
REVIEW
published: 07 November 2019

doi: 10.3389/fnmol.2019.00267

Edited by:

Arianna Maffei,
Stony Brook University, United States

Reviewed by:
Christian Hansel,

University of Chicago, United States
Marylka Yoe Uusisaari,

Okinawa Institute of Science and
Technology Graduate University,

Japan

*Correspondence:
Francesca Prestori

francesca.prestori@unipv.it
Egidio D’Angelo
dangelo@unipv.it

Received: 16 August 2019
Accepted: 17 October 2019

Published: 07 November 2019

Citation:
Prestori F, Mapelli L and D’Angelo E

(2019) Diverse Neuron Properties and
Complex Network Dynamics in the
Cerebellar Cortical Inhibitory Circuit.

Front. Mol. Neurosci. 12:267.
doi: 10.3389/fnmol.2019.00267

Diverse Neuron Properties and
Complex Network Dynamics in the
Cerebellar Cortical Inhibitory Circuit
Francesca Prestori1*, Lisa Mapelli1 and Egidio D’Angelo1,2*

1Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy, 2IRCCS Mondino Foundation, Pavia, Italy

Neuronal inhibition can be defined as a spatiotemporal restriction or suppression of local
microcircuit activity. The importance of inhibition relies in its fundamental role in shaping
signal processing in single neurons and neuronal circuits. In this context, the activity of
inhibitory interneurons proved the key to endow networks with complex computational
and dynamic properties. In the last 50 years, the prevailing view on the functional role
of cerebellar cortical inhibitory circuits was that excitatory and inhibitory inputs sum
spatially and temporally in order to determine the motor output through Purkinje cells
(PCs). Consequently, cerebellar inhibition has traditionally been conceived in terms of
restricting or blocking excitation. This assumption has been challenged, in particular
in the cerebellar cortex where all neurons except granule cells (and unipolar brush
cells in specific lobules) are inhibitory and fire spontaneously at high rates. Recently, a
combination of electrophysiological recordings in vitro and in vivo, imaging, optogenetics
and computational modeling, has revealed that inhibitory interneurons play a much more
complex role in regulating cerebellar microcircuit functions: inhibition shapes neuronal
response dynamics in the whole circuit and eventually regulate the PC output. This review
elaborates current knowledge on cerebellar inhibitory interneurons [Golgi cells, Lugaro
cells (LCs), basket cells (BCs) and stellate cells (SCs)], starting from their ontogenesis and
moving up to their morphological, physiological and plastic properties, and integrates this
knowledge with that on the more renown granule cells and PCs. We will focus on the
circuit loops in which these interneurons are involved and on the way they generate feed-
forward, feedback and lateral inhibition along with complex spatio-temporal response
dynamics. In this perspective, inhibitory interneurons emerge as the real controllers of
cerebellar functioning.

Keywords: cerebellar cortex, inhibitory interneurons, dynamic properties, cellular neurophysiology,
synaptic inhibition

CEREBELLAR INTERNEURONS CLASSIFICATION

Circuit Microanatomy
The cerebellar cortex consists of three layers, namely the molecular layer (ML), the Purkinje
cell layer (PCL) and the granular layer (GL; Figure 1). The primary input systems enter
the cerebellum via mossy fibers (MFs) and climbing fibers (CFs). Both are excitatory and
use glutamate as neurotransmitter. The MF input originates from several nuclei in the
brain stem and spinal cord. In the GL, MFs make excitatory synapses onto granule cells,
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whose axons rise vertically to the ML, where they divide to
form T-shaped branches called parallel fibers (PFs; Pijpers et al.,
2006; Oberdick and Sillitoe, 2011). Each PF makes excitatory
contacts with hundreds of Purkinje cells (PCs) that, in turn, make
inhibitory synapses onto deep cerebellar nuclei (DCN) neurons.
At the same time, DCN sends excitatory and inhibitory fibers
to the cerebellar cortex generating a positive internal feedback
(Ankri et al., 2015; Gao et al., 2016). The PCs provide the
only output of the cerebellar cortex. Since PCs are GABAergic,
the control exerted on DCN neurons is inhibitory. In addition,
DCN neurons receive excitatory synaptic contacts from mossy
and CFs collaterals. The CF input originates from the inferior
olive (IO). Each PC receives a strong excitatory input via a
single CF (Ito, 2013; Ito et al., 2014). The inhibitory control
exerted by PCs on DCN neurons can be powerfully modulated
by local inhibitory circuits formed by basket and stellate cells
(SCs). These latter receive excitatory synapses from PFs and
inhibitory synapses from PC axon collaterals (Crook et al.,

2007; Witter et al., 2016). Basket cells (BCs) are found in the
deep ML and provide a powerful inhibitory input to PC bodies
and axonal initial segments. SCs are located in the upper ML
and make synaptic contacts on PC dendrites, determining a
weaker inhibitory influence since they contact the PCs more
distally compared to BCs. In the GL, there are two types of
interneurons, characterized by a mixed glycinergic/GABAergic
phenotype, which do not directly regulate the efferent activity
of PCs: Lugaro cells (LCs) and Golgi cells. The LCs are located
just beneath the PCL and are the primary target of serotonin
released from extracerebellar fibers (Lainé and Axelrad, 1998).
Their axons contact basket and SC soma and dendrites in the
ML and, through collaterals, form a major input to Golgi cells
(Dieudonné and Dumoulin, 2000). In addition, LC soma and
dendrites appear to be densely innervated by PC axon collaterals
(Lainé and Axelrad, 2002; Crook et al., 2007; Witter et al., 2016).
Golgi cell bodies lay in the GL. They receive a double excitatory
input: on the basal dendrites from MFs and ascending granule

FIGURE 1 | Schematic view of the cerebellar circuit. All cells in the cerebellar cortex are inhibitory except granule cells and unipolar brush cells (not shown). The
cerebellar cortex receives two excitatory inputs from mossy fibers (MF) originating in various brain stem and spinal cord nuclei and from climbing fibers (CF)
originating from the inferior olive (IO). Mossy fibers contact the granular layer [GL; containing granule cells (GrC), Golgi cells (GoC) and Lugaro cells (LC)] and the deep
cerebellar nuclei (DCN). Climbing fibers contact Purkinje cells (PC) and DCN. The ascending axon (aa) of the GrC bifurcates in the molecular layer (ML) forming the
parallel fibers (PF), which synapse onto PCs and ML interneurons [stellate cells (SCs) and BCs]. The only output of the cortex is provided by PCs, which project to
the DCN. The activity of PCs is under inhibitory control by SC and BC. SC and BC mutually inhibit each other and are coupled through gap junctions. Modified from
D’Angelo et al. (2016).
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cell axons, and on the apical dendrites from PFs (Chan-Palay
et al., 1977; Dieudonné, 1998; Vos et al., 1999). Recently, several
lines of evidence for functional gap junctions and chemical
synapses among Golgi cells were provided (Dugué et al., 2009;
Vervaeke et al., 2010; Hull and Regehr, 2012; Eyre and Nusser,
2016; Szoboszlay et al., 2016). Golgi cell axon occupies the
GL and inhibits, in turn, granule cell dendrites (Hámori and
Szentágothai, 1966). Lastly, the candelabrum cells, first described
in 1994 by Lainé and Axelrad (1994) in the rat, are located within
the PCL. They have one or two thick dendrites, dividing into few
branches, which run almost vertically into the ML, and several
short dendrites which spread for a short distance into the granule
cell layer. The connectivity and the function of candelabrum cells
have not been investigated yet, though their dendritic structure
suggests that PFs and CFs might provide afferent inputs. Current
evidences indicate that these cells use GABA and glycine
as transmitters (Flace et al., 2004; Tanaka and Ezure, 2004;
Crook et al., 2006).

Embryological Origin and Development
All cerebellar neurons arise from two primary germinal epithelia:
the ventricular zone (VZ) gives origin to GABAergic neurons,
whereas the rhombic lip (RL) generates glutamatergic types
(Altman and Bayer, 1997; Figure 2). GABAergic DCN neurons
are produced first, followed by PCs. Within the VZ, these
projection neurons proliferate and acquire specific mature

FIGURE 2 | Developmental origin of cerebellar GABAergic neurons.
Ptf1-a-positive progenitors in the ventricular zone (VZ) generate the entire
repertory of GABAergic projection neurons and interneurons through different
neurogenic strategies. While projection neurons proliferate and become
specified within the VZ, cortical interneurons derive from precursors that
originate in the VZ but continue their neurogenic activity in the pWM or dWM,
where they acquire mature identities under the influence of specific
extracellular cues. Afterward, the interneurons move to their final destination
through the folial white matter (fWM). pWM, prospective white matter; dWM,
deep white matter; fWM, folial white matter; DCN, deep cerebellar nuclei; PC,
Purkinje cell; BC, basket cell; SC, stellate cell; LC, Lugaro cell; GoC, Golgi
cell. Modified from Leto et al. (2012).

