
GENERAL BACKGROUND OF 5-HYDROXYTRYPTAMINE AND 
RECEPTORS

5‐Hydroxytryptamine (5-HT, serotonin) is a common biogenic 
amine found in both vertebrates and invertebrates as well as 
in plants [1, 2]. The precursor to 5-HT, tryptophan, is likey 
important in the early evolution of life and perhaps the early 
presence of tryptophan is a reason for 5-HT to be potentially 
the first neurotransmitter noted with the development of a 
nervous system [2]. 5-HT acts as both a neurotransmitter and 
neurohormone and as a potent modulator of neurons and various 

tissues in many animal species [3]. Generally 5-HT actions are 
elicited by transmembrane G protein coupled receptors (GPCRs), 
which then activate or inhibit different intracellular second 
messenger cascades. 5-HT receptors from some organisms have 
been classified based on sequence or pharmacology [4, 5]; for 
example in the vertebrates, 7 families (5-HT1-7), 14 subtypes have 
been identified, whereas in Drosophila four 5-HT receptors 
named 5-HT1Adro 5-HT1Bdro 5-HT2dro 5-HT7dro [5-10] have been 
classified. 5-HT receptors appear to be present on invertebrate 
presynaptic nerve terminals and on muscle membranes; receptors 
of a cricket (Gryllus domestica) mandibular muscle have a similar 
pharmacological profile as a 5-HT2- like receptor subtype [11]. 
Profiling the 5-HT receptor subtypes directly on skeletal muscle 
within invertebrates is an area of research that is lacking. The 
5-HT4 and 5-HT7 receptors are shown to have alternate splice 
variants which increase the number of receptor subtypes and may 
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The serotonergic system in vertebrates and invertebrates has been a focus for over 50 years and will likely continue in the future. 
Recently, genomic analysis and discovery of alternative splicing and differential expression in tissues have increased the knowledge 
of serotonin (5-HT) receptor types. Comparative studies can provide useful insights to the wide variety of mechanistic actions of 
5-HT responsible for behaviors regulated or modified by 5-HT. To determine cellular responses and influences on neural systems 
as well as the efferent control of behaviors by the motor units, preparations amenable to detailed studies of synapses are beneficial 
as working models. The invertebrate neuromuscular junctions (NMJs) offer some unique advantages for such investigations; action 
of 5-HT at crustacean NMJs has been widely studied, and leech and Aplysia continue to be key organisms. However, there are few 
studies in insects likely due to the focus in modulation within the CNS and lack of evidence of substantial action of 5-HT at the 
Drosophila NMJs. There are only a few reports in gastropods and annelids as well as other invertebrates. In this review we highlight 
some of the key findings of 5-HT actions and receptor types associated at NMJs in a variety of invertebrate preparations in hopes 
that future studies will build on this knowledge base.
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alter the selectivity to pharmacological agents [12]. In addition, 
5-HT2 receptors can have different RNA-edited isoforms [13, 14]. 

With the use of the genetically modifiable model D. melano-
gaster, a number of studies have examined over-expression 
and under-expression of receptors subtypes on the effects of 
development, behavior and physiology as well as the general 
actions of 5-HT in D. melanogaster [7, 15-19]. Based on physio-
logical and pharmacological studies in crustaceans there may be a 
larger number of 5-HT receptors present than in D. melanogaster 
[20-26]. Two receptors types have been cloned and characterized 
in crustaceans [9, 27, 28] and in a pond snail [29]. A 5-HT receptor 
5-HT(apAC1) has been cloned, sequenced and characterized in 
Aplysia sensory neurons [30]. 5-HT receptors are being cloned 
in a variety of invertebrates and surely more will be forth coming 
with the rapid development in genomic sequencing abilities. There 
are a plethora of reports on the effects of 5-HT for sensory and 
central neurons as well as on behaviors in invertebrates which are 
worthy of multiple reviews. However, for this brief review we focus 
on the physiological effects of 5-HT at the skeletal neuromuscular 
junctions in some of the key model invertebrates. The invertebrate 
neuromuscular junctions (NMJs) are very diverse across species 
and within species in structure and function [31-37]. The recent 
majority of reports on structure and function of NMJs are of D. 
melanogaster due to the genetic approaches and manipulations 
being utilized [38-41].

