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Entanglement and teleportation between
polarization and wave-like encodings of an optical
qubit
Demid V. Sychev 1,2, Alexander E. Ulanov 1,3, Egor S. Tiunov1,3, Anastasia A. Pushkina1,4, A. Kuzhamuratov1,3,

Valery Novikov1,3 & A.I. Lvovsky1,4,5,6

Light is an irreplaceable means of communication among various quantum information

processing and storage devices. Due to their different physical nature, some of these devices

couple more strongly to discrete, and some to continuous degrees of freedom of a quantum

optical wave. It is therefore desirable to develop a technological capability to interconvert

quantum information encoded in these degrees of freedom. Here we generate and char-

acterize an entangled state between a dual-rail (polarization-encoded) single-photon qubit

and a qubit encoded as a superposition of opposite-amplitude coherent states. We fur-

thermore demonstrate the application of this state as a resource for the interfacing of

quantum information between these encodings. In particular, we show teleportation of a

polarization qubit onto a freely propagating continuous-variable qubit.
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D ifferent physical systems with the potential for quantum
processing and storage can be roughly classified into two
categories. Some systems, such as single atoms, quantum

dots, superconducting circuits, or color centers, have non-
equidistant energy level structures, from which one can select a
pair of levels that can serve as a qubit. For other systems, e.g.,
atomic ensembles, optical or microwave cavities, and opto-
mechanical membranes, the energy level structure is inherently
equidistant, and therefore analogous to that of the harmonic
oscillator. In these systems, it may be more beneficial to encode
quantum information in continuous degrees of freedom, such as
the position and momentum.

Because different quantum systems are more suitable for per-
forming different tasks, a technology for coherent and loss-free
exchange of quantum information among them is essential for
efficient integrated quantum information processing1. A natural
mediator for such exchange is the electromagnetic field, which is
the only quantum system capable of carrying quantum infor-
mation over significant distances. Fortunately, this field is capable
of coupling efficiently to both qubit-like and harmonic-oscillator-
like systems through its own discrete-2 and continuous-variable
(CV)3 degrees of freedom.

The most common discrete-variable (DV) approach to
encoding quantum information in an optical wave is the dual-rail
qubit: a single photon occupying one of two orthogonal modes
corresponds to logical 0 or 1. These two modes can correspond,
for example, to the horizontal Hj i and vertical Vj i polarizations.
In the CV domain, a qubit can be encoded as a superposition of
coherent fields of opposite phases, γj i and �γj i, with the
amplitude γ being high enough to ensure sufficient orthogonality
of these states4,5. An alternative encoding basis in CV consists
of “Schrödinger cat” states6–9 Θ±j i=N ± γj i± �γj ið Þ, where
N ± = 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ± 2e�2γ2

p
is the normalization factor.

A missing central piece in the technology of electromagnetic
coupling of different physical systems is a method for inter-
converting between DV and CV encodings of the electromagnetic
qubit. Important achievements towards this challenge have been
reported in 2014 by two groups10,11. They constructed an
entangled state between the CV qubit and a “single-rail” DV qubit
in which the logical value is encoded in a single photon being
present or absent in a certain mode. Subsequently, this state has
been employed as a resource for rudimentary quantum tele-
portation between these qubits12.

However, the single-rail encoding of the qubit is much less
common in practical quantum optical information processing
than its dual-rail counterpart. This is because single-rail encoding
complicates single-qubit operations13 and also enhances the qubit
measurement errors associated with optical losses and inefficient
detection. In this case, it may be more beneficial to create a two-
mode state of the form

Rj i ¼ α Hj i Θþ
�� �þ β Vj i Θ�j i ð1Þ

Developing this entangled resource is also important in the
context of purely optical quantum communications. Indeed, the
two encodings have complementary advantages14. Continuous
variables can benefit from unconditional operations, high detec-
tion efficiencies, unambiguous state discrimination, and more
practical interfacing with conventional information technology.
However, they suffer from strong sensitivity to losses and
intrinsically limited fidelities. On the other hand, DV approaches
can achieve fidelity close to unity, but usually at the expense of
probabilistic implementations. Combining the two in hybrid
architectures15,16 may offer significant advantages17,18, particu-
larly in the context of quantum repeaters19–21

Here we address the challenge of conversion between the CV
and dual-rail single-photon qubits by preparing a two-mode
resource state Eq. (1) and showing basic applications of it, such as
remote state preparation, teleportation and entanglement swap-
ping between the two encodings.