phenotypes through cell-autonomous programs (Florio et al.,
2012). By contrast, cortical interneurons, including basket,
stellate, Golgi and LCs, derive from precursors that continue
their neurogenic activity in a secondary germinative zone i.e., the
prospective white matter (pWM) or the deep white matter
(dWM), where they differentiate in mature identities under
the influence of specific extracellular signals (Leto et al., 2006,
2009, 2012; Leto and Rossi, 2012). In regard to gene expression,
the basic helix-loop-helix (bHLH) transcription factor Ptf1a is
crucial for the initial specification of the GABAergic lineage,
ensuring the appropriate cell number production and their
subsequent survival (Hoshino et al., 2005; Hoshino, 2006;
Pascual et al., 2007; Dennis et al., 2019). Recent studies have
shown that, in Ptf1a KO mice, GABAergic interneurons adopt
a glutamatergic fate, characteristic of external granular layer
(EGL) cell precursors (Glasgow et al., 2005; Pascual et al., 2007;
Hori et al., 2008), indicating that Ptf1a is also necessary for
the suppression of the granule cell phenotype in VZ-derived
progenitors. While it is clear that Ptf1a expression directly
specifies GABAergic or glutamatergic neural fate, it has not
yet been understood whether all GABAergic types are actually
generated from a single pool of VZ progenitors. Several reports
have established that the VZ includes different microdomains,
characterized by specific gene expression profiles, which are
believed to be the origin of different populations of GABAergic
neurons (Chizhikov et al., 2006; Sillitoe and Joyner, 2007; Zordan
et al., 2008; Lundell et al., 2009; Sudarov et al., 2011). Among
the VZ microdomains, some are known to give rise to different
classes of PCs, while others are associated with the generation
of interneurons (Zordan et al., 2008; Lundell et al., 2009). To
date, the only cerebellar GABAergic interneuron-specific marker
is Pax-2 (Maricich and Herrup, 1999; Weisheit et al., 2006). The
first Pax-2-positive cells appear at E12.5, continue to proliferate
up to the birth and then originate major types of GABAergic
interneurons through a precise inside-out sequence (Zhang and
Goldman, 1996a,b; Altman and Bayer, 1997; Schilling, 2000;
Leto et al., 2006): first in the GL (Golgi and LCs), then in the
ML (basket and SCs). In the mouse, the generation of 75%
of all the interneurons occurs prior to P7 while, in the rat
cerebellum, it is completed within the second postnatal week
(Weisheit et al., 2006; Leto et al., 2008). The mechanism by
which Pax-2 regulates the GABAergic fate of cerebellar neurons
is not completely clarified. Ptf1a-positive progenitors promote
distinct genetic cascades to express other proneural genes
(Zordan et al., 2008; Consalez and Hawkes, 2012; Dastjerdi et al.,
2012) which are suitable candidates to operate as determinants
of GABAergic identity. Indeed, VZ cells are characterized by
the expression of neurogenin-1 (Ngn-1), neurogenin-2 (Ngn-2),
and Ascl-1 genes (Zordan et al., 2008). Precursors expressing
Ngn-1 give rise to PCs (Kim et al., 2008; Lundell et al., 2009;
Leto and Rossi, 2012) while only a defined subset of PCs
and GABAergic DCN neurons derive from Ngn-2-positive
progenitors (Florio et al., 2012). Finally, all GABAergic
interneurons of cerebellar cortex derive from Ascl-1 precursors
(Kim et al., 2008; Grimaldi et al., 2009; Sudarov et al., 2011).
During development, a four-layered organization is evident
in the cerebellar cortex: the EGL, the ML, the PCL and

Frontiers in Molecular Neuroscience | www.frontiersin.org 3 November 2019 | Volume 12 | Article 267

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Prestori et al. Inhibitory Dynamics in Cerebellar Cortex

the internal granular layer (IGL; Sillitoe and Joyner, 2007).
By the third postnatal week, the EGL completely disappears
and the IGL becomes the GL (Zhang and Goldman, 1996a;
Maricich and Herrup, 1999). From VZ, Golgi cells progenitors
migrate to reach the dWM while continuing to undergo cell
division. Afterward, through the folial white matter (fWM),
they move to their final destination within the IGL until
around P4 (Zhang and Goldman, 1996a; Maricich and Herrup,
1999; Weisheit et al., 2006; Galas et al., 2017). Additionally, a
specific population of Golgi cells, indentified as Zac1-positive,
are derived from EGL overlying posterior lobules IX and X.
Compared to Golgi cells migrating from VZ, they show a
different birthdate time window. LCs derive from progenitors
in the dWM, and move through the fWM to reach their final
location at the top of the IGL (Galas et al., 2017). At this time,
there are contradictory results concerning birthdate time and
differentiation of LCs. In rats, mature LCs were suggested to
appear towards the end of the second postnatal week (Altman,
1972; Altman and Bayer, 1997) but Lainé et al. (1992) have
shown that LCs differentiate at a much earlier age (around
P5) suggesting a postnatal migration to the IGL. Basket and
SCs migrate from VZ to pWM and postnatally through the
fWM while continuing to divide until the second postnatal
week (Zhang and Goldman, 1996a; Carletti and Rossi, 2008;
Cameron et al., 2009; Galas et al., 2017; Wefers et al., 2018).
Subsequently, they move radially to accumulate at the inner
border of EGL and then tangentially to reach their final location
within the ML.

Localization and Distribution of
Neurochemical Markers
Since the 1980s, with the advent of immunohistochemical
strategies for identifying cell types, researcher had begun
correlating cell-specific neurochemical marker expression
(typically Ca2+-binding proteins, neuropeptides and certain
receptors) with morphological and electrophysiological
characterization in order to distinguish several subtypes of
GABAergic interneurons (Kubota et al., 1993, 2011; Kubota
and Kawaguchi, 1994, 1997; Cauli et al., 2014). Recent advances
suggest that neurons expressing an unidentified cytoplasmic
antigen Rat-303 (Hockfield, 1987; Hockberger et al., 1994;
Geurts et al., 2001), the metabotropic glutamate and serotonin
receptors (Neki et al., 1996; Geurts et al., 2001, 2002; Simat
et al., 2007; Sillitoe et al., 2008), the neuropeptide somatostatin
(SOM; Johansson et al., 1984; Geurts et al., 2001; Galas
et al., 2017) and Ca2+-binding proteins such as parvalbumin
and calretinin, respectively (PRV and CRT; Schneeberger
et al., 1985; Rogers, 1989; Geurts et al., 2001; Schwaller
et al., 2002; Bastianelli, 2003; Pibiri et al., 2017), account for
nearly 100% of cerebellar GABAergic interneurons. Rat-303
antibody selectively stains Golgi cells and LCs (Hockfield,
1987; Rogers, 1989; Dieudonné and Dumoulin, 2000; Geurts
et al., 2001, 2002). Large Rat-303-positive cells displaying
also mGluR2, 5-HT2A/5HT5A, SOM and neurogranin
immunostaining were identified as Golgi cells based on
their location and morphology (typically spherical soma
with fan-shaped dendritic arborization located in the depth

of the GL). Conversely, large cells, located just underneath
the PCL and characterized by a fusiform soma, displayed
both Rat-303 and CRT-immunoreactivity. These latter were
identified as LCs. However, Rat-303 staining in LC was less
pronounced that in Golgi cells (Geurts et al., 2001). Moreover,
LCs have been shown to be immunopositive for mGluR1α
and mGluR5 in rat (Baude et al., 1993; Hámori et al., 1996;
Négyessy et al., 1997; Víg et al., 2003), respectively. Besides
LCs, mGluR1α immunoreactivity has been described also for
Golgi cells and ML interneurons (Baude et al., 1993; Gorcs
et al., 1993; Hámori et al., 1996) while CRT antibody, especially
in rat and macaque, could stain Golgi cells, although in
much lower numbers (Diño et al., 1999; Geurts et al., 2001).
Finally, PRV was found in two subpopulations of GABAergic
interneurons within the ML, SCs and BCs (Celio, 1990; Kosaka
et al., 1993; Geurts et al., 2002). PRV immunolabeling of BCs
revealed the staining of ‘‘pinceau’’ formation, i.e., ramified
axons of BCs embracing the axon initial segment (AIS) of
PCs. Double immunohistochemistry for PRV and 5HT5A
showed 5HT5A immunoreactivity in PRV-positive SCs and
BCs (Geurts et al., 2002). Developing of new Cre-driver mouse
lines, together with viral vector tools, could provide a very
useful support to unravel the complexity of GABAergic
interneurons, concurrently contributing to promoting
considerable advances in the entire field (Taniguchi et al., 2011;
Madisen et al., 2012).

Morphology and Intrinsic Properties
Given the heterogeneity of GABAergic interneurons, it is crucial
to convey the diversity into functional specificity (Gupta et al.,
2000; Ascoli et al., 2008; DeFelipe et al., 2013; Kepecs and Fishell,
2014; Zeng and Sanes, 2017). In order to better describe the
diverse population of interneurons, several parameters defining
axonal and dendritic geometry and intrinsic properties have been
used in classification studies. Therefore, the morphological and
electrophysiological characterization of GABAergic interneurons
reviewed here, together with their synaptic connections, is an
important step towards understanding information processing in
the cerebellum.

Golgi Cells
Golgi cells were first characterized through the pioneering
histological studies of Camillo Golgi (Golgi, 1874; Galliano
et al., 2010; see Box 1). Golgi cells are the large and
primary interneurons located throughout the GL. The majority
of them use both GABA and glycine as neurotransmitters
(80%) but some use specifically GABA (20%) or glycine (5%;
Ottersen et al., 1988; Voogd and Glickstein, 1998; Simat et al.,
2007). Immunostainings for different neurochemical markers
have underlined the heterogeneity of Golgi cells. Surprisingly,
neurogranin labeled GABAergic Golgi cells selectively, whereas
mGluR2 was expressed in all Golgi cells with a double
neurotransmitter profile (Simat et al., 2007). Golgi cells are
characterized by round or polygonal soma emitting from 4 to
10 dendrites (Palay and Chan-Palay, 1974). Golgi cell dendrites
can be divided into two classes: basal and apical dendrites.
Typically, basal dendrites remain into the GL where they ramify
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BOX 1 | How the Concept of Cerebellar Inhibition Evolved.