WHY FOCUS ON NMJS?

The synaptic communication between neurons and target 
cells depends on the specialized anatomy and physiology of the 
synapses [42]. The regulation and modulation of neurotransmitter 
release is the basis of chemical synaptic transmission. For 
nervous systems to function properly, the efficacy of synapses 
are finely regulated and adjustable to respond to changing 
circumstance and requirement. Too high or too low synaptic 
input both result in inappropriate communication of target cells. 
Both pre- and postsynaptic factors can influence the synaptic 
strength. The amount of neurotransmitter released and the 
sensitivity of the postsynaptic membrane both are important 
for measuring synaptic strength. Each step in the process of 
synaptic transmission can be the target of many factors that lead to 
alteration of synaptic strength. For example, the phosphorylation 
state of SNARE proteins that are involved in vesicle docking, or the 
density of active zones where transmitter is released, can influence 
the number of quantal units released per impulse (presynaptic 
mechanism). Postsynaptically, the number of active receptors, the 
postsynaptic input resistance, the area and the ultrastructure of 

subsynaptic reticulum, all can alter the effectiveness of quantum 
release and thus influence synaptic strength. 

The ease in accessibility to the synaptic sites at NMJs allows one 
to record intracellular or very close to synapses by extracellular 
recordings (focal macropatch over a varicosity) in order to 
minimize cable properties in signal decrement [43-45]. Such 
signal loss occurs with recordings in a neuron cell body to measure 
synaptic function in the dendritic trees. The localized recording 
over a NMJ allows one the ability to measure properties of single 
and multiple vesicular quanta for very precise quantal analysis 
(occurrences, size and shape) to index synaptic function [46-49]. 
In addition, invertebrate NMJs are relatively stable for hours in a 
minimal saline at room temperature as compared to mammalian 
NMJs. Since most muscles in invertebrates are innervated 
by relatively few motor neurons, for the most part, they are 
identifiable anatomically and physiologically from preparation to 
preparation [50, 51]. Since the fine structure and detailed quantal 
analysis is feasible for many invertebrate NMJs, the acute and 
chronic actions of modulators on structure and function can be 
examined for their mechanistic actions [52-54]. 

INSECTS

Given such a diverse group of animals within the class Insecta, 
it would not be surprising to find a wide range of anatomic and 
physiologic profiles in the innervation of skeletal NMJs. For 
example, the innervation of the genital chamber of the female 
cricket, Acheta domestica, shows 5-HT-immunoreactive nerve 
terminals that contact the muscle fibers which likely releases 5-HT 
in a type of volume transmission over the muscle as there are no 
defined synapses [55]. Such 5-HT containing nerve endings are 
also present in earthworm skeletal muscles [56]. However, no 
serotonin is associated with the oviducts or the innervation to the 
oviducts in the locust [57]. Earlier studies did not elucidate if the 
effect of 5-HT was directly on the presynaptic terminal or on the 
muscle but reported overall changes in force of muscle contraction. 
In a locust leg muscle, 5-HT produces an overall decrease in force 
development [58] but the mechanism of action still needs to be 
determined. It is suggested that in some of the earlier studies with 
insects, the high concentrations of 5-HT used may indeed block 
synaptic transmission by impeding the postsynaptic receptors [36, 
58].