Results
Concept. A simpler version of state Eq. (1) can be produced as
sketched in Fig. 1a. We start with a weakly squeezed vacuum state
with the squeezing parameter ζ= 0.18, generated in a horizontally
polarized mode via degenerate parametric down-conversion. This
state is an excellent approximation to the positive Schrödinger’s
cat state Θþ

�� �
with the amplitude γ+=

ffiffiffi
ζ

p
6,12. Generally, this

approximation is only valid for cats of relatively low amplitudes,
but our scheme can be used equally well with cats generated using
methods that enable higher amplitudes7,8. The cat state then
passes through a half-wave plate and polarizing beam splitter
(PBS), which in combination act as a variable-reflectivity beam
splitter. In the case of low reflectivity r � 1, the resulting state
can be written as

ψj iVA;HC ¼ 0j iVA Θþ
�� �

HCþ
ffiffi
r

p
ây 0j iVAâ Θþ

�� �
HC

¼ 0j iVA Θþ
�� �

HCþ
ffiffi
r

p
1j iVANþ

N�
γþ Θ�j iHC;

ð2Þ

because applying a photon annihilation operator to the state Θþ
�� �

transforms it into Θ�j i6. In the above equation, VA and HC
denote, respectively, the vertical component of spatial mode A
and the horizontal component of mode C.

Now let us suppose a weak horizontally polarized coherent
state αj i � 0j i þ α 1j i is injected into the input mode A of the
PBS. We then obtain the state

Ωj iAC ¼ αj iHA ψj iVA;HC� 0j iHA 0j iVA Θþ
�� �

HC

þα 1j iHA 0j iVA Θþ
�� �

HCþβ 0j iHA 1j iVA Θ�j iHC;
ð3Þ

where β ¼ ffiffi
r

p
γþNþ=N� and we approximated to the first order

in β and α. The last line in the above state corresponds to a single
photon present in spatial mode A. It comprises the desired
resource Eq. (1) in modes A and HC (we use Vj iA ≡ 0j iHA 1j iVA
and Hj iA ≡ 1j iHA 0j iVA to switch between the first and second
quantization notations).

In spite of a strong vacuum component in mode A, state Eq.
(3) can be utilized for quantum communication protocols. Here
we demonstrate the application of this state for remote state
preparation22 and teleportation23 of a qubit from the polarization
onto the CV encoding. Moreover, we show how to utilize
entanglement swapping to purge the vacuum component from
that state.

For remote state preparation, we project mode A onto a
superposition a Hj i þ b Vj i by means of a polarization analyzer
and a single-photon detector (SPCM) [Fig. 1b]. A click of the
SPCM heralds the preparation of a CV qubit

a� Hh j þ b� Vh jð ÞA Ωj iAC¼ a�α Θþ
�� �

C
þb�β Θ�j iC ð4Þ

(we use letter C to denote mode HC from now on, because mode
VC is in the vacuum state and does not become involved in the
analysis). The performance of the procedure is tested by
homodyne tomography in mode C [Fig. 1c]. The values of a
and b can be varied arbitrarily by changing the angles of half- and
quarter-wave plates in the polarization analyzer; thereby CV
qubits of arbitrary values can be conditionally prepared24.

For teleportation, “Alice” prepares a heralded source photon in
a polarization state χj i= a Hj i þ b Vj i in an additional spatial
mode B [Fig. 1d]. We then apply the Bell state projector Ψ�h j=
Hh j Vh j � Vh j Hh jð Þ= ffiffiffi

2
p

to modes A and B as shown in Fig. 1e.
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We obtain

ϕj iC ¼ Ψ�h jAB Ωj iAC χj iB
� �

¼ 1ffiffi
2

p aβ Θ�j iC�bα Θþ
�� �

C

� �
:

ð5Þ

Because the Bell measurement requires two photons to be present
in its input, it will cut off the vacuum term in Eq. (3), so the state
of the input photon is teleported onto “Bob’s” freely propagating
CV qubit in mode C.