The cerebellum has always been considered as a distinct subdivision of the brain. Aristotle in the 4th century BC wrote: “Behind, right at the back, comes what is
termed the cerebellum, differing in form from the brain as we may both feel and see” (Thompson, 1908). Over the years, there was an increasingly accurate description
of its structural entity and major subdivisions. By the beginning of the 19th century, the classic anatomical studies were completed and experimental investigation
of the cerebellar function began. Three researchers, Rolando (1773–1831), Flourens (1794–1867) and Luciani (1840–1919) helped shaping our understanding of the
cerebellum through animal studies. Rolando first demonstrated that, following cerebellar injuries, disturbances of voluntary movements occurred (Rolando, 1809).
Flourens observed that cerebellar ablation altered the “harmony of coordinated movements” (Flourens, 1824). Luciani described the three classical symptoms (atonia,
asthenia and astasia) of cerebellar diseases (Luciani, 1907). The first description of the functional organization of the cerebellar cortex was proposed in 1906 by the
Dutch anatomist Lodewijk Bolk, who divided the cerebellum into four main regions: the anterior lobe, the posterior vermis, and the paired cerebellar hemispheres. He
was the first to conceive a functional localization for the coordinating action of the cerebellum in the motor system (Bolk, 1906; Voogd and Koehler, 2018). It was in the
later parts of the 20th century that neuronal mechanisms of cerebellar functions were extensively investigated, employing the vestibulo-ocular reflex (VOR) adaptation,
eye-blink conditioning and learning in arm movements as experimental paradigms (Ito, 2002), in association with a careful electrophysiological characterization of
neurons. The main concepts emerged that the cerebellar cortex was dominated by inhibitory neurons, whose function was regulated by long-term synaptic plasticity.
The enormous successes reported by these researchers has determined a significant shift in our knowledge of cerebellar cortex circuitry, leading to characterize all
inhibitory interneurons and their functional connections and plasticities (for comprehensive reviews, see Hansel et al., 2001; D’Angelo, 2014; Mapelli et al., 2015;
D’Angelo et al., 2016; Gao et al., 2016).

It is impossible to discuss the history of cerebellar interneurons research without referring to Camillo Golgi (Figure 3) and Santiago Ramon y Cajal. In 1873, Golgi
(1843–1926) described two distinct categories of neurons in the granular layer (GL), which were named Golgi Type I and Golgi Type II (Golgi, 1873). It is probable that
the first type was the Lugaro Cell [LC; this name derives from the first detailed description of these cells by Lugaro (1894)], whereas, type II corresponded to a neuronal
population that later was called by Cajal (1894) the Golgi cells. Still today, the main feature to identify the Golgi cell is the broad extension of its considerable axonal
plexus (Dieudonné, 1998; Forti et al., 2006), so well illustrated by Golgi himself. Moreover, he tried to identify a role for these cells: since Golgi cell axonal plexus do not
extend beyond the cerebellar cortex, Golgi speculated that they were connectional elements in the network (Golgi, 1873). During the first 60 years of the 20th century,
no additional findings were added to clarify Golgi cell physiological function. An important advancement occurred in the 1964 when Eccles (1903–1997) discovered
that Golgi cells operate a double feedforward and feedback inhibition of the granule cells (Eccles et al., 1964; Eccles, 1967), contributing to provide the first evidence
of a central inhibitory neuron. This result led to the definition of two theories: John Eccles elaborated the Beam Theory (Eccles, 1967, 1973) and Marr (1945–1980) the
Motor Learning Theory (Marr, 1969; Albus, 1971). Eccles proposed that Golgi cells, causing a strong inhibition in granule cells, would improve the spatial discrimination
of the inputs reaching the cerebellar cortex. Instead, Marr predicted that Golgi cells would be capable to regulate GL excitability and, thus, the amount of information
that can be elaborated, transmitted and learned (Marr, 1969). Although both theories were quite appealing and appeared to provide an exhaustive explanation for
the whole cerebellum and Golgi cells functions, electrophysiological recordings in vitro and in vivo, in the 1990s redefined the connectivity of these neurons and their
histochemical and functional properties (see below and for review D’Angelo, 2016, 2018). Cajal (1854–1934), by applying Golgi staining to the cerebellum, confirmed
the cell types that Golgi had identified and added a detailed morphological characterization of all the elements of the cerebellar cortex, including stellate cells (SCs)
and basket cells (BCs) as we know them today (Cajal, 1888). His great contribution was not properly exploited until the 1960s when Rodolfo Llinas characterized and
defined the excitatory and inhibitory nature of all synaptic interactions within the cerebellar cortex (Eccles et al., 1966a). He demonstrated that all connectivities in the
cerebellar cortex were inhibitory with the exception of the mossy fiber (MF)-granule cell-parallel fiber (PF) system and climbing fiber (CF) input (Eccles et al., 1966b)
Moreover, Llinas’s experiments showed that the stimulation of PFs excited molecular layer (ML) interneurons and evoked in Purkinje cells (PCs) an early excitatory
postsynaptic potential (EPSP) followed by disynaptic and prolonged inhibitory postsynaptic potentials (IPSPs) that were strongly dendritic as well as somatic (Eccles,
1967). These results were against the prevailing dogma that the soma is considered to be the only location for inhibition. Thus, dendritic inhibition started to represent
a different view of neuronal integration. It can therefore be safely concluded that the study of cerebellar inhibitory mechanisms as contributed not just to understand
the functional mechanisms of the cerebellum but also inhibition in brain circuits as a whole.

several times acquiring a characteristic curvy appearance. They
receive excitatory inputs from MFs and ascending granule
cell axons (Cesana et al., 2013). The initial statement that CF
collaterals make synaptic contacts on Golgi cell basal dendrites

(Hámori and Szentágothai, 1966, 1980; Sugihara et al., 1999;
Shinoda et al., 2000) has not been confirmed (Galliano et al.,
2013). Although some electrophysiological studies showed that
stimulation of CFs caused depression of Golgi cell firing,

FIGURE 3 | Camillo Golgi and the cerebellar cortex. (A) Camillo Golgi in his laboratory at the University of Pavia. (B) Illustration by Camillo Golgi of a Golgi
impregnated preparation of the cerebellum. Taken from Golgi (1883; available via license CC BY 4.0). (C) The current high-resolution rendering of a Golgi cell filled
with a fluorescent dye and imaged with a two-photon microscope (courtesy of J. DeFelipe).
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the nature of this effect still remains to be determined
(Schulman and Bloom, 1981; Xu and Edgley, 2008). Apical
dendrites, in general stout and straight, ascend towards the ML
where they branch extensively forming a distinctive fan-shaped
dendritic tree. They receive excitatory synapses via PFs of
distant granule cells (Chan-Palay et al., 1977; Dieudonné,
1998; Vos et al., 1999; Cesana et al., 2013) and mixed
GABA/glycine inputs from LCs (Dumoulin et al., 2001). Pure
GABAergic synapses between stellate/BCs and apical Golgi
cell dendrites have been also suggested (Palay and Chan-
Palay, 1974) but this finding has not been confirmed. Recently,
optogenetic studies have shown that axons of stellate/BCs do
not functionally innervate Golgi cells and that Golgi cells inhibit
each other through reciprocal GABAergic synapses (Hull and
Regehr, 2012; Eyre and Nusser, 2016). Finally, apical Golgi
cell dendrites are known to form a highly interconnected
network using gap junctions endowing Golgi cells with a
further level of complexity (Dugué et al., 2009; Vervaeke
et al., 2010). Golgi cell axons, composed by very thin beaded
fibers, extend profusely into the GL originating widespread
neuritic plexi (Dieudonné, 1998; Geurts et al., 2001; Sillitoe
et al., 2008). They contribute to the glomerular synapses
on granule cell dendrites (Eccles et al., 1966a; Hámori and
Szentágothai, 1966; Fox et al., 1967). In the vestibulo-cerebellum,
Golgi cell axons make synaptic contact with the unipolar
brush cells, in addition to granule cells. Whereas inhibitory
postsynaptic responses in granule cells are purely mediated
by GABAA receptors, those in unipolar brush cells display a
mixed GABAergic/glycinergic component (Dugué et al., 2005;
Rousseau et al., 2012). The physiology of Golgi cells has been
extensively explored by electrophysiological recordings in vitro
and in vivo. Patch-clamp recordings in vitro have reported that
(Dieudonné, 1998; Forti et al., 2006; Solinas et al., 2007a,b;
Figure 4A):

- Golgi cells are autorhythmic, generating spikes in the range of
1–10 Hz in the absence of synaptic input; occasionally they can
be silent during cell-attached recordings.

- they show discharge adaptation during depolarizing
current pulses;

- the application of hyperpolarizing current steps determines
sagging inward rectification followed by a large rebound
depolarization after pulse offset;

- following a sequence of spikes, Golgi cells can reset the phase
of their own spontaneous rhythmic firing. After a silent pause
lasting exactly as long as the oscillatory period, they restart
to discharge;

- Golgi cells are resonant for input frequencies of about 4Hz.

