z localizations, e.g. the subdivision of the
embryo in seven, 21 or even 56 metabolic clusters. It should be emphasized, that the embryo sub-
clusters changed gradually along its shoot axis and that these clusters appeared in the same order
in the distance wheel, which indicated a constant metabolic fine-tuning of the embryo tissues in
hordatines, hordatine modifications, oligosaccharides, and lipid contents and proportions. The
advantage of metabolic signatures over singlem/z localizations for additional tissue subdivision
was also apparent in the endosperm. Singlem/z values correlated with reported hydrolase activity
during germination [5] and therefore indicated the progression of endosperm breakdown. How-
ever, the concentric rings of several clusters stressed this biological process, revealed a much finer
spatial resolution of the metabolic states within the tissue and provided information about the
proportions of lipids and oligosaccharides that were indicative for each state.
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Choosing the H2SOM algorithm for spatial segmentation enabled a straightforward visuali-
zation of all clusters on an interactive cluster map, because the clusters and their similarities
can be represented by a graphical model that enables both a meaningful color code for initial
overview and relative modifications of that color code in a tight-feedback loop to explore the
segmentation in more detail. The color coding is considered meaningful, since a circular and
continuous color scale is applied. The circularity feature is important to reflect the fact, that the
displayed variable, the cluster, is not an ordered attribute (i.e. there is no lesser / greater relation
defined) and there is no upper and lower end of the attribute value. Second, the continuity of
the color scale is important to reflect the fact the cluster prototypes describe a data distribution
rather than discrete states, so we do not consider it as a qualitative attribute, which would be
better visualized using other color mapping techniques.

To select appropriate features for the cluster analysis best-practice preprocessing steps were
adapted to the case of comparative MSI analysis. While the evaluation of the preprocessing and
the biological interpretation of the cluster result support our assumptions that sufficient spec-
tral correspondence can be established for this data set, the spectral resolution and some lack
of even more identifications leaves a minor degree of uncertainty. It is central to evaluate any
preprocessing and analysis strategy on a per data set basis until established methods to measure
MSI data quality exist [71].

While automated peak picking might have resulted in even more signals for analysis, the
existing list of relevant and at least partially identified metabolites was chosen to make the
already complex cluster result easier to interpret. This list merged the peaks from all time
points and excluded background artifacts from analyses. In addition, the manual peak inspec-
tion prevented overrepresentation of features by failing isotope annotation, because isotope
picking is critical to automate in lower mass resolution mass spectrometry like TOF and espe-
cially in MS imaging,

To our knowledge, this is the first attempt to analyze multiple MSI data sets that together
show a complex biological process like germination. This might be due to the ongoing increase
in spatial and spectral resolution as well as the addition of the third dimension to MSI, which
have posed ever-new challenges for the analysis of even a single data set.

However, we believe that even with lower spatial and spectral resolution, MSI shows clear
potential to answer many new biological questions addressing the spatio-temporal self-organi-
zation in biological systems, and that this is–as is often the case–a simple trade-off between
increased resolution in time and reduced resolution in other dimensions.

Conclusion
This study provides a basis for MSI of cereals with a detailed protocol for sectioning, a compre-
hensive list of identifications, spatio-temporal information on barley germination as well as the
application of unsupervised cluster analyses to assign tissue-specific and time-dependent metab-
olite patterns for comparative MSI analysis. These results and bioinformatics approaches can be
transferred to other MSI datasets. MALDI MSI is capable to simultaneously monitor many
important cereal metabolites like lipids, oligosaccharides, and antifungal secondary metabolite
during germination. In addition, the specific localization of the metabolites is provided, which is
of high advantage over liquid based analyses. This is of high importance for agriculture and crop
research: First, the change and localization of lipid profiles are critical aspects for dietary and sen-
sory quality. Second, MSI could visualize ongoing endosperm degradation to aid breeding for
optimal germination performance. Third, the detailed localization of antifungal metabolites will
certainly support the elucidation of their biological functions, which will be definitely a target to
improve natural pathogen resistance to increase yield and quality of the cereals.
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