Remote state preparation. We prepare state Eq. (3) as described
above (see Methods for further detail), with the ratio β/α of about
0.6. In order to create a maximally entangled DV-CV state, this
ratio should have been unity. However, choosing a lower value
helps increasing the data acquisition rate (which was a critical
parameter in this experiment) while still allowing us to see the
effects we wish to observe.

We project mode A onto elements of the canonical, diagonal
and circular polarization bases and perform homodyne tomo-
graphy on the resulting states in mode C. A total of 2500
quadrature samples are recorded for each state. The states are
then reconstructed via a maximum-likelihood algorithm25 in the
Fock basis with the reconstruction space including states up to
three photons, with a correction for the homodyne detection
efficiency of 0.55 [Fig. 2a]. This algorithm ensures that the
reconstructed density matrices are normalized and nonnegative
definite25.

Projections onto the horizontal and vertical polarization states
yield Θþ

�� �
and Θ�j i, respectively, which resemble the squeezed

vacuum and photon-subtracted squeezed vacuum states6. Our
results show fidelities of 0.99 and 0.95 with the ideal cat states
Θþ
�� �

and Θ�j i of amplitudes γ+= 0.45 and γ−= 0.90,
respectively, where the fidelity between states ρ̂1 and ρ̂2 is defined

as F= Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂
1
2
1ρ̂2ρ̂

1
2
1

q	 
2

. A difference between γ+ and γ− is

inherent in the preparation method; theoretically, we expect γ−/
γ+=

ffiffiffi
3

p
12. Note that the Wigner function of the experimentally

reconstructed state Θ�j i exhibits negativity even without
efficiency correction.

Projecting mode A onto superpositions of Hj i and Vj i
produces analogous CV superpositions Eq. (4). In particular,
projecting onto the diagonal basis yields states that approximate
coherent states, with the Wigner functions exhibiting a
characteristic shape of a displaced Gaussian peak. Deviation of
the Wigner functions from the Gaussian shape for these
superpositions is mainly due to the different amplitudes γ+ ≠
γ− of the constituent cats, as well as experimental nonidealities.
The coherent nature of these superpositions is also evidenced by
their density matrices in the subspace spanned by the basis
Θþ
�� �

; Θ�j i� �
shown in the bottom row of Fig. 2a. The fidelity

with the theoretically expected states Eq. (4) exceeds 0.93 in all
cases.

The states displayed in Fig. 2a can be used to fully reconstruct
the component of the DV–CV state in modes A and C, projected
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Fig. 1 Conceptual scheme of the experiment. a State Eq. (3) is prepared in modes A and C. This state is equivalent to the discrete-continuous entangled state
Eq. (1) conditioned on the presence of a photon in mode A. If the photon in mode A comes from Θþ

�� �
(i.e. is vertically polarized), the state in mode C

becomes Θ�j i. If the photon comes from the horizontally polarized state αj i, the state in mode C remains Θþ
�� �

. The entanglement is verified by measuring
the polarization of the photon in the discrete mode (b) and performing homodyne tomography (c) of the state in the continuous mode. d Preparation of the
heralded photon in mode B whose polarization is used as the source state for teleportation. e Polarization Bell measurement teleports that state onto mode C.
The mirror leading to part b is removed for the teleportation experiment. The inset shows the coincidence rate for simultaneous polarization measurements in
modes B and D as a function of the polarization projection angle in mode D while a polarizer is set in mode B to project it onto either horizontal or diagonal
polarizations
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onto the subspace corresponding to a single photon in mode A
(see Methods). The density matrix of this state [Fig. 2c] has a
fidelity of 93.1 ± 2.4% with the state Eq. (1). The fidelity with the
maximally entangled state, given by Eq. (1) with α= β, equals
84.4 ± 2.2%. This evidences entanglement of this state, because
the fidelity of a separable state with a maximally entangled biqubit
state cannot exceed 1/226.