Rhythmic activity is also observed in vivo both in awake and
anesthetized animals (Edgley and Lidierth, 1987; Vos et al., 1999;
Holtzman et al., 2006a,b; Duguid et al., 2015). It has been recently
suggested that gap junction communication between Golgi cells
might be essential to allow low-frequency pacemaking and at
the same time, to synchronize oscillations in neighboring Golgi
cells (Dugué et al., 2009). However, experimental results and
simulation with detailed network models have shown that sparse
synaptic inputs can tonically and transiently desynchronize Golgi

FIGURE 4 | Intrinsic properties of cerebellar GABAergic neurons.
(A) Electroresponsiveness of a Golgi cell. The neuron shows low-frequency
pacemaking activity and, upon depolarizing current injection, high-frequency
spike discharge. Spike discharges are followed by an afterhyperpolarization
and a silent pause. Upon hyperpolarizing current injection, the Golgi cell
shows sagging inward rectification, followed by a post-inhibitory rebound.
Adapted from Forti et al. (2006). (B) Whole-cell current-clamp recording in rat
cerebellar slices demonstrated that the spontaneously inactive LC was
reversibly excited by serotonin (1 µM). Below, summary of the effect of
serotonin on the firing frequency of a LC. Adapted from Dieudonné and
Dumoulin (2000). (C) Cell-attached patch-clamp recording from a ML
interneuron under control conditions and during the block of inhibition. Below,
autocorrelation of action potential trains from the corresponding recordings.
Note that the block of inhibition causes a marked increase in the regularity of
firing. Adapted from Hausser and Clark (1997).

cell networks by triggering a gap junction mediated inhibition
(Vervaeke et al., 2010, 2012; Szoboszlay et al., 2016).

Lugaro Cells
LCs were first described by Ernesto Lugaro more than a
100 years ago in the cat cerebellum (Lugaro, 1894). They
have been characterized as a morphologically distinct
GABAergic/glycinergic interneurons with unique physiological
features. LCs are mainly distributed in the posterior lobules (VII
to X; Lainé and Axelrad, 1996, 1998; Dieudonné and Dumoulin,
2000). On the basis of shape and location of the soma, LCs can
be divided into two groups: the first group consists of large-sized
LCs characterized by a fusiform or triangular soma which occupy
the deeper GL (Lugaro, 1894; Geurts et al., 2001; Melik-Musyan
and Fanardzhyan, 2004; Crook et al., 2006). The second group
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consists of small-sized LCs marked by a fusiform soma located
underneath the PCs layer (Lainé and Axelrad, 2002; Simat et al.,
2007; Schilling et al., 2008; Hirono et al., 2012). Globular cells,
likely a subtype of LCs, have been recently described; they have
a small rounded soma and are distributed throughout the GL
(Lainé and Axelrad, 2002). From the opposite extremities of the
LC soma, two pairs of thick, horizontal, rarely ramified dendrites
emerge, running parallel to the PCL in the parasagittal plane
(Lainé andAxelrad, 2002; Geurts et al., 2003). These dendrites are
very long (from 100 µm to 700 µm) and can ascend obliquely
towards the ML and/or extend down more or less vertically
through the GL (Lainé and Axelrad, 1996). Conversely, globular
cells exhibit radiating dendrites that spread mostly in the PCL
(Lainé and Axelrad, 2002; Hirono et al., 2012). LC axons are
myelinated and can be divided into two groups, in accordance
with their route to the ML (Lainé and Axelrad, 1996). In the first
case, the axon is parasagittally oriented and heads downwards
in the GL before ascending back and ending inside the ML. This
parasagittal plexus makes synaptic junctions with stellate and
BC soma. The second axon type enters directly the ML where
it generates a local and transversal plexus running parallel to
the PFs. These transverse fibers preferentially contact apical
dendrites of Golgi cells (Lainé and Axelrad, 1996; Dieudonné
and Dumoulin, 2000; Dumoulin et al., 2001). Although LCs
have also been suggested to inhibit PCs (Dean et al., 2003),
the location of these synapses remains debated (Lainé and
Axelrad, 1998, 2002; Simat et al., 2007). Globular cell axons
project into the ML following the directly or indirectly ascending
trajectory (Lainé and Axelrad, 2002). LCs in the rat cerebellum
are normally completely silent (Figure 4B). In the presence
of serotonin they become intensively active showing a robust
firing (5–15 Hz), determining the inhibition of BCs and SCs, as
well as Golgi cells and PCs (Dieudonné and Dumoulin, 2000;
Dumoulin et al., 2001; Dean et al., 2003; Hirono et al., 2012). In
the cerebellum, the LC-Golgi cell synapse was the first functional
evidence of mixed GABA/glycine co-release (Dieudonné,
1995; Dumoulin et al., 2001). Since glycine receptors are not
expressed at LC-stellate/basket/PC synapses, LCs can perform
target-specific synaptic transmission. High sensitivity to both
serotonin and norepinephrine differentiate globular cells
from other LCs. Moreover, they receive strong inhibitory
synaptic inputs through PC axon collaterals and probably also
excitatory synaptic inputs through MFs (Colin et al., 2002;
Hirono et al., 2012).

Basket Cells and Stellate Cells
BCs and SCs, first described by Golgi (1883) and Cajal
(1888) are GABAergic interneurons located in the ML of the
adult cerebellum (see Box 1). BCs and SCs have distinctive
morphology, positioning and axonal arborization (Lemeky-
Johnston and Larramendi, 1968; Chan-Palay and Palay, 1972;
Palay and Chan-Palay, 1974; Llinas et al., 2004). BCs have
a pyramidal or oval soma with a diameter of 20 µm and
are usually found in the inner third of the ML or between
PCs. BCs have 4–10 straight dendrites that expand vertically
producing a fan-shaped field in the parasagittal plane. In
general, the dendrites are large, thick and smooth although

some have spines. Many of them, before curving upwards,
extend in the horizontal plane above the PCs for millimeters,
originating relatively few branches in their course (DeFelipe
et al., 1986). SCs, which have a small and fusiform soma about
7–10 µm in diameter, are located in the upper two-third of
the ML. They are characterized by long, contorted, aspinous,
frequently branching dendrites radiating in all directions. Some
cells appear bipolar with dendrites originating from opposite
sides of the soma (Palay and Chan-Palay, 1974; Jacobs et al.,
2014). The longitudinally arranged PFs cross the dendritic tree
of both cell types at right angles, providing the major excitatory
synaptic input. In addition, several studies have reported
excitatory synapses between basket/SCs and CF collaterals acting
exclusively via spillover of glutamate from nearby release sites.
CFs stimulation resulted in an increased spike firing in both
interneurons both in vivo (Jörntell and Ekerot, 2002, 2003)
and in vitro (Hámori and Szentágothai, 1980; Szapiro and
Barbour, 2009). Finally, both molecular interneurons receive
inhibitory GABAergic contacts, mainly on their soma. BC
soma is contacted by PC axon collaterals and axons from
other BCs (O’Donoghue et al., 1989; O’Donoghue and Bishop,
1990; Hausser and Clark, 1997) whereas SC soma receives
axonal contacts from other SCs (Kondo and Marty, 1998).
BC axon emerges either from the soma or from one of
the major dendrites extending horizontally in the parasagittal
plane above the PC soma for the distance of 500–600 µm
(Chan-Palay et al., 1974; Castejon et al., 2001). It emits a
succession of collaterals: ascending collaterals headed to the
ML; descending collaterals that envelop the soma of several
PCs forming the pericellular ‘‘basket’’ that gives the cells
their name. Some terminate their course surrounding the
initial axon segment of PCs establishing a very complicated
axo-axonic synapse called pinceau. The axons of SCs are less
characteristic: they branch immediately generating short and
circumscribed collaterals. This simple arborization contacts the
dendrites of PCs (Palay and Chan-Palay, 1974; Ito, 1984).
Both ML interneurons fire spontaneously in the range of
1–35 Hz, both in vitro, in the absence of external inputs,
and in vivo (Hausser and Clark, 1997; Carter and Regehr,
2002; Jörntell and Ekerot, 2003; Barmack and Yakhnitsa, 2008).
The excitability of BCs and SCs is shown to be modulated
by several molecular mechanisms. For example, the firing
rate of SCs is dynamically regulated by T-type channel-
mediated Ca2+ transient through A-type K+ channel modulation
(Molineux et al., 2005; Anderson et al., 2013; Alexander et al.,
2019). Moreover, ML interneurons firing patterns are typically
irregular, characterized by a shift toward a more regular rate
when inhibitory synaptic currents are blocked (Figure 4C;
Hausser and Clark, 1997; Lachamp et al., 2009). This irregularity
is presumably due to spontaneous CF activities occurring in
irregular patterns. Interestingly, CFs, especially terminating in
the same parasagittal bands, tend to display synchrony (De
Zeeuw et al., 1997; Lang et al., 1999) determining a more
synchronized spiking activity of the interneurons localized in
the same microzone. This tendency may be further enhanced
by mutual inhibitory contacts (see above) and gap junction
communication (Mann-Metzer and Yarom, 1999).
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CEREBELLAR INTERNEURONS
FUNCTIONAL CONNECTIVITY

Although the functional connections of principal neurons (PCs
and granule cells) have been described in detail for the cerebellar
cortex (for critical reviews, see Tank et al., 1988; D’Angelo
et al., 1995, 2009, 2016; Silver et al., 1996; Hansel et al.,
2001; D’Angelo and De Zeeuw, 2009; D’Angelo, 2014, 2016,
2018; Masoli et al., 2015), attention is only recently starting
to shift toward the dynamical interactions among inhibitory
interneurons. The correlated morphological and functional
analysis of inhibitory interneurons is still representing a major
challenge. Indeed, GABAergic interneurons differ in molecular,
structural and firing properties, making their functional roles in
the microcircuits more complex to understand. The inhibitory
interneurons appear to be organized in multineuronal inhibitory
chains generating feed-forward, feed-back and lateral inhibition,
which are likely to cooperate in determining cerebellar signal
processing in a way that is not yet fully elucidated. For the sake of
simplicity, in the following section, the functional connectivity
of cerebellar cortical interneurons will be elucidated on the
basis of these three ‘‘classical’’ types of inhibition mediated by
GABAergic interneurons in the cerebellum. We will focus on
the recruitment of BCs, SCs, LCs and Golgi cells into these
circuit mechanisms.