Despite the intense investigations in synaptic structure and 
plasticity in D. melanogaster related to genetic and mutational 
manipulations, there are few reports on the modulation of 
synaptic efficacy by peptides or modulators at the skeletal NMJ [54, 
59-64]. As for the influence of 5-HT at the NMJ, the scantiness 
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of studies is likely due to the mild effects observed by using 5-HT 
itself as well as pharmacological agonists/antagonists of 5-HT 
receptors. However, application of 5-HT to the intact larval CNS 
does enhance the drive of motor neurons (MN) [17]. The most 
commonly studied Drosophila neuromuscular junctions are 
those in the most prominent ventral longitudinal abdominal 
muscle fiber muscles 6 and 7 [65], which have the simplest 
innervation pattern among the Drosophila body wall muscles. 
Both electrophysiological and morphological studies imply that 
each of these two muscles is innervated by only 2 axons [66, 67]. 
Application of 5-HT to these NMJs appears to slightly depress 
synaptic strength [68,69]. We are not aware of any attempt to 
investigate actions of 5-HT on adult skeletal NMJs. However, 
with the recent advent of designer receptors exclusively activated 
by designer drugs (DREAD) in motor neurons allows one to 
examine mechanisms of activating second messenger cascades as 
if receptors for modulators existed on presynaptic nerve terminals 
or on the muscles themselves [70, 71].

CRUSTACEANS

The NMJs in crustaceans offer many advantages for addressing 
mechanism of action in modulation of synaptic efficacy at NMJs, 
but crustaceans do fall short in being able to genetically modify the 
properties for investigations. Potentially approaches with RNAi 
might be practical to address more species-specific manipulations 
in synaptic function in a variety of crustaceans [72-75]. The same 
physiological and anatomical advantages of the Drosophila NMJs 
apply for the crustaceans, but in addition, the wide range in known 
diversity in synapses within crustaceans makes them attractable 
for comparative studies in commonalities of mechanisms in low- 
and high-output synapses or ones that facilitate or depress rapidly 
[31, 32, 76]. The parallels to vertebrate central synaptic physiology 
of phenomenon described at crustacean NMJs are likely one 
reason of continual interest to a wide variety of researchers 
investigating synaptic transmission. In addition, the historical 
contribution of crustaceans in synaptic physiology is unsurpassed 
[77-80]. The ability to combine direct structure and function in 
defined labeled synapses offers the ability to unravel synaptic 
structural complexity with function [31, 32, 43-45, 81].

It was demonstrated as early as 1954 that 5-HT enhances 
synaptic transmission at the crustacean NMJs [82, 83] and that 
the effect was likely a presynaptic enhancement of mean quantal 
content came afterwards [84]. The 5-HT that modulates most 
crustacean skeletal NMJs does so through the exposure of 
hemolymph. 5-HT is released from nerve endings in thoracic 
roots and from the pericardial organs into the hemolymph [85]. 

Thus, 5-HT is accessible to all the exposed NMJs. The excitatory 
as well as inhibitory NMJs are enhanced in transmission by 
5-HT [86, 87]. The quantal effects are explained by increased 
probability of vesicular fusion during evoked transmission likely 
caused by an increase in the number of vesicular vesicles being 
docked and possibility their sensitivity of fusing due to enhanced 
Ca2+ sensitivity or presence of free Ca2+ within the terminals [88]. 
However, several studies have shown that a presynaptic rise in free 
Ca2+ is not substantial enough to account as a primary mechanism 
of 5-HT’s action [86, 89-91]. Since there is a steep rise in sensitivity 
to Ca2+ for enhancing synaptic efficacy at crustacean NMJs [92] a 
low release from internal stores may account well enough for part 
of the effect [20]. This notion of an internal release of Ca2+ is also 
supported by experiments conducted by Glusman and Kravitz [91] 
in which they showed that a calcium-free bath, along with EGTA 
and high MgCl2, 5-HT could still cause spontaneous release of 
transmitter for lobster NMJs. The enhanced spontaneous and 
evoked fusion events relates to an increase in ‘n’ (number of sites) 
and ‘p’ (probability of release) to explain the enhanced ‘m’ (mean 
quantal content; m=np) after exposure to 5-HT [69, 93, 94]. An 
interesting observation, but not yet explained mechanistically, 
is that 5-HT produced an effect with low or zero extracellular 
calcium at a crayfish NMJ but 5-HT’s effect depended on 
extracellular sodium concentration [89].