Teleportation. To produce a source photon, we first prepare a
photon pair in a polarization entangled Bell state Ψþj iBD. This is
realized by overlapping the outputs of parametric down-
conversion from two crystals, in each of which a collinear,
frequency-degenerate pair of the form HVj i is produced, on a
PBS [see Fig. 1d, ref.27 and Methods]. By measuring the polar-
ization of the photon in mode D, we prepare a heralded photon in
mode B in a certain polarization state. The performance of the
method is illustrated by the inset in Fig. 1.

Subsequently, we perform a Bell measurement on modes A
and B using the technique from the original experiment on
quantum teleportation of a photon polarization state28. Namely,
these modes are subjected to interference on a symmetric non-
PBS. If a single photon is present in each beam splitter input, the
Hong-Ou-Mandel effect29 forces the photons to emerge in the
same output spatial mode unless the input is in the Bell state
Ψ�j iAB [Fig. 1e]. Thus a coincidence detection event in both
beam splitter outputs projects its input onto that state. In this
way, we can detect one of the four Bell states. While there exists a
linear optial protocol that enables increasing this number to
two30, all four Bell states cannot be distinguished by means of
linear optics only31,32. This problem is common to all schemes
that involve teleportation of polarization states of single photons.

This method also suffers from an issue raised in Braunstein
and Kimble’s correspondence33 on ref.28. The coincidence event
can occur not only due to one photon coming from each of the
modes A and B, but also when both photons come from the
same mode. The latter events, which we refer to as “double A/B
events” result in false positive Bell state detection. In our case,
only the double B events are of concern because the photon in
mode B is heralded and α; β � 1. The probability pdB of these
events can be reduced by lowering the pumping of parametric
down-conversion in modes B and D34 to the level such that
pdB � pgood, where pgood is the probability of a true positive Bell
detection event in which the two photons come from different
modes. In the actual experiment, we have pgood/pdB= 1–3 (see
Methods). The variation of this ratio is due to the dependence
of the “good” Bell detection probability on the input state:
pgood / φj ik k2 = aβj j2þ bαj j2� �

=2, where the state φj i is given by
Eq. (5).

A teleportation event is heralded by a triple coincidence
photon detection in modes A, B (Bell detection) and one of
the photons in mode D (input photon heralding). The rate of
these events is about 0.015 Hz. Because of this extremely low rate,
we limit the input polarization states chosen for the test of the
protocol to four: Hj i, Vj i and Hj i± Vj ið Þ= ffiffiffi

2
p

. For each of these
states, 1500 homodyne measurement of the state in the output
CV mode C are collected and the state reconstruction is
implemented with compensation for the homodyne detection
efficiency of 0.55.

Figure 3a shows the results of this reconstruction. The primary
detrimental effect on the teleportation fidelity is false positive Bell
state detections due to double B events. In such an event, no
photon annihilation in mode C takes place, resulting in that mode
containing the state Θþ

�� �
. As a result, the teleportation output
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can be written as

ρ̂out ¼
pgood

pgood þ pdB
N φj i φh jð Þ þ pdB

pgood þ pdB
Θþ
�� �

Θþ

 ��; ð6Þ

where N denotes normalization. The ratio pdB/pgood reaches a
maximum value of ~1 for the input state χj i= Hj i (so a= 1 and
b= 0), in which case the fidelity of the output state approaches
53% [Fig. 3a, second column]. For input states with a significant
fraction of Vj i, the fidelity is much higher.

The simple model of Eq. (6) describes the four teleported states
with a ≥93% fidelity. We use the above model to determine the
teleportation fidelity for an arbitrary polarization qubit as input
[Fig. 3b]. We find the mean fidelity over the full Bloch sphere to
equal 80%, which is above the classical benchmark of 2/335.

Entanglement swapping. An important alternative interpretation
of our experiment is entanglement swapping36. If one considers
the Bell measurement in modes A and B without accounting for
the measurement in mode D, one obtains

Ψ�h jAB Ωj iAC Ψþj iBD
� � ¼ α Hj iD Θþ

�� �
C
�β Vj iD Θ�j iC: ð7Þ

The Bell measurement cuts off the first term in Eq. (3), thereby
heralding a freely propagating resource state Eq. (1) in modes C
and D.