Feed-Forward Inhibitory Circuits
In a feed-forward inhibitory circuit, principal cells and inhibitory
interneurons simultaneously receive are the same excitatory
input. The interneurons inhibits the principal cell with disynaptic
delay, thereby narrowing the window for suprathreshold
summation of excitatory inputs (Buzsáki, 1984; Pouille and
Scanziani, 2001; Blitz and Regehr, 2005; Gabernet et al., 2005;
Mittmann et al., 2005; Cruikshank et al., 2007; D’Angelo and
De Zeeuw, 2009; Torborg et al., 2010; Najac et al., 2011).
Feed-forward inhibition (FFI) is a way of regulating the
timing of neuronal responses in many brain regions, enhancing
network performance.

Parallel Fiber–Molecular Layer Interneurons–Purkinje
Cell
In the cerebellum, basket and SCs activated by PFs control
the rate and temporal precision of PC spike output using FFI
(Eccles, 1967; Hausser and Clark, 1997; Jaeger and Bower,
1999; Mittmann et al., 2005; Barmack and Yakhnitsa, 2008).
PCs generate complex spikes in response to CF activity (Davie
et al., 2008) and simple spikes which occur spontaneously
(Hausser and Clark, 1997; Raman and Bean, 1997) or are
driven by PF input (Eccles et al., 1967). Thus, the PC spike
output reflects a complex interaction between spontaneous
activity, excitatory and inhibitory synaptic inputs from PFs
and ML interneurons (Hausser and Clark, 1997; Jörntell and
Ekerot, 2002; Santamaria et al., 2007). FFI is mediated by
two distinct pathways involving different subcellular segments
of PCs. Experimental and computational studies suggest that
stellate (dendritic)-type inhibition and basket (somatic)-type
inhibition play diverse functional roles and have different

postsynaptic effects on PCs (Santamaria et al., 2002, 2007;
Santamaria and Bower, 2005; Bower, 2010; Masoli and D’Angelo,
2017). Dendritic FFI contributes to compensate PF excitation
in local segments of the PC dendrite resulting in indirect
influence on spike output. Specifically, the interaction of PF and
SC synaptic inputs on PC spike output is mediated by large
intrinsic calcium and calcium-activated dendritic currents which,
counterbalancing each other, affect the excitability of the PC
dendrite. Consistent with simulation-based studies, experimental
results suggest that the temporal balance between dendritic FFI
and PF input results in a compensation of calcium currents by
calcium-activated potassium currents. This, in turn, does not
determine any net current flow and thus no effect of PF activity
on the PC spike output (Jaeger and Bower, 1999). In conclusion,
dendritic FFI is involved in modulating the ‘‘state’’ of the PC
dendrite and this regulation of dynamic balance between voltage-
dependent conductances is the explanation of how the PC soma
activity typically functions (Jaeger et al., 1997; Jaeger and Bower,
1999; Santamaria et al., 2002; Womack and Khodakhah, 2003;
Santamaria and Bower, 2005; Bower, 2010). Conversely, somatic
FFI is very effective, rapid and powerful in controlling PC
responses. Specifically, this type of inhibition: (i) reduces the
time window for summation of independent input pathways; (ii)
increases the temporal spike precision of; and (iii) suppresses
the response to subsequent inputs (Vincent and Marty, 1996;
Mittmann et al., 2005; Barmack and Yakhnitsa, 2008). Recently,
the BC pinceau has been proposed to cause ephaptic inhibition
via the current flow surrounding the PC AIS (Blot and Barbour,
2014), confirming the prediction derived by analogy with the
Mauthner cell axon cap (Chan-Palay and Palay, 1970; Sotelo and
Llinás, 1972). Through the ephaptic pinceau effect, BCs, once
activated by PFs, determine an extremely fast inhibition of PCs,
thus without synaptic delay. This is a very effective mechanism
to prevent the simultaneous on-beam exciting action of PFs and
to reduce off-beam PC firing through a pure inhibition (Blot
and Barbour, 2014). The influence of dendritic and somatic FFI
on PCs are predicted to be different along the course of PFs
(Santamaria et al., 2007).

Despite the long history of works dedicated to understand
cerebellar cellular circuitry and function (Cajal, 1908; Eccles,
1967; Voogd and Glickstein, 1998; Voogd, 2014), the last decade
of cerebellar research has discovered additional afferent and
efferent contacts that could impact on the ML interneuron
processing. The high majority of granule cells ascending axon
synapses on PCs (Sultan and Bower, 1998; Apps and Garwicz,
2005) are located in the inner ML (Gundappa-Sulur et al.,
1999). A recent hypothesis is that ascending axon synapses
can also end on BCs, though this is not confirmed by either
physiological or anatomical (Gundappa-Sulur et al., 1999) data.
If this was true, then an interesting scenario would appear. The
ascending axon of granule cell is invaded very rapidly by the
spike (Diwakar et al., 2009; Dover et al., 2016), which then run
more slowly along the PFs (0.1 m/s). Thus, excitatory inputs
arriving at PCs through ascending axons would be too early to
undergo the FFI influence. By contrast, at longer distances, PF
inputs can be counterbalanced by dendritic FFI. In conclusion,
the fundamental features of the connectivity and therefore

Frontiers in Molecular Neuroscience | www.frontiersin.org 8 November 2019 | Volume 12 | Article 267

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Prestori et al. Inhibitory Dynamics in Cerebellar Cortex

the function of the cortical network are rigidly determined
by the spatial relationship between neuronal components.
Different form of plasticity at PF–ML interneuron and ML
interneuron–PC synapses are assumed to increase the variability
of PC spike output (Albus, 1971; Dean and Porrill, 2010). Several
arguments of evidence converge to sustain the concept that
ML interneuron FFI plays a role in controlling the gain and
timing of motor learning (Wulff et al., 2009; Heiney et al.,
2014; Yamazaki et al., 2015; Jelitai et al., 2016). PC GABAA
receptor knock-out mice show significant motor coordination
deficits (ataxia). Moreover, the modulation of the firing rate
of ML interneurons using optogenetics proved able to drive
movement kinematics in awake mice. In eyeblink conditioning, a
pause in PC firing occurs after training (Jirenhed et al., 2007).
However, PC spontaneous activity has been reported to be
independent of PF input (Hausser and Clark, 1997; Cerminara
and Rawson, 2004). Consequently, the well-timed reduction of
PC spontaneous activity could be explained by an acquired
increase in molecular interneuron FFI, which could, therefore,
contribute to the mechanisms underlying consolidation of the
learned eyeblink response. In conclusion, plastic changes in ML
interneuron FFI onto PCs could play a crucial role in controlling
the temporal aspects of learned output of the cerebellar cortex
(Attwell et al., 2002; Cooke et al., 2004; Jörntell et al., 2010; see
also below).

Parallel Fiber–Molecular Layer Interneuron–Molecular
Layer Interneuron
Since ML interneurons are highly interconnected via electrical
and chemical synapses, in addition to providing FFI to PCs
they also receive FFI from each other (Mittmann et al., 2005;
Rieubland et al., 2014). Interestingly, the effect of FFI in
interneurons appears to be less powerful than that observed
in PCs. This could depend on differences in the intrinsic
conductances in interneurons or PCs or, as an alternative, PFs
could activate fewer feed-forward inhibitory connections among
interneurons than onto PCs. Modeling studies investigating the
functional role of ML interneuron mutual inhibition revealed a
significant influence on activity of the network by regulating the
firing rate and variability of spike timing of ML interneurons and
PCs. Lennon et al. (2014) simulated a scenario where synapses
between ML interneurons were removed. Following decreased
mutual inhibition, ML interneuron firing rates increased. The
consequence of the increased ML interneuron firing is an
increase of FFI onto PCs, resulting in decreased PC firing
rates thus preventing DCN neurons from firing appropriately.
Thus, FFI onto ML interneurons could be needed to assure
effective motor performance and learning (Walter et al., 2006;
Wulff et al., 2009).

Parallel Fiber–Molecular Layer Interneuron–Golgi Cell
Anatomical and physiological (Dumoulin et al., 2001) lines
of evidence have proposed that, in addition to PCs, ML
interneurons recruited by PFs inhibit Golgi cells (Figure 4).
However, recent studies reported that Golgi cells are synaptically
inhibited by other Golgi cells (Dugué et al., 2009; Galliano
et al., 2010; Simões de Souza and De Schutter, 2011) rather

than by ML interneurons (Hull and Regehr, 2012), and
that they are also connected by gap junctions (Isope and
Barbour, 2002; Geurts et al., 2003; D’Angelo and De Zeeuw,
2009; Galliano et al., 2010; Jörntell et al., 2010). At present,
the existence of ML interneuron–Golgi cell synapses issue
remains controversial.