Low- and high-output NMJs in crayfish and crab show 
differential responses to 5-HT [95-97]. This could be due to the 
larger reserve pool of vesicles in tonic (low-output) terminals than 
the phasic (high-output) terminals and the fact that higher-output 
synapses in crustaceans have more complex synapses containing 
more active zones in close apposition on synapses than lower 
output synapses [45, 98-100].

NMJs investigated in lobster and crab revealed similar findings 
to those of the crayfish. 5-HT also enhances both excitatory and 
inhibitor NMJs that have been examined in Homarus ameri-
canus (lobster) [101, 102]. 5-HT also promotes the force of nerve-
evoked contractions of the gastric mill muscle of the crab, Cancer 
borealis [103]. 

The differential responses and cellular mechanism of 5-HT’s 
action at crustacean NMJs is likely accounted for by the density 
and receptor subtypes on the presynaptic terminals. Vertebrate 
5-HT2-like receptors were physiologically identified for Procam-
barus clarkii at NMJs [21-24, 69]. Since this subtype of receptor 
has been sequenced in a crab and crayfish [28] these may be 
the subtypes present at the NMJs; however the blockers for the 
vertebrate 5-HT2-like receptors could not block the entire 5-HT 
enhancement of synaptic enhancement [24]. Also 5-HT2 agonists 
did not mimic the responses fully at the crayfish NMJ [24], so 
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potential affinity in binding 5-HT and pharmacological agents 
differ in crustaceans to vertebrate subtype receptor analogs. The 
pharmacology of monoamines in the cardiac ganglion of lobsters 
also does not mimic vertebrate classifications [104]. Care needs 
to be taken in assuming the pharmacology of mammalian 5-HT 
receptors applies to invertebrates [22].

Given there is at least some pharmacological and sequence 
similarity to vertebrate 5-HT2 receptor subtype present in cray-
fish and that injection of an IP3 analog (adenophostin-A) in 
the presynaptic motor nerve terminals enhances release [20], a 
potential mechanism is that 5-HT receptors on the presynaptic 
membrane mediate activation of G coupled receptors which leads 
to activation of phospholipase C (PLC) which in turn produces 
1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) [105]. The 
production of IP3 can directly result in Ca2+ release from internal 
stores (i.e., ER) through IP3 receptors on the ER [106].

Since vertebrate 5-HT2 receptor family activates phospholipase 
C (PLC) [9] a similar receptor activated cascade is possible at 
the crayfish NMJs, Such mechanisms are established in other 
systems [105, 107, 108] and given that caffeine and ryanodine 
actions are in concurrence with IP3 receptors potentially on the 
ER in crayfish presynaptic motor nerve terminals [20] we have 
to consider this mechanism as a likely possibility. The rise is Ca2+, 
even a slight rise, could activate calmodulin and in turn activate 
CaM-Kinase (CaM-K), which can lead to phosphorylation of 
proteins such as synapsin. The possibility is that vesicles would 
then be able to leave the tethers to the cytoskeleton and dock to 
the presynaptic membrane, which is also a phosphorylation step 
[109-111]. The increased docked vesicles could be subjected to the 
calcium influx and release from internal stores [112]. This would 
account for the increase in the occurrence of spontaneous quantal 
events and enhanced evoked responses with 5-HT exposure. In 
the invertebrate Aplysia, it was shown that exposure of neurons 
to 5-HT results in phosphorylation of synapsins [113]. cAMP 
was also suggested to be involved in 5-HT action [30, 114-116). 
cAMP has been shown to activate Protein Kinase A (PKA) which 
then can lead to phosphorylation of transcriptional factors such 
as CREB. Such action can regulate synthesis of proteins used 
in synaptic transmission [117-119]. It has also been suggested 
that the cAMP and calmodulin pathways may work together 
and promote transcription [120]. When phosphatases are 
inhibited at the crayfish NMJ the effect of 5-HT is enhanced, thus 
demonstrating the significance of phosphorylation [121] which is 
known to occur with exposure to 5-HT at crustacean NMJs [122].