A proper realization of this scheme would require a
postselection-free source of photon pairs in a Bell state. Such
sources are accessible with existing experimental methods,
capable of producing photons in the heralded37–39 fashion; on-
demand source are also emerging40,41. However, constructing a
heralded entangled pair source in our experiment would result in
a prohibitively low state production rate. A “conventional” Bell
state source with a dominating vacuum component, such as ours,
will result in a large fraction of false positive double A or double B
Bell state detection events. This will preclude the production of
state Eq. (7) with high fidelity.

However, the results in Fig. 3a can be interpreted to
characterize the entanglement swapping output state in the a

posteriori manner: conditioned on a photon detection event in
mode D. This event guarantees that a photon has been present in
mode B and thereby eliminates the double A events from the
analysis.

The four reconstructed states can be used to determine a lower
bound of the fidelity between the entanglement swapping output
and the maximally entangled state42 (see Methods). We find this
lower bound to be 0.56 ± 0.03, which is above the entanglement
threshold of 1/226.

Discussion
To sum up, we realized a method for hybrid resource generation
between a CV qubit and a qubit encoded in the polarization of a
single photon. The present realization suffers from several issues
that prevent its direct use in quantum information processing.
First, the amplitude of the cat state is below the values αj j≳ 1 that
ensure sufficient orthogonality of the component coherent states
and are thus optimal for practical applications4,5. Second, the
successful event rate is very low. Third, false positive Bell detec-
tion events degrade the teleportation fidelity and prevent pro-
duction of freely propagating hybrid entangled states.

However, these issues can be rectified using existing or emer-
ging technology. First, the use of non-postselected entangled
photon pair sources will eliminate the false-positive events. If
these sources are of on-demand nature, the issue of low count
rates is also mitigated. Finally, using input cat states that are more
sophisticated than simple squeezed vacuum allows raising the
amplitudes of these states. For example, squeezed or unsqueezed
single photons from on-demand sources will permit producing
cats of high amplitudes without significantly compromising the
count rates8,43.

As a concluding remark, the technique reported here can be
useful for the interconversion not only between polarization and
continuous-variable qubits, but also between single-rail and dual-
rail photonic qubits. This is because, in the limit of low squeezing,
the state Θþ

�� �
is close to the vacuum state while the state Θ�j i is

well-approximated by the single photon. However, the specific
scheme of our experiment may not be optimal for this application
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Fig. 3 Results of the teleportation from a polarization qubit in mode B onto a CV qubit in mode C. a Wigner functions and density matrices of the teleported
states for four input polarization states [same notation as in Fig. 2, the fidelities are calculated with respect to the theoretically expected superpositions Eq. (5)
of cat states]. Theoretical Wigner functions are calculated according to Eq. (6). b Teleportation fidelity based on the theoretical model Eq. (6) which agrees well
with the experimental results in a, calculated for the entire Bloch sphere. The white dots represent the input states of the teleportation experiment
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because the production rate of the corresponding entangled states
would tend to zero in this limit. In the future, we plan to study
possible modifications of the scheme that would result in higher
productivities.

Methods
Experimental setup. The initial 1.5-dB single-mode squeezed vacuum state in
mode C is produced by degenerate parametric down-conversion in a periodically
poled potassium titanyl phosphate crystal (PPKTP, Raicol) under type-I phase-
matching conditions. The crystal is pumped with ~20 mW frequency-doubled
radiation of the master laser (Ti:Sapphire Coherent Mira 900D, with a wavelength
of 780 nm, repetition rate of R= 76MHz and pulse width of 1.5 ps)44.

For the preparation of polarization-entangled photon pairs [Fig. 1d], a
polarization interferometer scheme is used27. A symmetric beam splitter at the
entrance of the interferometer splits the ~5-mW pump beam into two equal parts
that are directed into PPKTP crystals in each path. Parametric down conversion in
each crystal occurs in a collinear, frequency-degenerate, type-II regime and
generates a two-mode squeezed vacuum state 0j iH 0j iV + λ 1j iH 1j iV + λ2 2j iH 2j iV
+O λ3

� �
. After a polarizing beamsplitter at the end of interferometer, the

orthogonally polarized modes from the two arms become temporarily and spatially
indistinguishable in each of the two output modes B and D.