Mossy Fiber–Golgi Cell–Granule Cell
In the GL, Golgi cells generate synaptic inhibition onto granule
cells. Granule cells receive excitatory inputs from the MFs
which, in turn, excite Golgi cells providing FFI to granule
cells (Pouille and Scanziani, 2001; Kanichay and Silver, 2008;
D’Angelo and De Zeeuw, 2009; D’Angelo et al., 2013). FFI
from Golgi cells acts through two main mechanisms, phasic and
tonic. Phasic inhibition consist of synaptic GABAA-mediated
inhibitory post-synaptic currents and potentials (Wall and
Usowicz, 1997; Rossi and Hamann, 1998; Armano et al., 2000),
while tonic inhibition is mediated by extrasynaptic GABAA
receptors activated by low GABA levels in the extracellular
space (Brickley et al., 1996; Wall and Usowicz, 1997; Hamann
et al., 2002; Rossi et al., 2003; Farrant and Nusser, 2005; Glykys
and Mody, 2007). FFI mediated by phasic inhibition enhances
granule cell spike timing precision by narrowing the time
window for synaptic integration. In response to a singleMF input
or brief bursts, phasic inhibition generated by the feed-forward
circuit lasts about 4–5 ms and limits the duration of granule cell
responses to 1–2 spikes. Interestingly, since MF–granule cell LTP
tends to anticipate the emission of the first spike, while LTD
does the opposite (Nieus et al., 2006; Mapelli et al., 2014; Nieus
et al., 2014), synaptic plasticity contributes with the time window
mechanism in regulating information transfer (D’Angelo et al.,
2013). Extending a prediction from theoretical network analysis
(Medina and Mauk, 2000; De Schutter and Bjaalie, 2001), Golgi
cells endow the GL with the properties of a temporal filter
determining how bursts are conveyed toward ML and how
PFs activate PCs and interneurons (Bower, 2002; Lu et al.,
2005). Furthermore, at the PF synapses Golgi cells could also
regulate the short- and long-term synaptic plasticity induction by
controlling the temporal pattern of spikes generated by granule
cells (Isope and Barbour, 2002; Sims and Hartell, 2005). During
MF high-frequency activity, like that generated in response
to sensory stimulation (Chadderton et al., 2004; Rancz et al.,
2007), the time window effect can be momentarily abolished,
due to diverse possible mechanisms including: (i) presynaptic
decrease of GABA release through GABAB autoreceptors or
mGlu receptors expressed on Golgi cell terminals (Mitchell
and Silver, 2000a,b; Mapelli et al., 2009); (ii) postsynaptic
down-regulation of GABAA currents mediated by GABAB
activation (Brandalise et al., 2012); (iii) postsynaptic reduction of
an inward rectifier potassium current through GABAB receptors
which determines an enhancement of granule cell responsiveness
(Rossi et al., 2006); and (iv) reduction of Golgi cell firing through
dendritic activation of mGlu2 receptors which enhances an
inward rectifier potassium current (Watanabe and Nakanishi,
2003). Additional in vitro and in vivo studies are needed to
clarify the significance of these mechanisms. Otherwise, FFI
mediated by tonic inhibition determines a shift of input/output
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(I/O) relationship by decreasing the membrane resistance of
granule cells, leading to a reduction of the excitability (Hamann
et al., 2002). This holds confirmed only for constant excitatory
inputs. When excitation is mediated by time-varying synaptic
inputs, tonic inhibition changes the slope (gain) of the I/O
relationship (Chance et al., 2002; Mitchell and Silver, 2003).
Thus, FFI mediated by tonic inhibition has a double effect:
the shift in I/O relationship configure the level of granule cell
excitability, while gain regulation makes the neuron less sensitive
to changes in its inputs. In this manner, tonic inhibition would
allow providing the appropriate excitability of granule cells
and discriminating significant information from background
activity eventually reducing signal-to-noise ratio of information
transmission in granule cells and of PF input to the molecular
interneurons and PCs (Duguid et al., 2012; Mapelli et al., 2014).

Feed-Back Inhibitory Circuits
In a feed-back inhibitory circuit, the principal cell provides the
excitatory input onto the inhibitory interneurons, which, in turn,
further inhibit the principal cell. Therefore, feedback inhibition
(FBI) plays a general role in locally controlling the excitatory-
inhibitory (E/I) balance within a neural circuit (Dieudonné, 1998;
D’Angelo and De Zeeuw, 2009; D’Angelo et al., 2013; Feldmeyer
et al., 2018).

Parallel Fiber–Golgi Cell–Granule Cell
Electrophysiological and morphological experimental results
indicate that Golgi cells feedback onto the granule cells
(Figure 4). Actually, previous in vivo researches reported that
an intense stimulation of the PFs caused a decrease of the
MF excitatory input transmission to PCs, possibly through the
excitation of Golgi cells and successive inhibition of granule
cells (Eccles et al., 1964, 1966a; Dieudonné, 1998). Considering
PF lengths, a granule cell could excite a Golgi cell at a long
distance along the transverse section. Conversely, a Golgi cell
will only inhibit the granule cells mostly located in the narrow
parasagittal zone occupied by its axon. FBI from Golgi cells
onto granule cells mediated by phasic inhibition is critical
for generating and sustaining coherent oscillations (Maex and
De Schutter, 1998; Solinas et al., 2010; Mapelli et al., 2014).
Following MF input, Golgi cell and granule cell populations
become entrained in a synchronous oscillatory activity, whose
basic frequency range from 10 to 40 Hz (Maex and De Schutter,
1998). This could account for the large-amplitude oscillation
recorded in the GL of freely moving rats (Pellerin and Lamarre,
1997; Hartmann and Bower, 1998; Courtemanche et al., 2002;
Courtemanche and Lamarre, 2005) and monkeys. Furthermore,
Golgi cell autorhythmic activity (Forti et al., 2006), SC-Golgi
cell synapses (Casado et al., 2000), and Golgi cell-Golgi cell
synapses and gap junctions (Vervaeke et al., 2010, 2012; Hull
and Regehr, 2012) also participate to originate circuit oscillations
(Maex and De Schutter, 1998; D’Angelo and De Zeeuw, 2009;
Solinas et al., 2010; D’Angelo et al., 2013). Recently, FBI mediated
by phasic inhibition has been shown to be implicated in the
phenomenon of resonance in the GL (Gandolfi et al., 2013). The
authors showed that the blockade of phasic inhibition prevented
oscillations but not resonance (which is just modulated),

indicating that the two processes have a complicated and only
partially mechanistic relationship with the inhibitory circuit.
Finally, a computational model of the GL suggested that tonic
inhibition generated by FBI desynchronizes the network, but this
effect could be counterbalanced completely by enhancing MF
firing rate (Maex and De Schutter, 1998). Thus, tonic inhibition
could further have an effect on coherence of distributed signal
processing (Singer and Gray, 1995; Semyanov et al., 2004).

Lugaro Cell–Molecular Layer Interneurons–Purkinje
Cell
A LC makes synaptic contacts preferentially with ML
interneurons in the sagittal axonal plexus and Golgi cells in
the transversal axonal plexus (Simat et al., 2007; Schilling et al.,
2008), while soma and dendrites receive massive innervation
from PC axon collaterals (Colin et al., 2002; Hirono et al.,
2012). LCs, once activated by MFs or monoaminergic inputs,
can increase the PC activity through ML disinhibition. Thus,
the PC–LC feedback circuit proceeds and could silence LCs.
LC activity is able to synchronize the firing of PC clusters in
different microzones, likely contributing to motor learning and
coordination (Hirono et al., 2012). A previous in vivo study
described a correlation between the spontaneous firing rate
of PCs and the effect of serotonin (Strahlendorf et al., 1984).
Specifically, PCs that responded to serotonin with increases in
discharge rate showed significantly lower basal firing frequencies
than those cells that were silenced by serotonin. This correlation
can be explained by FBI circuit. When PCs fire high-frequency
action potentials, LCs are allowed to generate only a few spikes
even in the presence of serotonin, and PCs firing is no longer
facilitated by serotonin, but rather in some cases decreased
by the direct effects of serotonin on the PCs (Bishop and
Kerr, 1992; Li et al., 1993). Conversely, when PCs fire at low
frequencies, serotonin can induce robust firing in LCs, which
lead to facilitation of PC firing. At the behavioral level, the
pharmacological depletion of brain serotonin in the rabbit
causes a loss of vision-guided adaptation of vestibulo-ocular
reflex (VOR; Miyashita and Watanabe, 1984). Moreover, a
serotonin precursor was used for cerebellar ataxia therapy
(Trouillas et al., 1988, 1995). Recent clinical research in
patients with ADHD, some of whom show abnormal activity in
monoaminergic systems, showed that the timing of conditioned
eyeblink responses is impaired (Oades et al., 2008; Frings et al.,
2010). In conclusion, since LCs also contact Golgi cells, they may
be considered as a key node in modulating inhibition levels both
in the molecular and GL (Figure 5).