In a recent study addressing the potential mechanisms of 5-HT, 
as well as stimulation of the motor nerve terminal, in recruiting 
vesicles from a reserve pool (RP) to a readily releasable pool (RRP) 

within the presynaptic nerve terminals of crayfish NMJs, we 
developed a model to account for the observations and previous 
reports. In a current study, we inhibited the packaging of glutamate 
by blocking the vesicular glutamate transporter (VGlut) with 
the drug bafilomycin A1 (BA) [123-125]. In this way, the rapidly 
recycling vesicles within the RRP will be empty with repetitive 
stimulation. However, if the RP is spared from being recruited by 
low frequency stimulation and if they are already packaged with 
transmitter, prior to exposure to BA, then 5-HT should be able 
to recruit these RP vesicles to the RRP and synaptic transmission 
restored temporarily. This is exactly what was observed indicating 
that the RP and RRP can be physiologically differentiated into 
distinct functional groups and that 5-HT recruits the RP into 
action [126, 127]. To deplete or use up the packaged RRP vesicles, 
continuous stimulation was provided since the opener NMJ 
preparation is low-output and fatigue resistant. A high frequency 
of 40 Hz was used for comparative purposes to 20 Hz continuous 
stimulation. As expected, preparations stimulated at 40 Hz 
depressed faster than the ones stimulated at 20 Hz and there was a 
reduced effect for the 40 Hz stimulated preparations to exposure 
of 5-HT. This suggests that a higher stimulation frequency is 
able to recruit some of the RP to the RRP. This is illustrated in a 
model (Fig. 1). To address if PLC is an intermediate step within 
the cascade of events activated by 5-HT mediated responses, we 
used a PLC inhibitor (U73122) and an inactive analog (U73343) 
to serve as a negative control [128]. We found that the treatment 
of U73122 caused a significant decrease of 5-HT effect on 
synaptic transmission. This result confirmed the involvement of 
PLC signaling cascade in inducing the enhancement of synaptic 
transmission by 5-HT at a different physiological condition. 
There are observations in other preparations that indicate the 
presence of two distinct vesicle pools: RRP and RP. In the cat 
superior sympathetic ganglion, Prado et al. [129] separated the 
two pools by electrically stimulating the nerve to deplete the RRP 
of acetylcholine, and then recruit RP vesicles by tityustoxin. Using 
FM 1-43 dye, the two pools have been identified in a temperature-
sensitive mutant Drosophila line, shibire, and later in WT [130, 
131]. However in our study with the crayfish NMJ, a novel appro-
ach with bafilomycin A1 was used together with continuous 
stimulation to deplete the RRP, and then 5-HT was applied to 
recruit RP vesicles and the recruitment involves a PLC signaling 
cascade. A mechanistic illustration is detailed in Fig. 1.

There does not appear to be a substantial direct effect on 
crustacean skeletal muscle to account for an increase in EPSP 
or IPSP amplitude due to an increase in input resistance of the 
fibers [82, 114, 132, 133]. A small increase in input resistance, 
by exposure to 5-HT, accounts for a slight increase in the EPSP 
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amplitude for superficial flexor muscle fibers of crayfish [94]. More 
substantial alteration in input resistance can occur in crustacean 
neurons due to 5-HT exposure [134] so there could be some effect 
on the presynaptic motor nerve terminals. 

In comparison to the smooth muscle in the intestine of 
vertebrates, the muscles of the crayfish hindgut are striated with 
gap junctions and generate intrinsic pacemaker activity [135, 
136]. Application of 5-HT [137] and octopamine [138] to GI tract 
increases the frequency and strength of contractions. 5-HT and 
dopamine are highly concentrated in CNS and GI tract and they 
are directly responsible for the peristalsis and muscle contraction 
[137, 139]. 