The path length difference between the two arms of the interferometer is locked.
The feedback for the lock is obtained from the interferometric signal of two pump
beams and is applied to a piezoelectric transducer in one of the arms. The resulting
polarization-entangled state is characterized by simultaneous polarization analysis
in modes B and D in linear bases. The coincidence count rate is measured with
different angles of the half-wave plate in mode D while a polarizer inserted in front
of the detector in mode B is kept constant. This rate exhibits a characteristic
sinusoidal shape with a visibility of 97% (Fig. 1, inset).

Photon detection is implemented by fiber-coupled SPCMs (Excelitas). In mode
D, two SPCMs are used to detect orthogonal polarization states, which permits
simultaneous acquisition of the quadrature data corresponding to the
teleportation of both these states. The data acquisition is triggered by a home-
made delay/coincidence circuit based on an Artix-7 35T field-programmable gate
array.

The relative phase between the two terms of the CV–DV entangled state is
determined by the phases of the input coherent and squeezed states, whose
difference must therefore be kept constant. We measure both these phases with
respect to that of the local oscillator used for homodyne detection. The phase of the
squeezed vacuum is determined from the quadrature variance acquired by the
homodyne detector in HC without conditioning on single-photon detection events.
To measure the phase of the coherent state, we prepare it with a significant vertical
polarization component. This component is then reflected into the mode VC and
measured with an auxilliary homodyne detector. The difference between the two
phases is locked to zero by means of a feedback signal applied to a piezoelectric
transducer in the path of the input coherent state. the phase of the local oscillator,
on the other hand, is varied during the experiment.

Because we keep track of the evolution of the HC mode phase in time, we also
know its phase at each moment the event of interest occurs. For each such event,
the phase and quadrature value of the HC mode are recorded. Because these events
are relatively rare, the phases in the acquired data set are randomly distributed
from 0 to 2π. This data set is fed directly to the reconstruction algorithm25; no
binning of the phases or quadratures is implemented. In this way, the criterion
of informational competeness for homodyne tomography45 is satisfied.

In order to evaluate the accuracy of reconstruction method with respect to
statistical errors, we use bootstrapping. We randomly generate simulated
quadrature data sets that correspond to the reconstructed state and apply the
maximum-likelihood algorithm to these data sets, thereby obtaining a set of
secondary density matrices that approximate the original reconstructed one. The
fidelity uncertainties quoted throughout the paper are determined from this

secondary set according to ΔF=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔF′2

 �þ F � F′h i2

q
. Here ΔF′2


 �
is the

variance of the fidelities of the secondary set with respect to the theoretically
expected state and F � F′h i is the systematic bias that the fidelity of the secondary
set exhibits with respect to the original reconstructed state46. In all cases, the

contribution of this bias to ΔF did not exceed about one-tenth of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔF′2

 �q

.
The total quantum efficiency of homodyne detection, 55%, is determined from

the analysis of the negative cat state Θ�j i generated in mode C conditioned on a
photon detection in VA. The main efficiency reduction factors are optical losses
(90% cumulative transmissivity of all optical elements, in addition to the tapping
beamsplitter which also has a 1− r= 90% transmissivity), mode matching between
the signal and local oscillator (81%) and the quantum efficiency of the homodyne
detector (86%)47,48.

Photon count rates. With mode A blocked, the polarization-entangled pairs
generated in the two type-II crystals produce count rates of RB,D ~ 4 × 103 s−1 in
each of the SPCMs in mode D and the Bell detector. The coincidence rate between
each pair of SPCMs in mode D and the Bell detector is ~20 s−1, meaning that the
single-photon detection efficiency is ηSPCM= 0.01. Such a low efficiency is

explained by the presence of narrowband (0.2 nm) filters in front of each SPCM44,
in addition to the usual linear losses. Based on these numbers, the probability of an
undesired double-B event, coincident with a click in and one of the detectors in
mode D, can be estimated as pdB= 3