Lateral Inhibition
Lateral inhibition is considered a consequence of FBI where
a principal neuron response to a stimulus is inhibited by the
excitation of a neighboring interneuron by other principal cells
nearby. This type of neural network was first discovered by
Hartline and Ratliff (1957) in their studies of the compound
eye of the horseshoe crab. In general, lateral inhibition enhances
neurons responsiveness to spatially varying stimuli than to
spatially uniform ones. That is, a neuron stimulated by a
spatially uniform stimulus is also inhibited by its surrounding
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FIGURE 5 | Inhibitory chains in the cerebellar cortex. The scheme shows the main excitatory and inhibitory connections in the cerebellar cortical circuit. Note that
feed-forward (FFI) and feed-back (FBI) inhibitory loops are integrated in a complex inhibitory chain. FFI: (a) A PC may be both directly excited and then inhibited with
disynaptic delay via ML interneurons (MLIs) activated by the same set of active PFs. (b) MLIs receive feed-forward inhibition (FFI) from each other. (c) MLIs, activated
by PFs, inhibit Golgi cells (GoCs) in the same manner as PCs. This issue is somewhat controversial (see main text, dashed line). (d) Granule cells (GrCs) receive
excitatory inputs from MFs. MFs also excite GoCs which provide FFI to GrCs. FBI: (e) through the PFs, GrCs activate GoCs that, in turn, inhibited GrCs in a feedback
loop. (f) PC collaterals are known to inhibit LCs, which in turn inhibit MLIs. Activation of LCs by excitatory MF or monoaminergic inputs would lead to enhanced PC
activity through disinhibition. In gray, non-cortical circuits involving DCN and IO. Traces show the activity of MF, granule cells, ML interneurons and PCs during tactile
sensory stimulation in rodents. Adapted from Rancz et al. (2007) and Ramakrishnan et al. (2016). Noteworthy, the complex regulatory mechanisms brought about by
the inhibitory interneuron chain remain to be investigated during dynamic signal processing.

interneurons, thus suppressing its response. By contrast, a
neuron subjected to a spatially varying stimulus is less inhibited
by its neighbors that are not excited, thus producing stronger
response (Bakshi and Ghosh, 2017).

Golgi Cell Lateral Inhibition
Golgi cell primary axonal plexus is confined in the GL and send
collaterals originating secondary plexuses in the same or even
in nearby laminae (Eccles, 1967; Barmack and Yakhnitsa, 2008).
In the case of the Golgi cell, the origin of lateral inhibition
phenomena relies on the larger extension of the axonal plexus
compared to that of basal dendrites. The functional relevance
of this inhibitory organization has recently been described
through multi-electrode array recordings and voltage-sensitive

dye imaging (Mapelli and D’Angelo, 2007; Mapelli et al., 2009;
D’Angelo et al., 2013). Previous investigations in vitro have
shown that lateral inhibition in the GL originates a center-
surround organization of granule cell activity (Mapelli and
D’Angelo, 2007; D’Angelo, 2008; Soda et al., 2019), characterized
by prevailing excitation in the core, surrounded by an inhibited
area. The center-surround pattern is generated as follows: when
the MFs discharge in bursts, both granule cells and Golgi cells
are activated in the same region. The resulting E/I balance is
characterized by excitation prevailing in the core and inhibition
prevailing in the surround, by virtue of the broader inhibitory
territory of Golgi cells, with granule cell excitation that decreases
radially from the excitation core (Figure 6A; Mapelli and
D’Angelo, 2007). A detailed multicompartmental model has

Frontiers in Molecular Neuroscience | www.frontiersin.org 11 November 2019 | Volume 12 | Article 267

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Prestori et al. Inhibitory Dynamics in Cerebellar Cortex

calculated that an excited core can contain 260 granule cells
with a probability of generating spikes up to 35%; by contrast,
this probability is almost zero in the surround. Switching off
inhibition in this context increases the probability of firing in the
core up to 50% (Diwakar et al., 2009). Therefore, Golgi cells are
pivotal players in determining the center-surround organization
of granule cell activity following MFs stimulation. Three main
functional consequence can be pointed out:

1. Organization of information transmission and processing
along channels activating granule cell ascending axons
running toward the ML and contacting overlying PCs.
Coherently with high excitation levels in the core, the
E/I organization in the GL facilitates the transmission of
high-frequency burst along the channel. The prevailing
inhibition in the surround acts as a filter preventing the
transmission of low-frequency discharges (Mapelli et al.,
2010). As a consequence, Golgi cells are able to define,
converge and refine information transmission to PCs
originating transmission channels running vertically to the
ML, as suggested by previous experiments (Bower and
Woolston, 1983).

2. Dynamic configuration of network topology by controlling
the distribution of long-term synaptic plasticity. In particular,
the higher excitation level in the core facilitates LTP, while the
weaker excitation levels in the surround facilitate LTD. The
center-surround organization of the E/I balance determines,
in condition of suitable high-frequency stimulation, a
matching center-surround distribution of LTP and LTD.
This further sharpens the topological organization of
signal transmission (Figure 6a). In the perspective of the
transmission channeling mentioned above, regions showing
LTP and LTD are likely to represent these channels by
processing MFs incoming activity in different ways. Relying
on the available data on synaptic plasticity modification of
MF–granule cell synaptic properties, the LTP channel would
be characterized by reduced response latency and increased
post-synaptic firing frequency; the opposite is expected in the
LTD channel (Nieus et al., 2006). Interestingly, considering
electrophysiological and simulation modeling data (Mapelli
et al., 2010; Solinas et al., 2010), the LTP channel is expected
to display a heightened high-frequency transmission gain
than the LTD channel. This prediction has not yet been
experimentally confirmed.

3. A third and distinct effect of Golgi cell feed-back inhibition
is the transformation of asynchronous granule cell activity
into synchronous low-frequency GL oscillations. When
asynchronous granule cell activity is received on their
dendrites, it is summed up until the Golgi cells make
a spike, which inhibits a large GL area. This results in
self-sustained oscillations. And since Golgi cells, thanks to
reciprocal connection through gap-junctions and inhibitory
synapses, tend to form a functional syncytium, their pulsation
tends to synchronize. Finally, the circuit time constant and
the intrinsic resonant frequency of granule and Golgi cells
will phase-lock the oscillation toward the theta band. These
oscillations have been observed in vivo (Pellerin and Lamarre,

1997; Hartmann and Bower, 1998) and their mechanism has
been predicted by computational models (Figure 8; Maex and
De Schutter, 1998; Solinas et al., 2010; Casali et al., 2019).

Molecular Layer Interneuron Lateral Inhibition
Over 50 years ago, Szentágothai (1965) proposed that ML
interneurons could laterally inhibit PCs by virtue the anatomical
arrangement of excitation and inhibition onto PCs: the PFs
(axons of granule cells) run coronally, whereas the axons
of ML interneurons run sagittally (Figure 6b). Szentagothai’s
suggestion give rise to the beam hypothesis: activation of a
beam of lead to excitation a long row of PCs in the coronal
plane and inhibition in laterally located PCs (Andersen et al.,
1964; Szentágothai, 1965; Eccles, 1967, 1973; Palay and Chan-
Palay, 1974). Several experiments supported this idea (Cohen
and Yarom, 2000; Sullivan et al., 2005). Consistent with lateral
inhibition, recent advances have reported that the activation
of granule cells immediately underlying a PC evoked pure
excitation in the sagittal orientation, while the activation of
granule cells positioned more laterally—as far as 480 µm
away—provide pure inhibition (Dizon and Khodakhah, 2011;
Valera et al., 2016; Figure 6c). These findings are also in
agreement with in vivo studies reporting that sensory stimulation
excited a patch of PCs and simultaneously inhibited neighboring
PCs (Gao et al., 2006). Given that voluntary movement
requires the coordinated activity of muscles that have opposite
functions (agonist and antagonist), one function of this lateral
inhibition might be to efficiently generate reciprocal signals
from the same MF synaptic input (Dizon and Khodakhah,
2011). In this perspective, the role of FFI in enhancing the
temporal precision of PCs must be considered. Whether these
roles are fundamental for cerebellar functions remains to
be demonstrated.

PLASTICITY IN THE INHIBITORY
INTERNEURON NETWORK

Different forms of plastic changes in connection properties
and/or in intrinsic excitability have been observed in
inhibitory interneurons. Theoretical modeling of the
cerebellar circuit suggested that plasticity in Golgi cells and
ML interneurons would critically impact cerebellar circuit
processing (e.g., affecting temporal precision, strength of
excitatory transmission and filtering). To date, the main
forms of plasticity involving cerebellar inhibitory interneurons
are the following. A form of LTD has been observed at the
connection between PFs and Golgi cells, following high-
frequency activation (Robberechts et al., 2010). Golgi cells
have also been described to undergo an increase in intrinsic
excitability, as an increase in spontaneous firing, following
hyper-polarization (Hull et al., 2013). In the ML, a recent
study in vivo showed a long-lasting decrease in spontaneous
firing in MLIs after theta-sensory stimulation (a pattern
that is able to induce plasticity in vivo in the cerebellar
network; Ramakrishnan et al., 2016). Other forms of LTP
and LTD had been previously described in vitro, namely
a postsynaptic PFs–ML interneurons LTD following high
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FIGURE 6 | Lateral inhibition in the cerebellar cortex. (A) Schematic of the cerebellar circuit of lateral inhibition, with the relevant granular and ML connectivity
highlighted at left and at right, respectively. (a) GoCs generate a broad lateral inhibition that extends beyond the afferent synaptic field. The center-surround effect is
generated by lateral inhibition. After excitation, GrCs in the core are more activated than those in the surrounding area. Below, long-term synaptic plasticity is
controlled by Golgi cell synaptic inhibition at the MF-granule cell synapse. The result is LTP in the center and LTD in the surround, so that LTP and LTD assume a
center-surround organization. Modified from Soda et al. (2019). (b) MLIs provide the substrate for lateral inhibition of PCs by virtue of the orthogonal arrangement of
excitation and inhibition onto PCs: the PFs run coronally, whereas the axons of MLIs run sagittally. Surface stimulation of the cerebellar cortex evokes a large
on-beam increase in fluorescence attributable to PF excitation of its postsynaptic targets (PCs and MLIs) and a narrow off-beam decrease in fluorescence due to
postsynaptic inhibition generated by MLIs. Blocking inhibition using bicuculline application abolishes off-beam decrease in fluorescence and enhances the on-beam
increase in fluorescence (scale bar 1 mm). Right, intensity profiles of the fluorescence change perpendicular to the beam. Adapted from Gao et al. (2006). (c)
Response maps of a single PC (light gray) in terms of change in firing rate (gray scale) with inhibition on or off, while stimulating different regions in the GL. The
probability that pure and net inhibitory responses are elicited by granule cells increased as a function of lateral distance from the PC (scale bars 80 µm × 80 µm).
Adapted from Dizon and Khodakhah (2011).