ANNELIDS

The leech has served as a model organism in neurobiology for 
many years [140] but few studies have directly focused attention 
at NMJs in the leech and even fewer on the effects of 5-HT in 
synaptic transmission at NMJs. However, studies have examined 
the effect of 5-HT on the drive of motor neurons and innervation 
patterns [141-147]. 5-HT exposure has a relaxing effect on 
skeletal muscle in the leech [148] and enhances muscle force and 
work production during locomotion and feeding [149]. This is 
physiological relevant since Retzius neurons do directly innervate 
skeletal muscle in the leech and these cells do release 5-HT 
[144, 150-152]. In the earthworm and polychaete (Sabellastarte 
magnifica) muscle contraction is reduced by 5-HT [153, 154] 
which lead to the idea that 5-HT might be acting as inhibitory 
transmitter in these preparations [155]. 

GASTROPODS

A few studies with gastropods have been approached for the 
direct effect of 5-HT at the NMJ. 5-HT produces facilitation for 
an evoked response in buccal muscle within Aplysia [156]. The 
presynaptic actions of 5-HT is to enhance transmitter release [157]. 
Like for some of the actions in annelids, 5-HT can also produce 
muscle relaxation and reduce force in Aplysia [158]. Such effects 
on muscle contraction and force maybe dependent on 5-HT 
concentration and the species studied, since in Aplysia brasiliana 
5-HT increases a Ca2+ influx that promotes muscle contraction 
used for swimming [159].

OTHER INVERTEBRATES

In a sea urchin (Parechinus), 5-HT apparently had no effect 
at the NMJ [160]. However in a sea cucumber (Apostichopus 

Fig. 1. Schematic illustration of 5-HT in recruiting vesicles from a 
reserve pool. (A) Two vesicle recycling pathways have been proposed. In 
a resting synapse, vesicles in RP slowly join in to the RRP (1), and then 
recycle back to RP either through or bypass endosome (2). This is called 
slow recycling loop. However, in an active synapse, in addition to the slow 
recycling loop, vesicles in RRP recycle quickly within the RRP (3) which is 
named quick recycling loop. Recycling vesicles are refilled with glutamate 
to be able to participate in the coming synaptic activities. (B) In an active 
synapse treated with Bafilomycin A1, vesicles in RRP can be used up in 
time with stimulation because recycling vesicles can no longer be refilled. 
Synaptic depression occurs sooner than the one without Bafilomycin A1 
treatment. (C) If 5-HT is added after depression, 5-HT possibly activates 
PLC signaling cascade and recruits RP vesicles to revitalize the synaptic 
transmission in a fast manner. (D) In time, synaptic depression occurs 
again because most RRP and RP vesicles are empty. Yellow colored 
vesicles represent partially full of glutamate. (E) Even when RRP vesicles 
are not depleted by Bafilomycin A1, 5-HT can also recruit RP vesicles 
into RRP via one possible mechanism (PLC). (F) It is also possible that 
5-HT can activate silence synapse most likely in low-output terminals. (G) 
The PLC activation of 5-HT effect is confirmed with PLC non-selective 
inhibitor. RP, reserved pool; RRP, readily releasable pool; SY, synapse; 
GluT, glutamate transporter; BA, Bafilomycin A1. 
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japonicas), 5-HT inhibited evoked contractions induced by 
acetylcholine and there appears to be 5-HT innervation directly to 
muscles of the body wall [161].

SUMMARY

Although headway has been made in describing the various 
actions of 5-HT at NMJs in invertebrates, the cellular mechanisms 
of these actions are still lacking. Additional pharmacological and 
molecular profiling in a variety of invertebrate preparations will 
increase our knowledge of both the uniqueness and similarities 
among the invertebrates. As history has taught us in physiology, 
and in particular neurobiology, what is learned in invertebrate 
preparations paves the way to new views and mechanistic cellular 
understanding of complex processes within the vertebrates. 
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