2ηSPCMR
2
B=R

2 � 4 ´ 10�11.
When mode B is blocked, the count rate in each of the two SPCMs in the Bell

detector is Rα= 18 × 103 s−1 due to the coherent state and Rβ= 6 × 103 s−1 due to
the squeezed vacuum state, so Rβ/Rα= β2/α2= 1/3. The probability of a “good”
triple coincidence event of the two SPCMs in the Bell detector and one of the
detectors in mode D is therefore estimated as pgood=
ηSPCMRB b2Rα þ a2Rβ

� �
=R2 � 4–12 × 10−11. The expected total triple coincidence

event rate, R(pgood+ pdB)= 6–12 × 10−3 s−1, is consistent with the rate observed in
the experiment within a factor of one and a half.

Two-mode state reconstruction. The DV-CV state ρ̂ in modes A and C [Fig. 2b]
can be recovered from the six density matrices in mode C [Fig. 2a] that represent
the projections πh jρ̂jπi of that state onto various polarization states πj i in mode A.
To find ρ̂, we write it in a generic form

ρ̂ ¼ Hj i Hh j � ρ̂HH þ Vj i Vh j � ρ̂VV þ Hj i Vh j � ρ̂HV þ Vj i Hh j � ρ̂yHV ð8Þ

where, e.g., ρ̂HV ¼ Hh jρ̂ Vj i. The first two terms in the above expression are
obtained directly from the first two columns in Fig. 2a. The remaining two terms
are evaluated from the remaining four columns according to

ρ̂HV ¼ 1
2

Dh jρ̂ Dj i � Ah jρ̂ Aj i þ i Lh jρ̂ Lj i � i Rh jρ̂ Rj ið Þ; ð9Þ

where A;Dj i= Hj i± Vj iffiffi
2

p and R; Lj i= Hj i± i Vj iffiffi
2

p are the diagonal and circular polar-
ization states.

Entanglement criterion. In contrast to the state of modes A and C analyzed
above, the CV-DV state of modes D and C, obtained after entanglement
swapping, cannot be reconstructed because only its projections onto the cano-
nical and diagonal polarization states are known [Fig. 3a]. However, these data
can be used to estimate the lower bound of the fidelity with the maximally
entangled state ΨMEj i= 1ffiffi

2
p Hj i Θþ

�� �� Vj i Θ�j i� �
. To this end, we follow the

argument of ref.42 and write

F ¼ ΨMEh jρ̂ ΨMEj i
¼ 1

2 ρ̂HΘþ ;HΘþ
þ ρ̂VΘ� ;VΘ�

� ρ̂HΘþ ;VΘ�
� ρ̂VΘ� ;HΘþ

� � ð10Þ

where ρ̂ is the density matrix of the DV-CV state in question written in the basis
Hj i; Vj if g � Θþ

�� �
; Θ�j i� �

. The first two terms in Eq. (10) are obtained from the
first two columns in Fig. 3a taking into account the probabilities of occurrence of
the corresponding polarization states in mode D. The sum of the last two terms
can be estimated as follows:

ρ̂HΘþ ;VΘ�
þ ρ̂VΘ� ;HΘþ

¼ ρ̂DΘD ;DΘD
þ ρ̂AΘA ;AΘA

� ρ̂DΘA ;DΘA

�ρ̂AΘD ;AΘD
� ρ̂VΘþ ;HΘ�

þ ρ̂HΘ� ;VΘþ

� � ð11Þ

where ΘA;D

�� E
= 1ffiffi

2
p Θþ

�� �
± Θ�j i� �

. The first line in the right-hand side of the
above equation is obtained from the last two columns in Fig. 3a. The last line can
be bounded by

ρ̂VΘþ ;HΘ�
þ ρ̂HΘ� ;VΘþ

��� ��� � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂HΘ� ;HΘ�

ρ̂VΘþ ;VΘþ

q
: ð12Þ

Combining Eqs. (10–12) yields a bound on the fidelity F. Since the lower bound
exceeds 1/2, the state is entangled26. We note that, while fidelity has been cri-
ticized as a general criterion for state similarity49, the present fidelity-based
performance criterion26, as well as the criterion of ref.35, are universal for any
qubit or e-bit regardless of its physical nature, and therefore can be applied in
the context of the present work.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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