frequency activation of the terminal (Soler-Llavina and
Sabatini, 2006), a PFs–ML interneurons LTP requiring SCs
depolarization during terminal activation (Rancillac and Crépel,
2004); and in vivo, as a PFs–ML interneurons LTP depending
on CFs simultaneous activation (Jörntell and Ekerot, 2002).
For a comprehensive review of the plasticity sites in the
cerebellar network and the effects of distributed plasticity on
circuit processing, see Mapelli et al. (2015). Further forms
of plasticity at synapses impinging Golgi cells have been

predicted by theory (Garrido et al., 2013) but remain to be
demonstrated experimentally.

INSIGHT FROM DETAILED CEREBELLAR
MICROCIRCUIT MODELS

Modeling of cerebellar function has its roots back to the work
of Eccles, Marr and Albus in the second half of the 20th
century (Eccles et al., 1967; Marr, 1969; Albus, 1971). The initial

Frontiers in Molecular Neuroscience | www.frontiersin.org 13 November 2019 | Volume 12 | Article 267

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Prestori et al. Inhibitory Dynamics in Cerebellar Cortex

FIGURE 7 | Spatial organization of the granular and ML activity predicted by computational modeling. (A) The map shows the activity change of PCs in response to
a MF burst. (B) The PC activity was averaged into 3 × 3 matrices in order to better appreciate when alternative patterns are generated. (C) In response to a MF burst,
the GL responds with a core (red area) of activity surrounded by inhibition (blue area). The upper plot represents the activity of GoCs (blue) and GrCs (red) before and
after the stimulus burst. (D) Peri-stimulus time histograms (PSTH) of GrCs in the center-surround. The activity in the core is characterized by robust spike bursts,
while just sporadic spikes are generated in the surround. No activity changes are observed outside the center-surround structure. Adapted from Casali et al. (2019).

models were not realistic, also because available information
about neuronal mechanisms was very limited. More recently,
the availability of a huge amount of literature on cerebellar
neuron properties and the development of high-performance
computing and modeling platforms has allowed generating
models incorporating fine details on intrinsic electroresponsive
properties of neurons and synapses (D’Angelo et al., 2016).
In the last decades, different models of cerebellar neurons
have been proposed, mainly for principal cells [as granule cells
(Solinas et al., 2010); and PCs (Masoli and D’Angelo, 2017)],
but also for interneurons. Modeling of interneurons is indeed
necessary to understand microcircuit dynamics and reproduce
complex network behaviors in large-scale simulations (Figure 7;
Casali et al., 2019).

Golgi Cell Models
The first realistic model of the Golgi cell was proposed in 2007
(Solinas et al., 2007a,b) and its properties were incorporated

in a detailed model of the GL later on Solinas et al. (2010).
These models were able to reproduce complex non linear
Golgi cell properties, as pace-making activity, phase-reset and
resonance, and to help explain how these features play a
role in emerging microcircuit properties (e.g., the center-
surround and synchronous low-frequency oscillations in the
GL; Maex and De Schutter, 1998; Solinas et al., 2010; Casali
et al., 2019). The implementation of dendritic gap junctions
in the realistic model showed that depolarization of one
Golgi cell had an impact on the firing of neighboring Golgi
cells (Dugué et al., 2009; Vervaeke et al., 2010) and enabled
synchronization between Golgi cells (van Welie et al., 2016),
prompting further investigation on Golgi cells mutual inhibition.
For a comprehensive review of this subject see (D’Angelo et al.,
2013). Recently, a simplified model of Golgi cell was obtained,
maintaining the crucial firing dynamics shown in the previous
models, making it feasible to integrate these properties in large-
scale simulations (Geminiani et al., 2018). The 3D connectivity
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FIGURE 8 | Synchronous low-frequency oscillations in the GL revealed by computational modeling. (A) Raster plots of representative GrC and GoC during 5 Hz
random MF input. Note that synchronous patterns are visible (arrows). (B) Cumulative PSTH of the whole GrCs and GoCs population. Insets show the
autocorrelograms of the activity in corresponding population. (C) Crosscorrelogram of GrC and GoC populations activity. Adapted from Casali et al. (2019).

of Golgi cells within the granular and ML has allowed to
explain also the center-surround organization of responses
emerging following MF bundle stimulation (Solinas et al., 2010;
Casali et al., 2019).

Molecular Layer Interneurons Models
Realistic models of stellate and BCs, based on their
experimentally-measured passive properties, are not available
yet. Simplified models have been used to explain the role of these
interneurons in determining PCs firing within the feed-forward
loops, mimicking the irregular firing observed in vitro for both
PCs and ML interneurons (Santamaria et al., 2007; Lennon
et al., 2014). These models also suggested the importance of
ML interneurons mutual inhibition to reproduce experimental
data. Recently, a more detailed model of ML interneurons (but
lacking a distinction between stellate and BCs (Maex and Gutkin,
2017) has been proposed in order to investigate the role of these
interneurons in the timing of cerebellar processing. Interestingly,
they found that synaptic and electric coupling of these neurons
provides the reciprocal inhibition that allows the time constant
necessary for temporal integration. Electrical coupling has been
suggested to reduce ML interneurons response heterogeneity,
improving the signal-to-noise ratio (Maex and Gutkin, 2017).
While modeling the molecular interneuron network, the
para-sagittal or medio-lateral orientation of the cerebellar cortex
strip reconstructed should be taken into account. Morphological
details suggested that SCs and BCs show different axonal
orientations, so that SCs are expected to have an impact mostly
in the transversal axis (then evident in medio-lateral strip,

also referred to as ‘‘on beam’’) and BCs should affect PCs
processing in the sagittal axis (also referred to as ‘‘off beam’’).
The effect of disconnecting selectively SCs or BCs from the
circuit has been described in a recent work, in a reconstruction
of the scaffold model of the whole cerebellar cortex, using
simplified models for single-cell neurons (Figure 7). Predictably,
switching off SCs determined a spread of excitation along the
PCL, prevalently along the transverse axis, while switching off
BCs excitation extended mainly along the para-sagittal axis
(Casali et al., 2019).

CONCLUSIONS

The last decades have been characterized by considerable
progress in understanding the diversity of cerebellar inhibitory
interneurons, in terms of embryological and developmental
origin, localization and distribution of neurochemical markers,
morphological and intrinsic properties. The concept has
emerged that neuron properties and network dynamics in
the cerebellar inhibitory circuit are more complex than
originally thought. Both in the granular and in the ML,
cerebellar interneurons are involved in complex inhibitory chains
generating feedback, feedforward and lateral inhibition that
regulate spatio-temporal dynamics of fundamental importance
to determine the processing capabilities of the cerebellar
cortex. Interneuron inhibition leads to the emergence of:
(1) center-surround organization in the GL; (2) gain and timing
regulation in the GL; (3) synchronous low-frequency oscillations

Frontiers in Molecular Neuroscience | www.frontiersin.org 15 November 2019 | Volume 12 | Article 267

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Prestori et al. Inhibitory Dynamics in Cerebellar Cortex

in the GL; (4) beam organization in the ML; (5) burst-pause
regulation in PCs; and (6) gating of synaptic plasticity. Since
the spatiotemporal pattern of cerebellar cortical activity is
de facto controlled by cerebellar cortical interneurons, these
cannot anymore be considered ‘‘subordinates’’ to excitatory cells
(i.e., just maintaining the E/I balance) but rather integral parts
of diverse microcircuits for multimodal information processing
(Casali et al., 2019). This emerging view prompts for further
investigations on these inhibitory interneurons in cerebellar
physiology and pathology. It has already been shown that
perturbing inhibitory interneurons functions results in altered
cerebellar computation and motor behavior both in the GL
(Watanabe et al., 1998) and in the ML (Rowan et al., 2018).
Moreover, synaptic inhibition has been proposed to play a key
role in neurodevelopmental disorders, such as autism, where
the correct balance between excitation and inhibition might
be disheveled by a malfunctioning of inhibition [as already
reported for other brain regions (Pizzarelli and Cherubini,
2011)]. Future investigations should aim at dissecting the
role of cerebellar cortical interneurons in specific processing
features, thus shedding new light on the understanding of
cerebellar processing and the generation of a unified theory of
cerebellar functioning. In this perspective, the development of

large-scale theoretical models will be fundamental to integrate
the different neuronal types in a scaffold of the cerebellar
cortex (D’Angelo et al., 2016; Casali et al., 2019). This
will not only help identifying the contribution of inhibitory
interneurons to local and global network dynamics but also
to make predictions about their contribution to cerebellar
processing and about the effects of their alterations in
cerebellar pathology.
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